CN106040275A - 制备超薄g‑C3N4/Al2O3纳米复合光催化剂的方法 - Google Patents

制备超薄g‑C3N4/Al2O3纳米复合光催化剂的方法 Download PDF

Info

Publication number
CN106040275A
CN106040275A CN201610354145.0A CN201610354145A CN106040275A CN 106040275 A CN106040275 A CN 106040275A CN 201610354145 A CN201610354145 A CN 201610354145A CN 106040275 A CN106040275 A CN 106040275A
Authority
CN
China
Prior art keywords
catalyst
methanol
composite photocatalyst
tripolycyanamide
suspension liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610354145.0A
Other languages
English (en)
Other versions
CN106040275B (zh
Inventor
王晓静
李旭力
李发堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Priority to CN201610354145.0A priority Critical patent/CN106040275B/zh
Publication of CN106040275A publication Critical patent/CN106040275A/zh
Application granted granted Critical
Publication of CN106040275B publication Critical patent/CN106040275B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种一步原位制备超薄g‑C3N4/Al2O3纳米复合光催化剂的方法。包括:(1)将三聚氰胺加入甲醇中,加热冷凝回流搅拌,得到悬浊液A;(2)将一定量的九水合硝酸铝溶于甲醇,与步骤(1)得到的悬浊液混合搅拌,得到悬浊液B;(3)将步骤(2)得到的悬浊液B过滤,洗涤、干燥,干燥后的固体在马弗炉中煅烧,得到成品。本发明合成的超薄g‑C3N4/Al2O3纳米复合光催化剂,一是可以提高g‑C3N4的比表面积;二是氧化铝的复合可以有效提高g‑C3N4的光催化活性,在可见光下,超薄g‑C3N4/Al2O3纳米复合光催化剂分解水产氢速率和光降解罗丹明B速率,明显高于热解三聚氰胺制备的单一相g‑C3N4。本发明方法简单,成本低,污染小,符合生产实际。

Description

制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法
技术领域
本发明涉及一种制备催化剂的方法,特别是一种一步原位制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法,属于光催化材料技术领域。
背景技术
利用光催化剂将太阳能转化为人类可以直接利用的能量,并用其解决地球资源的枯竭和生存环境的恶化,是可再生清洁能源研究的一个方向。 g-C3N4的独特结构赋予其良好的光催化性能,使之成为光催化领域的研究热点。g-C3N4是一种非金属半导体, 由地球上含量较多的 C、N 元素组成,带隙约为2.7eV,具有一定的可见光吸收,与传统过渡金属化合物的光催化剂相比,具有质轻、物理化学性质稳定、价格低廉等诸多优点,被认为是具有开发前景和应用潜力的能源与环境光催化材料。自从2009年福州大学王心晨教授等人报道了g-C3N4能在可见光下分解水制氢以来,掀起了g-C3N4在光催化降解污染物和光催化分解水制氢等方面的研究热潮。g-C3N4已被应用于光催化污染物分解、光解水制氢制氧、光催化有机合成和光催化氧气还原等领域。单独g-C3N4材料由于其自身能带结构及光生电子-空穴复合率较快等缺点导致其光催化活性和可见光利用效率并不理想。但是,由于g-C3N4具有较高的导带位置和p型半导体特性,因此g-C3N4与大多数低价带的金属氧化物能够很好的匹配,通过复合形成异质结可以增强彼此光生电子-空穴的分离效率。因此,近些年来构建g-C3N4-金属氧化物异质结体系成为了改善g-C3N4光催化活性的一个重要手段。
本课题组前期研究发现,含有部分无定型结构的Al2O3具有紫外光催化活性,且具有杂质能级,将无定型氧化铝与部分半导体复合,Al2O3的杂质能级可以起到分离光生电子-空穴的作用。将Al2O3和g-C3N4进行复合,在纳米尺度上进行结构调控和组分优化,可有效提高g-C3N4的光量子效率。但现有技术进行氧化铝与g-C3N4复合时,通常使用两步法进行,即首先制备g-C3N4,再进行Al2O3的复合。这些方法存在着制备过程复杂、耗时长,得到的产品光催化产氢效率不高等问题。
发明内容
本发明的目的是提供一种制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法,实现了一步快速制备g-C3N4/Al2O3纳米复合光催化剂,并使Al2O3和g-C3N4在纳米尺度的高分散复合,提高了复合材料的可见光催化产氢和光催化降解污染物的活性。
本发明采取的技术方案如下:一种制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法,包括以下步骤:
(1)将一定量三聚氰胺加入甲醇中,加热冷凝回流搅拌1~2h,得到悬浊液A;
(2)按比例将一定量的九水合硝酸铝溶于甲醇,并转入步骤(1)得到的悬浊液A内,以相同温度继续加热冷凝回流,搅拌1~2h,得到悬浊液B;
(3)将步骤(2)得到的悬浊液B过滤,洗涤、干燥,干燥后的固体在马弗炉中煅烧,得到成品。
本发明,步骤(1)中,三聚氰胺和甲醇的质量比为1: 10~40。
本发明,步骤(2)中,三聚氰胺和九水合硝酸铝的质量比为1:0.5~5。
本发明,步骤(1)、(2)中,所用甲醇为无水甲醇。
本发明,步骤(1)、(2)中,冷凝回流温度为50~80℃。
本发明,步骤(3)中,煅烧温度为500~600℃,煅烧时间为2~3h。
本发明的方法合成的g-C3N4/Al2O3复合光催化剂,一是可以提高g-C3N4的比表面积;硝酸铝在甲醇中与三聚氰胺反应,形成酸化三聚氰胺和氢氧化铝的复合前驱体,在煅烧过程中,经硝酸酸化后的三聚氰胺聚合生成的g-C3N4具有更大的比表面积,同时由于氢氧化铝的支撑作用,使g-C3N4以超薄片形式存在,进一步增大了复合物中g-C3N4的比表面积。二是氧化铝的复合可以有效提高g-C3N4的光催化活性;复合物中氧化铝主要以无定型形式存在,氧化铝体相中的杂质能级可以分离g-C3N4的光生电子,从而提高光催化活性。另外,使用一步煅烧原位制备超薄g-C3N4/Al2O3纳米复合光催化剂,制备工艺简单,反应耗时短,成本低。本发明合成的超薄g-C3N4/Al2O3纳米复合光催化剂,比表面积最大可达80.4m2/g,可见光活催化活性高,300W氙灯为光源并加400nm滤光片情况下,光催化分解水产氢速率和降解罗丹明B速率明显高于热解三聚氰胺制备的单一相g-C3N4
本发明取得以下有益效果:
制备过程简单,耗时短,制备成本低;该法制备得到的Al2O3/g-C3N4复合光催化剂具有较高比表面积、g-C3N4以超薄片形式存在,Al2O3颗粒为无定型态,高度分散于g-C3N4表面,使Al2O3和g-C3N4形成了适当的纳米复合结构,增强了g-C3N4的电子-空穴的分离效率,明显提高Al2O3和g-C3N4在可见光下的光催化分解水制氢和光催化降解有机污染物性能。
附图说明
图1为实施例1-4(S1-4)所制备的Al2O3/g-C3N4复合光催化剂的X射线衍射图谱。
图2为实施例1所制备的Al2O3/g-C3N4复合光催化剂的氮气吸附-脱附曲线。
图3为实施例1所制备的Al2O3/g-C3N4复合光催化剂的X射线光电子能谱。
图4、图5为实施例1所制备的Al2O3/g-C3N4复合光催化剂的透射电镜图片。
图6为实施例1-4(S1-4)所制备的Al2O3/g-C3N4复合光催化剂在可见光照射下的产氢曲线。
图7为实施例1-4(S1-4)所制备的Al2O3/g-C3N4复合光催化剂在可见光下对降解罗丹明B的降解曲线。
具体实施方式
以下实施例用于说明本发明。
实施例1
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在60℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取1.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在60℃冷凝回流下继续搅拌2h,得到悬浊液;
(3)将步骤(2)中得到的悬浊液过滤、洗涤、干燥;干燥后的固体在马弗炉中550℃煅烧3h,得到Al2O3/g-C3N4复合光催化剂成品。
对所得催化剂进行X射线衍射测试(见图1),可见该复合催化剂中含有石墨相C3N4和无定型态的Al2O3。图2为实施例1所制备的Al2O3/g-C3N4复合光催化剂的氮气吸附-脱附曲线,复合催化剂的比表面积为68.4 m2/g。图3为本发明光催化剂Al2O3/g-C3N4的X射线光电子能谱,图中可以看到,Al2O3/g-C3N4复合光催化剂含有C、N、O和Al元素;附图4、5为本发明制备的Al2O3/g-C3N4复合光催化剂的透射电镜图片。从照片可以看到,复合催化剂中g-C3N4为薄片状,表面附着有Al2O3颗粒;对所制备的复合光催化剂进行了可见光催化分解水实验:将75 mL去离子水、20mL三乙醇胺和5mLH2PtCl6(5wt%)混合均匀后,加入0.1g本实施例制备的催化剂,以300W 氙灯为可见光源(以400 nm滤光片滤掉λ<400 nm的光),图6表明,可见光照射下该复合光催化剂的平均产氢率为82.2μmol·h-1;产率明显高于纯g-C3N4。对所制备的光催化剂进行了可见光催化降解罗丹明B试验:在100 mL的20 mg/L罗丹明B溶液中加入0.1g本实施例制备的可见光催化剂,以300W 氙灯为可见光源,以400 nm滤光片滤掉λ<400nm的光。罗丹明B的脱色率使用分光光度计在552nm处进行吸光度测试。如图7所示,30 min对罗丹明B的吸附脱色率为33.6%,可见光照射20分钟后甲基橙的光催化降解率为93.8%。
实施例2
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在60℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取2.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在60℃冷凝回流下搅拌1.5h,得到悬浊液;
(3)其它制备方法同实施例1。
对所得成品Al2O3/g-C3N4复合光催化剂进行X射线衍射测试(见图1),可见该复合催化剂中含有石墨相C3N4,和无定型态的Al2O3;该复合催化剂的比表面积为72.6 m2/g;按照实施例1的方法进行可见光催化分解水实验,见图6,复合光催化剂的平均产氢率为66.5μmol·h-1。按照实施例1的方法进行吸附及可见光催化活性试验,如图7所示,30 min对罗丹明B的吸附脱色率为40.3%,可见光照射20分钟后甲基橙的光催化降解率为86.4%。表明Al2O3的过量负载降低了复合催化剂的光催化活性。
实施例3
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在60℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取0.5 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在60℃冷凝回流下继续搅拌2h,得到悬浊液;
(3)其它制备方法同实施例1。
对所得成品Al2O3/g-C3N4复合光催化剂进行X射线衍射测试(见图1),可见该复合催化剂中含有石墨相C3N4,和无定型态的Al2O3;该复合催化剂的比表面积为32.1 m2/g;按照实施例1的方法进行可见光催化分解水实验,见图6,复合光催化剂的平均产氢率为36.2μmol·h-1。按照实施例1的方法进行吸附及可见光催化活性试验,如图7所示,30 min对罗丹明B的吸附脱色率为10.1%,可见光照射60分钟后甲基橙的光催化降解率为71.4%。表明不足量的Al2O3复合降低了复合催化剂的光催化活性。
实施例4
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在60℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取5.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在60℃冷凝回流下继续搅拌2h,得到悬浊液;
(3)其它制备方法同实施例1。
对所得成品Al2O3/g-C3N4复合光催化剂进行X射线衍射测试(见图1),可见该复合催化剂中含有石墨相C3N4,和无定型态的Al2O3;该复合催化剂的比表面积为80.4 m2/g;按照实施例1的方法进行可见光催化分解水实验,见图6,复合光催化剂的平均产氢率为33.7μmol·h-1。按照实施例1的方法进行吸附及可见光催化活性试验,如图7所示,30 min对罗丹明B的吸附脱色率为37.5%,可见光照射60分钟后甲基橙的光催化降解率为82.6%。表明Al2O3的大量负载明显降低了复合催化剂的光催化活性。
实施例5
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在60℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取1.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在60℃冷凝回流下继续搅拌1h,得到悬浊液;
(3)将步骤(2)中得到的悬浊液过滤、洗涤、干燥;干燥后的固体在马弗炉中600℃煅烧2h,得到Al2O3/g-C3N4复合光催化剂成品。
可见光照射下该复合光催化剂的平均产氢率为70.1μmol·h-1
实施例6
(1)量取50mL甲醇置于圆底烧瓶中,称取5.0g三聚氰胺加入到上述圆底烧瓶中,在50℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取2.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在50℃冷凝回流下继续搅拌1h,得到悬浊液;
(3)其它制备方法同实施例1。
可见光照射下该复合光催化剂的平均产氢率为64.5μmol·h-1;
实施例7
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在70℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取1.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在70℃冷凝回流下继续搅拌2h,得到悬浊液;
(3)将步骤(2)中得到的悬浊液过滤、洗涤、干燥;干燥后的固体在马弗炉中500℃煅烧3h,得到Al2O3/g-C3N4复合光催化剂成品。
可见光照射下该复合光催化剂的平均产氢率为52.4μmol·h-1
实施例8
(1)量取50mL甲醇置于圆底烧瓶中,称取2.5g三聚氰胺加入到上述圆底烧瓶中,在80℃冷凝回流下搅拌0.5h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取1.0 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在80℃冷凝回流下继续搅拌1h,得到悬浊液;
(3)将步骤(2)中得到的悬浊液过滤、洗涤、干燥;干燥后的固体在马弗炉中550℃煅烧2h,得到Al2O3/g-C3N4复合光催化剂成品。
可见光照射下该复合光催化剂的平均产氢率为74.2μmol·h-1
实施例9
(1)量取50mL甲醇置于圆底烧瓶中,称取1.25g三聚氰胺加入到上述圆底烧瓶中,在60℃冷凝回流下搅拌1h,得到悬浊液。
(2)量取50mL甲醇置于烧杯中,称取0.5 gAl(NO3)3·9H2O加入到上述烧杯中,搅拌得到澄清溶液;将该溶液转入步骤(1)中圆底烧瓶中,在60℃冷凝回流下继续搅拌2h,得到悬浊液;
(3)将步骤(2)中得到的悬浊液过滤、洗涤、干燥;干燥后的固体在马弗炉中550℃煅烧2h,得到Al2O3/g-C3N4复合光催化剂成品。
可见光照射下该复合光催化剂的平均产氢率为70.1μmol·h-1
以上对本发明提供的一步原位制备超薄g-C3N4/Al2O3纳米复合光催化剂方法进行了详细说明,应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (5)

1.一种制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法,其特征在
于包括以下步骤:
将一定量三聚氰胺加入甲醇中,加热冷凝回流搅拌0.5~1h,得到悬
浊液A;
按比例将一定量的九水合硝酸铝溶于甲醇,并转入步骤(1)得到
的悬浊液A内,以相同温度继续加热冷凝回流,搅拌1~2h,得到悬浊液B;
将步骤(2)得到的悬浊液B过滤,洗涤、干燥,干燥后的固体在马
弗炉中煅烧,得到成品。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中,三聚氰胺和甲醇的质量比为1:10~40。
3.根据权利要求1所述的方法,其特征在于:步骤(1)和步骤(2)中的反应条件为50~80℃冷凝回流。
4.根据权利要求1所述的方法,其特征在于:步骤(2)中三聚氰胺和九水合硝酸铝的质量比为1:0.5~5。
5.根据权利要求1所述的方法,其特征在于:步骤(3)中,煅烧温度为500~600℃,煅烧时间为2~3h。
CN201610354145.0A 2016-05-25 2016-05-25 制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法 Active CN106040275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610354145.0A CN106040275B (zh) 2016-05-25 2016-05-25 制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610354145.0A CN106040275B (zh) 2016-05-25 2016-05-25 制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法

Publications (2)

Publication Number Publication Date
CN106040275A true CN106040275A (zh) 2016-10-26
CN106040275B CN106040275B (zh) 2019-04-19

Family

ID=57175851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610354145.0A Active CN106040275B (zh) 2016-05-25 2016-05-25 制备超薄g-C3N4/Al2O3纳米复合光催化剂的方法

Country Status (1)

Country Link
CN (1) CN106040275B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732710A (zh) * 2016-11-17 2017-05-31 阜阳师范学院 一种金属氧化物‑cnb复合光催化剂及其制备方法
CN107149939A (zh) * 2017-04-26 2017-09-12 河北科技大学 一种可见光催化活性的g‑C3N4/Al2O3/ZnO异质结及其制备方法
CN108686690A (zh) * 2017-04-12 2018-10-23 中国科学院福建物质结构研究所 一种基于石墨相氮化碳g-C3N4的光催化剂及其制备方法和应用
CN109012727A (zh) * 2018-08-08 2018-12-18 南京晓庄学院 一种半金属性c4n3纳米板及其制备方法和应用
CN110142059A (zh) * 2019-05-30 2019-08-20 西北民族大学 Ni-NiO/g-C3N4纳米复合材料的制备方法
CN111790430A (zh) * 2020-08-03 2020-10-20 吉林大学 一种以拟薄水铝石为Al2O3前驱体的g-C3N4/Al2O3光催化材料的制备方法
CN111790431A (zh) * 2020-08-03 2020-10-20 吉林大学 一种以Al2O3修饰的g-C3N4光催化材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174423A (zh) * 2014-08-19 2014-12-03 河北科技大学 一种Al2O3/g-C3N4异质结光催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104174423A (zh) * 2014-08-19 2014-12-03 河北科技大学 一种Al2O3/g-C3N4异质结光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FA-TANG LI, ET. AL.: "Precipitation Synthesis of Mesoporous Photoactive Al2O3 for Constructing g-C3N4-Based Heterojunctions with Enhanced Photocatalytic Activity", 《IND. ENG. CHEM. RES.》 *
FA-TANG LI,ET.AL.: "Structure Modification Function of g-C3N4 for Al2O3 in the In Situ Hydrothermal Process for Enhanced Photocatalytic Activity", 《CHEM. EUR. J.》 *
XIAOPING DONG,ET.AL.: "Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications", 《J. MATER. CHEM. A.》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732710A (zh) * 2016-11-17 2017-05-31 阜阳师范学院 一种金属氧化物‑cnb复合光催化剂及其制备方法
CN108686690A (zh) * 2017-04-12 2018-10-23 中国科学院福建物质结构研究所 一种基于石墨相氮化碳g-C3N4的光催化剂及其制备方法和应用
CN107149939A (zh) * 2017-04-26 2017-09-12 河北科技大学 一种可见光催化活性的g‑C3N4/Al2O3/ZnO异质结及其制备方法
CN107149939B (zh) * 2017-04-26 2019-11-19 河北科技大学 一种可见光催化活性的g-C3N4/Al2O3/ZnO异质结及其制备方法
CN109012727A (zh) * 2018-08-08 2018-12-18 南京晓庄学院 一种半金属性c4n3纳米板及其制备方法和应用
CN109012727B (zh) * 2018-08-08 2021-03-23 南京晓庄学院 一种半金属性c4n3纳米板及其制备方法和应用
CN110142059A (zh) * 2019-05-30 2019-08-20 西北民族大学 Ni-NiO/g-C3N4纳米复合材料的制备方法
CN110142059B (zh) * 2019-05-30 2022-07-12 西北民族大学 Ni-NiO/g-C3N4纳米复合材料的制备方法
CN111790430A (zh) * 2020-08-03 2020-10-20 吉林大学 一种以拟薄水铝石为Al2O3前驱体的g-C3N4/Al2O3光催化材料的制备方法
CN111790431A (zh) * 2020-08-03 2020-10-20 吉林大学 一种以Al2O3修饰的g-C3N4光催化材料的制备方法

Also Published As

Publication number Publication date
CN106040275B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Qin et al. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution
CN106040275A (zh) 制备超薄g‑C3N4/Al2O3纳米复合光催化剂的方法
Xu et al. NH2-MIL-125 (Ti)/graphitic carbon nitride heterostructure decorated with NiPd co-catalysts for efficient photocatalytic hydrogen production
Lu et al. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance
Zhong et al. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution
Li et al. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers
Yu et al. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN108993604B (zh) 高可见光活性AgIn5S8/UIO-66-NH2复合材料及其制备方法和应用
Liu et al. Carbon doped honeycomb-like graphitic carbon nitride for photocatalytic hydrogen production
Zhu et al. Synthesis of novel visible light response Ag10Si4O13 photocatalyst
Wei et al. Facile fabrication of mesoporous g-C3N4/TiO2 photocatalyst for efficient degradation of DNBP under visible light irradiation
CN108525667A (zh) 金属有机框架衍生四氧化三钴修饰二氧化钛纳米管阵列的制备方法
CN107376944B (zh) 过渡金属硫化物负载Mn-Cd-S固溶体在光催化产氢方面的应用
Wu et al. A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst
Zhao et al. Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48
CN113058617B (zh) 一种光催化剂及其制备方法和应用
Kong et al. Synergic effects of CuxO electron transfer co-catalyst and valence band edge control over TiO2 for efficient visible-light photocatalysis
CN113680372B (zh) 一种石墨相氮化碳纳米片的热辅助制备方法及应用
CN109603809B (zh) 一种钒酸铋量子点与二氧化钛纳米带复合光催化剂的制备和应用
Yu et al. Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis
Guo et al. Non-high temperature method to synthesize carbon coated TiO2 nano-dendrites for enhanced wide spectrum photocatalytic hydrogen evolution activity
Sun et al. Defect engineering modified bismuth vanadate toward efficient solar hydrogen peroxide production
Huang et al. Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
Xing et al. Photocatalytic hydrogen production over Na2Ti2O4 (OH) 2 nanotube sensitized by CdS nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant