CN106054995B - A kind of primary side feedback flyback power supply CCM and the Constant Current Control System of DCM patterns - Google Patents
A kind of primary side feedback flyback power supply CCM and the Constant Current Control System of DCM patterns Download PDFInfo
- Publication number
- CN106054995B CN106054995B CN201610524020.8A CN201610524020A CN106054995B CN 106054995 B CN106054995 B CN 106054995B CN 201610524020 A CN201610524020 A CN 201610524020A CN 106054995 B CN106054995 B CN 106054995B
- Authority
- CN
- China
- Prior art keywords
- module
- current
- output
- signal
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 66
- 238000001514 detection method Methods 0.000 claims abstract description 30
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 11
- 238000005070 sampling Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 15
- 238000004804 winding Methods 0.000 claims description 10
- 230000010365 information processing Effects 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 3
- 238000003909 pattern recognition Methods 0.000 claims description 2
- 238000012935 Averaging Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 241001125929 Trisopterus luscus Species 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及用于开关电源领域,尤其涉及一种原边反馈反激式电源CCM(电流连续模式)与DCM(电流断续模式)模式的恒流控制系统。The invention relates to the field of switching power supplies, in particular to a constant current control system in CCM (continuous current mode) and DCM (discontinuous current mode) modes of a primary side feedback flyback power supply.
背景技术Background technique
原边反馈(PSR)省去了采样光耦、减少了电路组件数目、降低了电路复杂程度,所以现在大多数反激变换器都采用PSR控制。为了提高原边反馈反激式开关电源的功率应用范围,必然要求开关电源有一个更高的功率输出。CCM主要应用于大功率负载情况,而DCM主要应用于小功率负载情况,并且控制环路比较稳定,要实现CCM模式下的高精度电流稳定性,便是当务之急,也是难点所在。The primary side feedback (PSR) eliminates the sampling optocoupler, reduces the number of circuit components, and reduces the complexity of the circuit, so most flyback converters now use PSR control. In order to improve the power application range of the primary side feedback flyback switching power supply, it is necessary to require the switching power supply to have a higher power output. CCM is mainly used for high-power loads, while DCM is mainly used for low-power loads, and the control loop is relatively stable. To achieve high-precision current stability in CCM mode is a top priority and a difficulty.
为了实现输出电流的稳定性,已有采用的方式是,通过Pout/Vo=Io的方式实现恒流输出,这里Pout是副边的输出功率,Vo是副边的输出电压,Io是副边的输出电流。实际采用这一策略的过程中,由于副边的输出功率Pout未知,用原边输入功率Pin代替副边的输出功率Pout,但是Pin的计算往往过于复杂,此外要得到副边的输出功率Vout需要额外构建采样电路,传统恒流算法在在恒流的实现上代价过大,由于恒流效果与效率相关,效率受输入电压与负载大小的影响较大,而电流的稳定性却难以实现高精度。In order to achieve the stability of the output current, the existing method is to realize the constant current output by means of Pout/Vo=Io, where Pout is the output power of the secondary side, Vo is the output voltage of the secondary side, and Io is the output voltage of the secondary side Output current. In the process of actually adopting this strategy, since the output power Pout of the secondary side is unknown, the input power Pin of the primary side is used to replace the output power Pout of the secondary side, but the calculation of Pin is often too complicated. In addition, to obtain the output power Vout of the secondary side requires An additional sampling circuit is built. The traditional constant current algorithm is too costly to achieve constant current. Because the constant current effect is related to efficiency, the efficiency is greatly affected by the input voltage and load size, but the stability of the current is difficult to achieve high accuracy. .
通过ADC实现恒流也是一种较为通用的方式,方法之一就是采样电流的最大最小值,然后求出平均值,或者利用ADC采样导通中点的电流电压值。但是这两种方法的缺点就是,若需要提高恒流精度,需要提高采样频率,为此的实现成本往往比较高。Realizing constant current through ADC is also a relatively common method. One of the methods is to sample the maximum and minimum values of the current, and then calculate the average value, or use the ADC to sample the current and voltage values at the midpoint of conduction. However, the disadvantage of these two methods is that if the constant current accuracy needs to be improved, the sampling frequency needs to be increased, and the implementation cost for this is often relatively high.
上述技术难点的存在,需要建立更高效的计算模型,从而实现更高精度的恒流特性。The existence of the above-mentioned technical difficulties requires the establishment of a more efficient calculation model to achieve a higher-precision constant current characteristic.
发明内容Contents of the invention
为克服现有技术的局限和不足,本发明提出了一种原边反馈反激式电源CCM与DCM模式的恒流控制系统,这种方法不仅适用于DCM模式,更可以应用到CCM模式下,在提高恒流精度的同时,可以提高电路的功率应用范围。In order to overcome the limitations and deficiencies of the prior art, the present invention proposes a constant current control system in the CCM and DCM modes of the primary side feedback flyback power supply. This method is not only applicable to the DCM mode, but also can be applied to the CCM mode. While improving the constant current precision, the power application range of the circuit can be improved.
为了实现上述目的,本发明采用的技术方案是:一种原边反馈反激式电源CCM与DCM模式的恒流控制系统,其特征在于:包括电流检测模块、输出反馈模块、电流计算模块、误差计算模块、PID模块、PWM模块以及驱动模块构成的控制系统,该控制系统与受控的开关电源连接起来构成一个闭环;In order to achieve the above object, the technical solution adopted by the present invention is: a constant current control system of the CCM and DCM modes of the primary side feedback flyback power supply, which is characterized in that it includes a current detection module, an output feedback module, a current calculation module, an error The control system composed of calculation module, PID module, PWM module and drive module is connected with the controlled switching power supply to form a closed loop;
电流检测模块用于采集实现恒流算法的基本参数,电流检测模块的输入信号包括PWM模块给定的原边峰值电流Ipeak经转化后的的峰值电压数字值Vp_dig、PWM模块输出的开关控制信号duty以及原边采样电流电阻的电压Vs,电流检测模块输出信号包括四个时间信号ton、t1、t2及tdelay,以及输出给PWM模块的信号Vcomp1,电流检测模块包括一个DAC单元,两个比较器COMP1及COMP2以及一个时钟计数单元,DAC单元的输入是峰值电压数字值Vp_dig,输出为对应的模拟电压量Vp,比较器COMP1的正端连接原边采样电流电阻的电压Vs,负端连接原边峰值电流Ipeak对应的电压Vp,比较器COMP2的正端连接原边采样电流电阻的电压Vs,负端连接原边峰值电流Ipeak对应电压Vp的部分分压Vp_k,其中Vp_k=k*Vp,0<k<1,k是根据输入电压最低且负载最大时,Vcomp1=0的时间长度为Vcomp2=0的时间长度的1.5倍到2.5倍来选取的,比较器COMP1的输出信号Vcomp1和比较器COMP2的输出信号Vcomp2均为时间计算单元的输入信号;The current detection module is used to collect the basic parameters to realize the constant current algorithm. The input signal of the current detection module includes the converted peak voltage digital value Vp_dig of the primary peak current Ipeak given by the PWM module, and the switch control signal duty output by the PWM module. And the voltage Vs of the sampling current resistor on the primary side, the output signal of the current detection module includes four time signals ton, t1, t2 and tdelay, and the signal Vcomp1 output to the PWM module, the current detection module includes a DAC unit, two comparators COMP1 And COMP2 and a clock counting unit. The input of the DAC unit is the peak voltage digital value Vp_dig, and the output is the corresponding analog voltage Vp. The positive terminal of the comparator COMP1 is connected to the voltage Vs of the primary side sampling current resistor, and the negative terminal is connected to the primary side peak value. The voltage Vp corresponding to the current Ipeak, the positive terminal of the comparator COMP2 is connected to the voltage Vs of the primary side sampling current resistor, and the negative terminal is connected to the partial voltage Vp_k corresponding to the voltage Vp corresponding to the peak current Ipeak of the primary side, where Vp_k=k*Vp, 0<k <1, k is selected according to when the input voltage is the lowest and the load is the largest, the time length of Vcomp1=0 is 1.5 times to 2.5 times of the time length of Vcomp2=0, the output signal Vcomp1 of the comparator COMP1 and the output of the comparator COMP2 The signal Vcomp2 is an input signal of the time calculation unit;
输出反馈模块用于采集实现恒流算法的基本参数、计算次级电感电流的占空比,输出反馈模块的输入信号包括辅助绕组采样电压Vsense和PWM模块输出的开关控制信号duty,输出反馈模块的输出信号包括时间信号tr值和模式识别信号flag,输出反馈模块包括一个比较器COMP3,比较器COMP3的正端连接辅助绕组采样电压Vsense,比较器COMP3的负端接地,比较器COMP3的输出Vcomp3为时间信号tr值和模式识别信号flag,在tr值的计算上DCM模式和CCM模式不同,对于DCM模式,当副边电流为0的时候,辅助绕组上的电压会出现谐振现象,为了更为精确的计算tr值,Vcomp3=1对应的系统时间内需要扣除掉四分之一的谐振周期才是准确的tr值,对于CCM模式,在duty=0期间,Vcomp3始终为1,此时duty=0的时间段即为tr值,flag=1表示CCM工作模式,flag=0表示DCM工作模式,其判断的依据就是在次边电流恢复到0后,辅助绕组上分压电阻上的电压是否出现谐振,如果出现谐振,表示处于DCM工作模式,如果没有出现谐振,表示处于CCM工作模式;The output feedback module is used to collect the basic parameters of the constant current algorithm and calculate the duty cycle of the secondary inductor current. The input signal of the output feedback module includes the auxiliary winding sampling voltage Vsense and the switch control signal duty output by the PWM module. The output feedback module The output signal includes the time signal tr value and the pattern recognition signal flag, the output feedback module includes a comparator COMP3, the positive terminal of the comparator COMP3 is connected to the auxiliary winding sampling voltage Vsense, the negative terminal of the comparator COMP3 is grounded, and the output Vcomp3 of the comparator COMP3 is The time signal tr value and the mode recognition signal flag, the DCM mode and the CCM mode are different in the calculation of the tr value. For the DCM mode, when the secondary current is 0, the voltage on the auxiliary winding will resonate. In order to be more accurate To calculate the tr value, the system time corresponding to Vcomp3=1 needs to deduct a quarter of the resonance period to get the accurate tr value. For CCM mode, during duty=0, Vcomp3 is always 1, and duty=0 at this time The period of time is the tr value, flag=1 means CCM working mode, flag=0 means DCM working mode, the basis for judging is whether the voltage on the voltage dividing resistor on the auxiliary winding resonates after the secondary side current returns to 0 , if there is a resonance, it means that it is in the DCM working mode, if there is no resonance, it means that it is in the CCM working mode;
电流计算模块用于在开关导通阶段计算原边电感电流的平均值Iav,该模块的输入信号包括电流检测模块输出的四个时间信号t1、t2、ton和tdelay以及输出反馈模块的输出信号tr、flag和PWM模块的输出信号Vp_dig,利用flag信号判别采用DCM还是CCM计算模型,电流计算模块输出信号是二进制数字量Iav_dig;The current calculation module is used to calculate the average value Iav of the primary inductor current during the switch-on phase. The input signals of this module include four time signals t1, t2, ton and tdelay output by the current detection module and the output signal tr of the output feedback module , flag and the output signal Vp_dig of the PWM module, use the flag signal to distinguish whether to use the DCM or the CCM calculation model, and the output signal of the current calculation module is a binary digital quantity Iav_dig;
误差计算模块包括精确数字给定、减法器、偏差计算及偏差变化率计算单元,减法器正端连接精确数字给定单元输出的二进制数字常量Iref,该值根据系统的设计指标而给定,减法器负端连接电流计算模块输出的二进制输出电流数字量Iav_dig,减法器的输出通过偏差计算单元得到二进制的当前采样周期的电压偏差数字量εμ(tn),将其通过偏差变化率计算单元与上一个采样周期二进制电压偏差数字量εμ(tn-1)相减得到二进制数字量的偏差变化率Δεμ(tn);The error calculation module includes precise digital setting, subtractor, deviation calculation and deviation change rate calculation unit. The positive terminal of the subtractor is connected to the binary digital constant Iref output by the precise digital setting unit. This value is given according to the design index of the system. Subtraction The negative terminal of the device is connected to the binary output current digital quantity Iav_dig output by the current calculation module, and the output of the subtractor obtains the binary voltage deviation digital quantity εμ(t n ) of the current sampling period through the deviation calculation unit, and passes it through the deviation change rate calculation unit and Subtract the binary voltage deviation digital quantity εμ(t n-1 ) in the previous sampling period to obtain the binary digital quantity deviation change rate Δεμ(t n );
PID模块包括微分、比例、积分及求和四个运算单元,积分与比例单元的输入为二进制的电压偏差εμ(tn),微分单元的输入为二进制的偏差变化率Δεμ(tn),将微分、比例、积分三个运算单元的输出在求和运算单元中求和,求和运算模块输出补偿结果为二进制的数字量VPI;The PID module includes four computing units: differential, proportional, integral and summation. The input of the integral and proportional unit is the binary voltage deviation εμ(t n ), and the input of the differential unit is the binary deviation change rate Δεμ(t n ). The outputs of the differential, proportional and integral three operation units are summed in the sum operation unit, and the output compensation result of the sum operation module is a binary digital quantity V PI ;
PWM模块的输入为PID模块的补偿结果VPI以及电流检测模块输出的Vcomp1;通过PID模块补偿结果VPI以及Vcomp1计算得到正常控制时开关周期与占空比的信息,得到周期与占空比信息后,PWM模块输出开关周期Ts值和原边峰值电流Ipeak值给驱动模块,其中Ts值是PWM模块根据输入信号计算得到的下一个开关周期的长度,而Ipeak则限定了原边采样电阻上的最大峰值电流;同时PWM模块利用PID模块输出的VPI值,输出信号Vp_dig,该信号Vp_dig用于电流检测模块以及电流计算模块的信息处理;The input of the PWM module is the compensation result V PI of the PID module and the Vcomp1 output by the current detection module; through the calculation of the compensation result V PI and Vcomp1 of the PID module, the information of the switching cycle and duty cycle during normal control is obtained, and the information of the cycle and duty cycle is obtained Finally, the PWM module outputs the switching cycle Ts value and the primary side peak current Ipeak value to the drive module, where the Ts value is the length of the next switching cycle calculated by the PWM module based on the input signal, and Ipeak defines the primary side sampling resistor. Maximum peak current; at the same time, the PWM module uses the V PI value output by the PID module to output a signal Vp_dig, which is used for information processing of the current detection module and the current calculation module;
驱动模块的输入为PWM模块输出的信号Ts以及Ipeak,Ipeak值限定了原边采样电阻上的最大电流,而该电流是正比于功率管的导通时间的,因此Ipeak也就限定了功率管的导通时间,结合上述的两个输入信号,驱动模块输出占空比波形,即duty信号,该信号控制功率管的栅极,实现对环路的控制;同时duty信号也是电流检测模块以及输出反馈模块进行信息处理的一个输入信号;重复上述过程进行循环控制开关电源功率管的开通和关断,以使系统更加稳定,从而获得更高的恒流精度。The input of the drive module is the signal Ts and Ipeak output by the PWM module. The value of Ipeak limits the maximum current on the primary sampling resistor, and the current is proportional to the conduction time of the power tube, so Ipeak also limits the current of the power tube. On-time, combined with the above two input signals, the drive module outputs a duty cycle waveform, that is, the duty signal, which controls the gate of the power transistor to realize the control of the loop; at the same time, the duty signal is also the current detection module and the output feedback An input signal for the module to process information; repeat the above process to cycle control the switching power supply power tube on and off to make the system more stable and obtain higher constant current accuracy.
本发明的优点及显著效果:Advantage of the present invention and remarkable effect:
1、通过简单的DAC单元与比较器,可以实现导通阶段电感平均电流的计算,可以应用于CCM与DCM,本发明的控制实现方法上简单,灵活,易于实现,免去了对于输出电压的采样电路,降低了电源开发成本。本发明在原理,思路上的创新是带来这一优势的最根本的原因。1. Through a simple DAC unit and a comparator, the calculation of the average current of the inductor in the conduction phase can be realized, which can be applied to CCM and DCM. The control implementation method of the present invention is simple, flexible, and easy to implement, eliminating the need for output voltage The sampling circuit reduces the power supply development cost. The innovation of the present invention in principle and train of thought is the most fundamental reason that brings this advantage.
2、本发明通过时间补偿运算,可以实现高精度恒流,在DCM模式下,取得了极高的恒流精度,相比传统的恒流算法,在DCM模式恒流效果下更胜一筹。2. The present invention can realize high-precision constant current through time compensation calculation. In DCM mode, it has achieved extremely high constant-current precision. Compared with traditional constant-current algorithms, it is better under the constant-current effect of DCM mode.
3、本发明能适用于隔离式或者非隔离开关电源电路结构,具备通用性,可复用性和可移植性;3. The present invention can be applied to isolated or non-isolated switching power supply circuit structures, and has versatility, reusability and portability;
附图说明Description of drawings
图1a是本发明控制方法的系统结构框图;Fig. 1 a is the system structural block diagram of control method of the present invention;
图1b是图1a中的电流监测模块结构框图;Fig. 1b is a structural block diagram of the current monitoring module in Fig. 1a;
图2a是输出反馈模块DCM模式下工作原理的示意图;Figure 2a is a schematic diagram of the working principle of the output feedback module in DCM mode;
图2b是输出反馈模块CCM模式下工作原理的示意图;Fig. 2b is a schematic diagram of the working principle of the output feedback module in CCM mode;
图3a是输出电流检测模块DCM模式下计算模型的示意图;Fig. 3a is a schematic diagram of the calculation model in the DCM mode of the output current detection module;
图3b是输出电流检测模块CCM模式下计算模型的示意图;Fig. 3b is a schematic diagram of the calculation model in the CCM mode of the output current detection module;
图4是具有本发明的多模式控制反激变换器的闭环电路结构图实施例。Fig. 4 is an embodiment of the structure diagram of the closed-loop circuit with the multi-mode control flyback converter of the present invention.
具体实施方式detailed description
本发明提高开关电源恒流精度的控制系统如图1a及图4,基于包括电流检测模块、输出反馈模块、电流计算模块、误差计算模块、PID模块、PWM模块以及驱动模块构成的控制系统,该控制系统与受控的开关电源连接起来构成一个闭环,电流检测模块,输出反馈模块采集实现恒流算法的基本参数,电流计算模块在开关导通阶段计算原边电感的平均电流,根据输入与输出的匝比关系,计算次级输出电流的平均电流,并通过对该电流进行时间上积分求平均得到输出电流,该输出值在数字PID模块中执行补偿算法,补偿值递交给PWM控制模块再经驱动模块输出合适的占空比,从而控制数字开关电源的高精度恒流。The control system for improving the constant current precision of the switching power supply in the present invention is shown in Fig. 1a and Fig. 4, based on the control system comprising a current detection module, an output feedback module, a current calculation module, an error calculation module, a PID module, a PWM module and a drive module. The control system is connected with the controlled switching power supply to form a closed loop. The current detection module and the output feedback module collect the basic parameters to realize the constant current algorithm. Turn ratio relationship, calculate the average current of the secondary output current, and obtain the output current by time-integrating the current, the output value is implemented in the digital PID module compensation algorithm, and the compensation value is submitted to the PWM control module and then passed The drive module outputs an appropriate duty cycle to control the high-precision constant current of the digital switching power supply.
电流检测模块,参见图1b,包括一个DAC单元,两个比较器COMP1,COMP2,以及一个时间计算单元。DAC单元的输入是PWM模块给定的峰值电流的数字值Vp_dig,输出为峰值电流对应于采样电阻上的电压Vp,比较器COMP1的正端接原边采样电流电阻的电压Vs,负端接峰值电流对应的电压Vp,输出信号Vcomp1输入到时间计算单元,比较器COMP2的正端接采样电流电阻的电压Vs,负端接峰值电流对应的电压Vp的部分分压Vp_k,其中Vp_k=k*Vp,其中0<k<1,k是根据输入电压最低且负载最大时,Vcomp1=0的时间长度为Vcomp2=0的时间长度的两倍左右来选取的,输出信号Vcomp2输入到时间计算单元;时间计算单元的输入信号分别为PWM模块输出的开关控制信号duty,两个比较器的输出信号Vcomp1与Vcomp2,该模块根据内部时钟信号分别计算Vcomp1=0,Vcomp2=0时间段t1的时间长度,Vcomp2=1,Vcomp1=0时间段t2的时间长度,以及Vcomp1=1,Vcomp2=1时间段tdelay的长度,同时计算duty=1的时间长度ton,ton为开关导通的时间长度。电流检测模块的输出结果是电流计算模块计算Iav的重要参数,该模块输出参数的准确性会影响到最后的计算精度。The current detection module, see Figure 1b, includes a DAC unit, two comparators COMP1, COMP2, and a time calculation unit. The input of the DAC unit is the digital value Vp_dig of the peak current given by the PWM module, and the output is the peak current corresponding to the voltage Vp on the sampling resistor. The positive terminal of the comparator COMP1 is connected to the voltage Vs of the primary sampling current resistor, and the negative terminal is connected to the peak value. The voltage Vp corresponding to the current, the output signal Vcomp1 is input to the time calculation unit, the positive terminal of the comparator COMP2 is connected to the voltage Vs of the sampling current resistor, and the negative terminal is connected to the partial voltage Vp_k of the voltage Vp corresponding to the peak current, where Vp_k=k*Vp , where 0<k<1, k is selected according to when the input voltage is the lowest and the load is the largest, the time length of Vcomp1=0 is about twice the time length of Vcomp2=0, and the output signal Vcomp2 is input to the time calculation unit; time The input signals of the calculation unit are the switch control signal duty output by the PWM module, and the output signals Vcomp1 and Vcomp2 of the two comparators. The module calculates the time length of Vcomp1=0 and Vcomp2=0 time period t1 respectively according to the internal clock signal, Vcomp2 =1, Vcomp1=0 time period t2, Vcomp1=1, Vcomp2=1 time period tdelay, and duty=1 time length ton, ton is the switch on time length. The output result of the current detection module is an important parameter for calculating Iav by the current calculation module, and the accuracy of the output parameters of this module will affect the final calculation accuracy.
如图1a及图4,输出反馈模块主要计算次级电感电流的占空比,主要包括一个比较器COMP3(未示出)与一个时间计算模块。这里的输出反馈主要指的是辅助绕组的反馈电压,而不是输出电压的直接反馈,这种原边反馈的方式省去了采样光耦、减少了电路组件数目、降低了电路复杂程度。比较器COMP3正端接辅助绕组分压电阻上的采样电压Vsense,负端接地,输出信号Vcomp3输入到时间计算单元,PWM模块输出的开关控制信号duty同时也是时间计算单元的输入,在tr值的计算上DCM模式和CCM模式略有不同。As shown in FIG. 1 a and FIG. 4 , the output feedback module mainly calculates the duty ratio of the secondary inductor current, and mainly includes a comparator COMP3 (not shown) and a time calculation module. The output feedback here mainly refers to the feedback voltage of the auxiliary winding, rather than the direct feedback of the output voltage. This method of primary side feedback saves the sampling optocoupler, reduces the number of circuit components, and reduces the complexity of the circuit. The positive terminal of the comparator COMP3 is connected to the sampling voltage Vsense on the auxiliary winding voltage dividing resistor, the negative terminal is grounded, the output signal Vcomp3 is input to the time calculation unit, and the switch control signal duty output by the PWM module is also the input of the time calculation unit. The DCM mode and the CCM mode are slightly different in calculation.
以下结合图例详细阐述输出反馈模块的计算原理。如图2a,这是DCM模式下的tr计算工作原理图,DCM模式下典型的特征就是,下一次开关导通之前存在一个谐振,为了精确计算tr值,利用duty,以及Vcomp3信号可以对Vsense信号划分三个工作区域,当duty=1即为第一工作区,用enable=0来表示,当enable=0,Vcomp3=1时,进入第二工作区域,用enable=1来表示,当enable=1.Vcomp3首次变为0,即为第三工作区域,用enable=2来表示。首先计算enable=1的时间长度,计为tr_temp,然后通过添加一个零时变量rise可以计算enable=2后第一个谐振半周期t_half,此时tr=tr_temp-t_half/2,利用此式计算得到的tr值为较为精确,而t_half的计算方法如下,在enable=0或者enable=1阶段rise始终为0,在enable=2,rise=0,Vcomp3=0时,rise保持0,在enable=2,rise=1,Vcomp3=1时,rise变为1.其他情况rise保持为1,这样,enablle=2阶段,除第1个谐振半周期rise=0,其他谐振阶段,rise为1,即enab1e=2,rise=0对应的时间段即为t_half。flag的初值设为1,即默认为CCM模态,如果duty不为0期间,出现Vcomp3=0,则把flag设为0,表明是电路进入了DCM工作模式。CCM下的tr计算方式参看图2b,根据内部时钟信号计算enable=1的时间长度就是tr值。The calculation principle of the output feedback module is described in detail below in conjunction with the illustrations. As shown in Figure 2a, this is the working principle diagram of tr calculation in DCM mode. The typical feature in DCM mode is that there is a resonance before the next switch is turned on. In order to accurately calculate the tr value, the duty and Vcomp3 signals can be used for the Vsense signal. Divide three working areas, when duty=1 is the first working area, represented by enable=0, when enable=0, Vcomp3=1, enter the second working area, represented by enable=1, when enable= 1. When Vcomp3 becomes 0 for the first time, it is the third working area, which is represented by enable=2. First calculate the time length of enable=1, which is counted as tr_temp, and then by adding a zero-time variable rise, the first resonant half period t_half after enable=2 can be calculated, at this time tr=tr_temp-t_half/2, calculated using this formula The tr value of t_half is more accurate, and the calculation method of t_half is as follows, rise is always 0 when enable=0 or enable=1, rise remains 0 when enable=2, rise=0, Vcomp3=0, and rise remains 0 when enable=2 , rise=1, when Vcomp3=1, rise becomes 1. In other cases, rise remains 1. In this way, enablele=2 stage, except for the first resonance half cycle rise=0, in other resonance stages, rise is 1, that is, enab1e =2, the time period corresponding to rise=0 is t_half. The initial value of the flag is set to 1, that is, the default is the CCM mode. If the duty is not 0 and Vcomp3=0 occurs, set the flag to 0, indicating that the circuit has entered the DCM working mode. Referring to Figure 2b for the tr calculation method under CCM, the time length of enable=1 is calculated according to the internal clock signal to be the tr value.
电流计算模块主要计算原边电感电流的平均值Iav。该模块的输入信号是电流检测模块的输出信号t1,t2,ton,tdelay,输出反馈模块的输出信号tr,flag,以及PWM的输出信号Vp_dig,利用flag信号判别采用DCM还是CCM计算模型,输出信号是数字量Iav_dig。电流计算模块是是实现高精度恒流的一个关键模块,对于DCM以及CCM采用了不同的计算模型从而保证不同的模式下有较高的恒流精度。DCM模式,参看图3a,利用简单几何关系就可以推倒出(1)式The current calculation module mainly calculates the average value Iav of the primary inductor current. The input signal of this module is the output signal t1, t2, ton, tdelay of the current detection module, the output signal tr, flag of the output feedback module, and the output signal Vp_dig of the PWM, use the flag signal to distinguish whether to use the DCM or CCM calculation model, and output the signal Is the digital quantity Iav_dig. The current calculation module is a key module to achieve high-precision constant current. Different calculation models are used for DCM and CCM to ensure high constant-current accuracy in different modes. DCM mode, see Figure 3a, the formula (1) can be deduced by using simple geometric relations
其中,Iavp是原边导通阶段的平均电流,Ipeak是原边的峰值电流,ton是开关管的导通时间,tdelay是由于驱动模块造成的延时,考虑tdelay可以进一步提高电流精度。Among them, Iavp is the average current in the conduction phase of the primary side, Ipeak is the peak current of the primary side, ton is the conduction time of the switch tube, and tdelay is the delay caused by the driving module. Considering tdelay can further improve the current accuracy.
对于CCM参看图3b,同样利用几何关系就可以推倒出(2)式For CCM, refer to Figure 3b, and the geometric relationship can also be used to deduce the formula (2)
在本次的实验系统里面k值为0.5。In this experimental system, the value of k is 0.5.
在得到原边导通阶段的平均电流Iavp后,tr阶段的平均电流Iavs与Iavp的关系如式(3)。After obtaining the average current Iav p in the conduction phase of the primary side, the relationship between the average current Iav s and Iav p in the tr phase is shown in formula (3).
Iavp×n=Iavs (3)Iav p × n = Iav s (3)
次级电流在时间上取平均可以得到输出电流Iav的平均值,如式(4)The average value of the output current Iav can be obtained by taking the average of the secondary current in time, as shown in formula (4)
电流计算模块最后输出原边电感电流的平均值Iav。The current calculation module finally outputs the average value Iav of the primary inductor current.
误差计算模块包括精确数字给定、减法器、偏差计算及偏差变化率计算单元,减法器正端连接精确数字给定单元输出的二进制数字常量Iref,该值根据系统的设计指标而给定,减法器负端连接电流计算模块输出的二进制输出电流数字量Iav_dig,减法器的输出通过偏差计算单元得到二进制的当前采样周期的电压偏差数字量εμ(tn),将其通过偏差变化率计算单元与上一个采样周期二进制电压偏差数字量εμ(tn-1)相减得到二进制数字量的偏差变化率Δεμ(tn);The error calculation module includes precise digital setting, subtractor, deviation calculation and deviation change rate calculation unit. The positive terminal of the subtractor is connected to the binary digital constant Iref output by the precise digital setting unit. This value is given according to the design index of the system. Subtraction The negative terminal of the device is connected to the binary output current digital quantity Iav_dig output by the current calculation module, and the output of the subtractor obtains the binary voltage deviation digital quantity εμ(t n ) of the current sampling period through the deviation calculation unit, and passes it through the deviation change rate calculation unit and Subtract the binary voltage deviation digital quantity εμ(t n-1 ) in the previous sampling period to obtain the binary digital quantity deviation change rate Δεμ(t n );
PID模块包括微分、比例、积分及求和四个运算单元,积分与比例单元的输入为二进制的电压偏差εμ(tn),微分单元的输入为二进制的偏差变化率Δεμ(tn),将微分、比例、积分三个运算单元的输出在求和运算单元中求和,求和运算模块输出补偿结果为二进制的数字量VPI;The PID module includes four computing units: differential, proportional, integral and summation. The input of the integral and proportional unit is the binary voltage deviation εμ(t n ), and the input of the differential unit is the binary deviation change rate Δεμ(t n ). The outputs of the differential, proportional and integral three operation units are summed in the sum operation unit, and the output compensation result of the sum operation module is a binary digital quantity V PI ;
PWM模块的输入为PID模块的补偿结果VPI以及电流检测模块输出的Vcomp1;通过PID模块补偿结果VPI以及Vcomp1计算得到正常控制时开关周期与占空比的信息,得到周期与占空比信息后,输出Ts值和Ipeak值给驱动模块,其中Ts值决定了下一个开关周期的长度,而Ipeak则限定了原边采样电阻上的最大峰值电流;同时PWM模块利用VPI值,输出信号Vp_dig,该数值主要用于电流检测模块,以及电流计算模块的信息处理。The input of the PWM module is the compensation result V PI of the PID module and the Vcomp1 output by the current detection module; through the calculation of the compensation result V PI and Vcomp1 of the PID module, the information of the switching cycle and duty cycle during normal control is obtained, and the information of the cycle and duty cycle is obtained Finally, output the Ts value and Ipeak value to the drive module, where the Ts value determines the length of the next switching cycle, and Ipeak limits the maximum peak current on the primary sampling resistor; at the same time, the PWM module uses the VPI value to output the signal Vp_dig, This value is mainly used for the information processing of the current detection module and the current calculation module.
驱动模块的输入为PWM模块的输出信号Ts,以及Ipeak。Ipeak值限定了原边采样电阻上的最大电流,而该电流是正比于功率管的导通时间的,因此Ipeak也就限定了功率管的导通时间。结合上述的两个输入信号,驱动模块的输出占空比波形,即dutv信号,该信号接功率管的栅极,实现对环路的控制。同时duty信号也是电流检测模块以及输出反馈模块进行信息处理不可或缺的一个重要输入信号。重复上述过程进行循环控制开关电源功率管的开通和关断,以使系统更加稳定,从而获得更高的恒流精度。The input of the drive module is the output signal Ts of the PWM module and Ipeak. The Ipeak value limits the maximum current on the primary sampling resistor, and the current is proportional to the conduction time of the power tube, so Ipeak also limits the conduction time of the power tube. Combining the above two input signals, the output duty ratio waveform of the drive module, that is, the dutv signal, is connected to the gate of the power transistor to realize the control of the loop. At the same time, the duty signal is also an important input signal indispensable for information processing by the current detection module and the output feedback module. Repeat the above-mentioned process to control the turn-on and turn-off of the power tube of the switching power supply in a cycle, so as to make the system more stable and obtain higher constant current accuracy.
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明,在此描述的本发明可以有许多变化(在其他开关电源中都可以使用恒流算法控制),这种变化不能人为偏离本发明的精神和范围。因此,所有对本领域技术人员显而易见的改变,都应包括在本权利要求书的涵盖范围之内。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments. It cannot be considered that the specific implementation of the present invention is only limited to these descriptions. The present invention described here can have many changes (in other switching power supplies, constant flow algorithm control), this change cannot artificially deviate from the spirit and scope of the present invention. Therefore, all changes obvious to those skilled in the art should be included within the scope of the claims.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610524020.8A CN106054995B (en) | 2016-07-04 | 2016-07-04 | A kind of primary side feedback flyback power supply CCM and the Constant Current Control System of DCM patterns |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610524020.8A CN106054995B (en) | 2016-07-04 | 2016-07-04 | A kind of primary side feedback flyback power supply CCM and the Constant Current Control System of DCM patterns |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106054995A CN106054995A (en) | 2016-10-26 |
CN106054995B true CN106054995B (en) | 2017-08-25 |
Family
ID=57202022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610524020.8A Active CN106054995B (en) | 2016-07-04 | 2016-07-04 | A kind of primary side feedback flyback power supply CCM and the Constant Current Control System of DCM patterns |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106054995B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108121200A (en) * | 2016-11-28 | 2018-06-05 | 中国长城科技集团股份有限公司 | A kind of power supply and its isolation digital control circuit and method |
CN106707740A (en) * | 2017-03-09 | 2017-05-24 | 西安电子科技大学 | Design method for digital power loop compensator based on integral separation PID |
CN107154723B (en) * | 2017-04-26 | 2019-02-05 | 东南大学 | A constant current control system of flyback power supply CCM and DCM mode |
CN107889313A (en) * | 2017-11-30 | 2018-04-06 | 苏州灵猴机器人有限公司 | The control method of current mode light-source control system and the application system |
CN109004840B (en) * | 2018-07-17 | 2020-02-18 | 东南大学 | A control method for improving output precision of switching power supply |
EP3648349B1 (en) * | 2018-10-31 | 2021-10-06 | STMicroelectronics S.r.l. | A method of operating a controller, corresponding circuit and device |
CN112105119B (en) * | 2019-06-18 | 2024-05-28 | 半导体组件工业公司 | Controller for power converter |
TWI716068B (en) | 2019-08-14 | 2021-01-11 | 群光電能科技股份有限公司 | Power supply apparatus and control method thereof |
CN110739666A (en) * | 2019-11-15 | 2020-01-31 | 杰华特微电子(杭州)有限公司 | Sampling resistor short-circuit protection circuit, sampling resistor short-circuit protection method and switching power supply applying sampling resistor short-circuit protection circuit |
CN111682773B (en) * | 2020-05-14 | 2021-09-21 | 杭州电子科技大学 | Primary side constant current controlled resonance conversion device and implementation method |
CN111884522B (en) * | 2020-08-17 | 2025-01-28 | 苏州力生美半导体有限公司 | Flyback switching power supply circuit and control method based on continuous conduction mode |
CN112994470B (en) * | 2021-03-24 | 2022-08-16 | 南京理工大学 | Primary side feedback active clamping flyback converter, controller and control method |
CN116667633A (en) * | 2023-08-01 | 2023-08-29 | 西安矽源半导体有限公司 | Mixed mode average current calculation circuit and method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7239532B1 (en) * | 2006-12-27 | 2007-07-03 | Niko Semiconductor Ltd. | Primary-side feedback switching power supply |
CN102013798A (en) * | 2009-09-04 | 2011-04-13 | 立锜科技股份有限公司 | Switching power supply and driving circuit and control method thereof |
CN103219884A (en) * | 2012-01-19 | 2013-07-24 | 美芯晟科技(北京)有限公司 | Control circuit and control method of primary side feedback constant current |
CN104467470A (en) * | 2014-12-18 | 2015-03-25 | 东南大学 | Switching power supply digital PFM control mode implementation method |
CN104578790A (en) * | 2014-12-29 | 2015-04-29 | 东南大学 | Digital signal sampling circuit applied to primary-side feedback flyback converter and control method of digital signal sampling circuit |
CN105006973A (en) * | 2015-07-17 | 2015-10-28 | 东南大学 | Constant current control system for output current of primary-side feedback flyback power supply converter |
CN105071641A (en) * | 2015-08-14 | 2015-11-18 | 东南大学 | Method for controlling dynamic response of switch power |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100920470B1 (en) * | 2006-11-01 | 2009-10-08 | 박찬웅 | circuit for output current detect, circuit for output current feedback, and SMPS which limits output current by primary side feedback |
-
2016
- 2016-07-04 CN CN201610524020.8A patent/CN106054995B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7239532B1 (en) * | 2006-12-27 | 2007-07-03 | Niko Semiconductor Ltd. | Primary-side feedback switching power supply |
CN102013798A (en) * | 2009-09-04 | 2011-04-13 | 立锜科技股份有限公司 | Switching power supply and driving circuit and control method thereof |
CN103219884A (en) * | 2012-01-19 | 2013-07-24 | 美芯晟科技(北京)有限公司 | Control circuit and control method of primary side feedback constant current |
CN104467470A (en) * | 2014-12-18 | 2015-03-25 | 东南大学 | Switching power supply digital PFM control mode implementation method |
CN104578790A (en) * | 2014-12-29 | 2015-04-29 | 东南大学 | Digital signal sampling circuit applied to primary-side feedback flyback converter and control method of digital signal sampling circuit |
CN105006973A (en) * | 2015-07-17 | 2015-10-28 | 东南大学 | Constant current control system for output current of primary-side feedback flyback power supply converter |
CN105071641A (en) * | 2015-08-14 | 2015-11-18 | 东南大学 | Method for controlling dynamic response of switch power |
Also Published As
Publication number | Publication date |
---|---|
CN106054995A (en) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106054995B (en) | A kind of primary side feedback flyback power supply CCM and the Constant Current Control System of DCM patterns | |
CN112271937B (en) | A Primary-Side Feedback Constant-Current Control System | |
CN107154723A (en) | A kind of flyback power supply CCM and the Constant Current Control System of DCM patterns | |
Wang et al. | A low-cost constant current control method for DCM and CCM in digitally controlled primary-side regulation flyback converter | |
WO2015127824A1 (en) | Double-loop control circuit of phase-shift full-bridge synchronous rectification circuit | |
CN101247072A (en) | voltage regulation circuit | |
CN205195552U (en) | Power factor correction converter of wide load scope | |
CN209748411U (en) | Electronic system and controller for operating a converter | |
CN205356148U (en) | Quick transient response control circuit of high accuracy | |
Zhang et al. | A soft-switching non-inverting buck–boost converter with efficiency and performance improvement | |
CN112994470B (en) | Primary side feedback active clamping flyback converter, controller and control method | |
CN106849668A (en) | The double active bridge DC/DC converters novel bicyclic control methods of two-track phase control | |
CN107070241A (en) | The heat balance control method of the double active bridging parallel operation power devices of aviation | |
CN114448248B (en) | Control circuit of coupled inductor interleaved four-switch buck-boost bidirectional converter | |
CN106655777A (en) | Switching power supply output cable pressure drop compensating circuit and compensating method | |
Wang et al. | Stability analysis of constant current-controlled primary-side regulation flyback converter | |
CN115473442B (en) | LLC single-stage AC-DC converter numerical analysis modeling and boundary power control method | |
CN104796003B (en) | For the output current counting circuit of inverse-excitation type pwm converter DCM patterns | |
CN110677046B (en) | Peak current analog-digital control system and method for flyback power supply in DCM mode | |
CN108667296A (en) | Nonlinear Optimal Control Method for Buck Converter Based on State Feedback Accurate Linearization | |
CN103986327A (en) | Adjacent Cycle Sampling Voltage Control Method for Digitally Controlled Step-Down DC-DC Switching Converter | |
CN104795996A (en) | Sliding mode control method used for two-stage DC/DC (direct current/direct current) converter | |
CN105911882A (en) | LPV model based BOOST converter's robust variable gain controlling method | |
CN110739845A (en) | A switching converter with improved transient performance of variable frequency current mode control | |
CN113572365B (en) | DAB-LLC bidirectional converter based on real-time power estimation and synchronous rectification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |