CN106010734A - 一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法 - Google Patents

一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法 Download PDF

Info

Publication number
CN106010734A
CN106010734A CN201610370323.9A CN201610370323A CN106010734A CN 106010734 A CN106010734 A CN 106010734A CN 201610370323 A CN201610370323 A CN 201610370323A CN 106010734 A CN106010734 A CN 106010734A
Authority
CN
China
Prior art keywords
polyaniline
polypyrrole
fluid
solution
nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610370323.9A
Other languages
English (en)
Other versions
CN106010734B (zh
Inventor
王宝祥
田晓莉
何凯
秦成
王成伟
温晴锟
于寿山
郝春成
陈克正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201610370323.9A priority Critical patent/CN106010734B/zh
Publication of CN106010734A publication Critical patent/CN106010734A/zh
Application granted granted Critical
Publication of CN106010734B publication Critical patent/CN106010734B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • C10M2229/0415Siloxanes with specific structure containing aliphatic substituents used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/061Coated particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/063Fibrous forms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液材料及其制备方法,该电流变液的分散相是具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维,采用两步法,先采用原位氧化聚合法制备纤维状的聚苯胺;然后在反应溶液中加入吡咯单体,使其发生原位包覆反应,在聚苯胺纤维表面进行包覆,形成具有粗糙表面的聚苯胺/聚吡咯共聚型复合材料。该材料与甲基硅油所配成的电流变液具有一些优异的特性,包括极强的电流变效应、很好的抗沉淀稳定性、电流密度低、化学稳定性好。附图中显示了聚苯胺/聚吡咯共聚型纳米纤维其剪切应力与电场强度的关系。

Description

一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法
技术领域
本发明涉及一种共聚型纳米纤维电流变液材料及其制备方法,具体涉及一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法。
背景技术
电流变液(Electrorheological Fluids简称ERF)是一种重要的智能材料,它通常是由高介电常数、低电导率的固体颗粒分散于低介电常数的绝缘油中而形成的悬浮体系。它具有受控变化的品质,其屈服应力、弹性模量随外加电场的变化而变化。电流变液在在减振、机械传动、自控、机电一体化、微驱动等领域具有巨大的应用前景。但是由于在使用过程中存在着一些不足,如颗粒的沉降,屈服应力不高,颗粒对器件的磨损,温度效应太差导致工作温区狭窄等问题,限制了它的广泛应用。电流变颗粒是一种可极化颗粒,按照介电极化模型,具有高介电常数的固体颗粒在加上电场后产生强烈的极化,发生迁移,形成纤维状链,进而排列成柱状链,因而在剪切作用下具有抗剪的性能,类似于固体的性质。颗粒的形状会对电流变的性能产生巨大的影响。微米颗粒电流变液的最大的应用阻碍来自于其较差的抗沉降性能;而纳米颗粒电流变液由于其较高的力学值和良好的抗沉降性能受到了越来越多的关注。因此,在微米结构上修饰的纳米结构能够得到一种微米/纳米包覆结构材料,可以同时兼有微米和纳米颗粒的双重优点,配制的电流变液的力学及剪切性能也比微米颗粒电流变液有了较大提高。而纳米化不仅可以降低材料的密度,提高电流变液的抗沉降性,而且纳米结构可以增加材料的表面和界面面积,大幅改善介电性能,从而根本上提高电流变效应。
导电高分子是指本身或经过掺杂以后具有导电能力的一类聚合物。20世纪60年代,波尔等首先合成了半导体聚合物,但实际引起人们的注意,把有机聚合物作为导电材料的研究是在20世纪70年代。基于导电高分子结合了有机导体的优势,既有优良的物化性质,又有潜在的应用。聚苯胺是在引发剂的作用下由两个苯胺单体形成的重复结构单元形式,其导电性可以通过质子化和电荷掺杂转移控制。此外,两种氧化态的质子化和去质子化的平衡,取决于pH值。然而,导电性聚苯胺用于电流变材料需要控制其电导率的范围。因此,聚苯胺颗粒需要在水介质中进行解掺杂来减小颗粒的电导率。另外,掺杂和解掺杂的步骤也会改进粒子的电导率,一个简单的质子酸处理就可以改变聚苯胺从导体到绝缘体的性能,从而使粒子表现出良好的电流变性能。
发明目的和内容
本发明的目的是提供一种新颖的具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液材料,其分散相是聚苯胺/聚吡咯共聚型纳米纤维,连续相为二甲基硅油。
本发明的目的还在于提供一种制备具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维的方法,采用两步法,先采用简单的原位氧化聚合法制备纤维状的聚苯胺;然后在反应溶液中加 入吡咯单体,使其继续进行原位包覆反应,在聚苯胺纤维表面进行包覆,形成具有粗糙表面的聚苯胺/聚吡咯共聚型复合材料。以苯胺、吡咯为反应单体,以过硫酸铵(APS)为引发剂,并使用了表面活性剂十六烷基三甲基溴化胺(CTAB)调控产物形貌。PANI/Ppy复合材料的形貌特征与吡咯单体的用量和吡咯的聚合时间有关,并且聚合时间对产物的形貌影响较大。通过调整苯胺/吡咯单体比例,聚合时间等最终形成具有粗糙表面的聚苯胺/聚吡咯环状纳米复合材料。该材料与甲基硅油所配成的电流变液具有一些优异的特性,包括极强的电流变效应、很好的抗沉淀稳定性、电流密度低、化学稳定性好。具有粗糙表面的纳米纤维,有利于在外加电场作用下排列成稳定的链,增加颗粒间作用力,从而大幅提高电流变效应。
本发明的目的可以通过以下技术方案来实现:
本发明所制备电流变液,其分散相是聚苯胺/聚吡咯共聚型纳米纤维,连续相为二甲基硅油。
上述电流变液的制备工艺包括以下步骤:
通过改变下列条件,探讨了影响聚合物形貌的影响因素:
(1)反应物的加入量;
(2)不同反应时间;
具体来讲:
①50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;
②将1.0g APS溶解在10mL去离子水中,放入冰水浴中预冷;
③将预冷的APS溶液倒入A溶液中,反应0.5h;
④取2mL吡咯加入上述溶液中,继续冰水浴反应1h;离心,分别用乙醇和去离子水洗涤3次;
⑤然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤;放入烘箱中烘干得到粉末;
(6)将该样品与二甲基硅油按一定比例配制成电流变液。
本发明采用采用两步法,先采用简单的原位氧化聚合法制备出纤维状的聚苯胺;然后在反应溶液中加入吡咯单体,使其继续发生原位包覆反应,在聚苯胺纤维表面进行包覆,形成具有粗糙表面的聚苯胺/聚吡咯共聚型复合材料。
本发明与现有技术相比,具有以下显著的技术优点:
1、本发明制备方法采用原位氧化聚合法和原位包覆相结合,先采用简单的原位氧化聚合法制备纤维状的聚苯胺;然后在反应溶液中加入吡咯单体,使其继续原位包覆反应,在聚苯胺纤维表面进行包覆,形成具有粗糙表面的环状纳米复合材料。
2、由该材料与甲基硅油配制的电流变液既具有高的力学值,宽的工作温区和非常好的抗沉降性,尤其纳米纤维具有优异的抗沉淀性,粗糙表面则有利于大幅提高电流变液在电场下的响应,进而提升电流变效应。又降低了电流变液的成本,反应过程易于控制,无毒无害,对设备无特殊要求。充分发挥了纳米材料的特长,是一种综合性能优良的电流变材料。制备工艺简单,原料易得,组分与性能易于控制,易于工业化生产和广泛应用。
附图说明
图1聚苯胺/聚吡咯杂化型纳米颗粒SEM照片
图2 1mL吡咯做反应单体所制的聚苯胺/聚吡咯纳米纤维的SEM照片。
图3 2mL吡咯做反应单体所制的聚苯胺/聚吡咯纳米纤维的SEM照片。
图4 4mL吡咯做反应单体所制的聚苯胺/聚吡咯纳米纤维的SEM照片。
图5 聚苯胺/聚吡咯纳米纤维的TEM照片。
图6 不同样品的傅里叶红外光谱图
图7 不同样品的紫外可见光谱图
图8 聚苯胺/聚吡咯纳米纤维电流变液在不同电场强度下剪切应力与剪切速率的关系
图9 2mL吡咯单体共聚2h条件下所得产物的SEM照片
图10 2mL吡咯单体共聚4h条件下所得产物的SEM照片
图11 2mL吡咯单体共聚2h条件下所得产物配制的电流变液在不同电场强度下剪切应力与剪切速率的关系
图12 2mL吡咯单体共聚4h条件下所得产物配制的电流变液在不同电场强度下剪切应力与剪切速率的关系
具体实施方式
实施例一(聚苯胺/聚吡咯杂化型纳米颗粒的制备):
50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺和2mL吡咯,放入冰水浴中搅拌2h,标记为A溶液;将1.0g APS溶解在10mL去离子水中,放入冰水浴中预冷;将预冷的APS溶液倒入A溶液中,冰水浴反应1h;离心,分别用乙醇和去离子水洗涤3次;然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤;放入烘箱中烘干得到聚苯胺/聚吡咯杂化型纳米颗粒。
聚苯胺/聚吡咯杂化型纳米颗粒SEM照片如图1所示。从图中可以看出,产物的形状不规则,都是很小的颗粒,颗粒尺寸在纳米级,没有形成纳米纤维。说明直接采用共混式原位氧化聚合法无法得到纳米纤维,更惶论粗糙型纳米纤维。
实施例二(聚苯胺/聚吡咯共聚型纳米纤维①的制备):
50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;将1.0gAPS溶解在10mL去离子水中,放入冰水浴中预冷。将预冷的APS溶液倒入A溶液中,反应0.5h。取1mL吡咯加入上述溶液中,继续冰水浴反应1h。离心,分别用乙醇和去离子水洗涤3次。然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤。放入烘箱中烘干得到粉末。将该样品与二甲基硅油按颗粒硅油重量比20%配制成电流变液。
聚苯胺/聚吡咯共聚型纳米纤维SEM照片如图2所示,所得产物为环状纳米纤维,纤维 直径在100纳米左右,表面粗糙。说明采用两步法可以制备出具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维,即先采用简单的原位氧化聚合法制备纤维状的聚苯胺;然后在反应溶液中加入吡咯单体,使其继续原位包覆反应,在聚苯胺纤维表面进行包覆,形成具有粗糙表面的聚苯胺/聚吡咯共聚型复合材料。
实施例三(聚苯胺/聚吡咯共聚型纳米纤维②的制备):
50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;将1.0g APS溶解在10mL去离子水中,放入冰水浴中预冷。将预冷的APS溶液倒入A溶液中,反应0.5h。取2mL吡咯加入上述溶液中,继续冰水浴反应1h。离心后将产物分别用乙醇和去离子水洗涤3次。然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤。放入烘箱中烘干得到粉末。将该样品与二甲基硅油按颗粒硅油重量比20%配制成电流变液。
聚苯胺/聚吡咯共聚型纳米纤维SEM照片如图3所示,所得产物为环状纳米纤维,表面粗糙。TEM照片如图5所示,透射照片可以看出,制得的聚苯胺/聚吡咯环状纳米纤维的直径约为50-100纳米,并且,这个环状结构是由更小的纳米颗粒组成的多级结构。纳米纤维表面有很多突起,构成粗糙表面。
图6为不同样品的红外光谱图。其中在聚苯胺的谱图中,1577和1494cm-1的吸收峰对应苯环的C=C伸缩振动及其骨架的C-H伸缩振动,1139cm-1处出现的宽而强的吸收峰被认为是导电聚苯胺的特征峰。从聚吡咯的红外光谱图中可以看出,3439cm-1附近出现的吸收峰为N-H伸缩振动吸收峰,1539cm-1处的吸收峰为聚吡咯环的C=C的伸缩振动吸收峰,1305和1168cm-1处的吸收峰分别对应于聚吡咯环的反对称和对称伸缩振动吸收峰,1040cm-1处出现的是聚吡咯环的C-N吸收峰,893和779cm-1附近出现的吸收峰对应于C-H弯曲振动吸收峰。当两种材料发生复合时,复合材料的红外光谱图就会发生改变。
图7为不同样品的紫外可见光谱图:聚苯胺在340nm处有吸收是由于苯环的σ→σ*电子跃迁所致,在700nm处的吸收是由于n→σ*跃迁造成的紫外吸收(蓝色线)。而聚吡咯没有很明显的吸收峰(红色)。对比图中的复合材料的吸收光谱(紫色和绿色),可以发现进行掺杂后,吸收带红移,即发生了共轭效应。
使用Haake电流变测试仪对由聚苯胺/聚吡咯共聚型纳米纤维作为固体颗粒分散在硅油中组成的电流变液(固体颗粒与硅油中的重量比为20wt%,CSR模型)在不同的电场强度下进行测试,得到的剪切应力与剪切速率的关系曲线,如图8所示。从图8可以看出,该电流变液具有很强的电流变效应,电流变液的剪切应力随着外加电场强度的增加不断增加。无外部电场作用时,表现出牛顿流体的流动行为,较低的剪切速率下剪切粘度变化不大,处于一个平台区,但是施加一个外部电场,剪切应力随着剪切速率的增加而增加。经计算,该电流变体系的电流变效率约为21.2。
实施例四(聚苯胺/聚吡咯共聚型纳米纤维③的制备):
50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;将1.0gAPS溶解在10mL去离子水中,放入冰水浴中预冷。将预冷的APS溶液倒入A溶液中,反应0.5h。取4mL吡咯加入上述溶液中,继续冰水浴反应1h。离心,分别用乙醇和去离子水洗涤3次。然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤。放入烘箱中烘干得到粉末。将该样品与二甲基硅油按颗粒硅油重量比20%配制成电流变液。
4mL吡咯做反应单体所制的聚苯胺/聚吡咯共聚型纳米纤维SEM照片如图4所示,所得产物为环状纳米纤维,表面粗糙。结合图2,图3,图4等三种不同实施例的结果来看,吡咯的用量影响产物的形貌,虽然都是呈现出环状的纳米纤维结构,表面粗糙;但是吡咯用量越多,产物团聚的越严重,纳米环结构趋向消失。4mL吡咯单体条件下所得纳米纤维团聚严重。
实施例五(聚苯胺/聚吡咯共聚型纳米纤维④的制备):
50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;将1.0gAPS溶解在10mL去离子水中,放入冰水浴中预冷。将预冷的APS溶液倒入A溶液中,反应0.5h。取2mL吡咯加入上述溶液中,继续冰水浴反应2h。离心,分别用乙醇和去离子水洗涤3次。然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤。放入烘箱中烘干得到粉末。将该样品与二甲基硅油按颗粒硅油重量比20%配制成电流变液。
2mL吡咯单体共聚2h条件下所得产物的SEM照片如图9所示。其电流变性能如图11所示,呈现明显的电流变效应,电流变效率为6.5。
实施例六(聚苯胺/聚吡咯共聚型纳米纤维⑤的制备):
50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀。然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;将1.0gAPS溶解在10mL去离子水中,放入冰水浴中预冷。将预冷的APS溶液倒入A溶液中,反应0.5h。取2mL吡咯加入上述溶液中,继续冰水浴反应4h。离心,分别用乙醇和去离子水洗涤3次。然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤。放入烘箱中烘干得到粉末。将该样品与二甲基硅油按颗粒硅油重量比20%配制成电流变液。
2mL吡咯单体共聚4h条件下所得产物的SEM照片如图10所示,吡咯的聚合时间对产物的形貌还是会产生影响,反应时间越长,吡咯的聚合程度越大,环状结构越不明显。影响粗糙表面和环状形貌的均一性,显示太长共聚时间不利于产物形貌的形成。
同样的,对2mL吡咯聚合4h得到的PANI/Ppy纳米复合材料进行电流变性能的测试,得到的电流变性能曲线如图12所示。但是在测试过程中,电流密度太大,导致在施加电场的过程中发生击穿,这说明共聚时间过长的产物其电流变性能下降,产物体系不均匀,容易在高电压下击穿。

Claims (3)

1.一种电流变液,其特征在于该电流变液分散相是具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维,连续相为二甲基硅油。
2.如权利要求1所述纳米纤维电流变液,其特征在于分散相是经采用两步法制备的具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维,先采用简单的原位氧化聚合法制备纤维状的聚苯胺;然后在反应溶液中加入吡咯单体,使其继续原位包覆反应,在聚苯胺纤维表面进行包覆,形成具有粗糙表面的聚苯胺/聚吡咯共聚型复合材料。
3.如权利要求1所述的聚苯胺/聚吡咯共聚型纳米纤维电流变液,其特征在于制备工艺包括以下步骤:
(1)50mL去离子水中加入1.823g HCl和0.15g CTAB搅拌均匀;然后加入1mL苯胺,放入冰水浴中搅拌2h,标记为A溶液;
(2)将1.0g APS溶解在10mL去离子水中,放入冰水浴中预冷;将预冷的APS溶液倒入A溶液中,反应0.5h;
(3)取2mL吡咯加入上述溶液中,继续冰水浴反应1h;离心后将产物分别用乙醇和去离子水洗涤3次;
(4)然后将沉淀物分散在50mL 1.0M的NH3·H2O中,匀速搅拌12h,离心洗涤;放入烘箱中烘干得到粉末;
(5)将该样品与二甲基硅油按固体颗粒与硅油的重量比20wt%配制成电流变液。
CN201610370323.9A 2016-05-30 2016-05-30 一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法 Expired - Fee Related CN106010734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610370323.9A CN106010734B (zh) 2016-05-30 2016-05-30 一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610370323.9A CN106010734B (zh) 2016-05-30 2016-05-30 一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法

Publications (2)

Publication Number Publication Date
CN106010734A true CN106010734A (zh) 2016-10-12
CN106010734B CN106010734B (zh) 2019-03-12

Family

ID=57092303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610370323.9A Expired - Fee Related CN106010734B (zh) 2016-05-30 2016-05-30 一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法

Country Status (1)

Country Link
CN (1) CN106010734B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916159A (zh) * 2017-12-07 2018-04-17 山东冬瑞高新技术开发有限公司 一种润滑油添加剂的制备方法
CN108424515A (zh) * 2018-03-28 2018-08-21 西安科技大学 一种微波辅助制备苯胺-吡咯共聚物的方法
CN110512309A (zh) * 2019-08-30 2019-11-29 河南城建学院 一种聚苯胺/聚吡咯复合纳米纤维的连续化制备装置和方法
CN114059189A (zh) * 2021-10-01 2022-02-18 东华大学 一种聚合物基半导体纤维及其制备和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073888A (zh) * 2013-01-31 2013-05-01 武汉大学 一种球型聚电解质刷荷载有机导电复合微纳粒子及其制备方法
CN103756756A (zh) * 2014-01-17 2014-04-30 青岛科技大学 一种ldh/聚苯胺纳米复合材料电流变液及其制备方法
CN103965993A (zh) * 2014-04-27 2014-08-06 青岛科技大学 一种空心球电流变液及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073888A (zh) * 2013-01-31 2013-05-01 武汉大学 一种球型聚电解质刷荷载有机导电复合微纳粒子及其制备方法
CN103756756A (zh) * 2014-01-17 2014-04-30 青岛科技大学 一种ldh/聚苯胺纳米复合材料电流变液及其制备方法
CN103965993A (zh) * 2014-04-27 2014-08-06 青岛科技大学 一种空心球电流变液及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BANGLEI LIANG: "Controlled synthesis, core–shell structures and electrochemical properties of polyaniline/polypyrrole composite nanofibers", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
BAOXIANG WANG: "Double template assisting synthesized core–shell structured titania/polyaniline nanocomposite and its smart electrorheological response", 《COMPOSITES SCIENCE AND TECHNOLOGY》 *
HYOUNG JIN CHOI: "Electrorheology of polymers and Nanocomposites", 《SOFT MATTER》 *
尹洪峰: "《功能复合材料》", 31 August 2013, 冶金工业出版社 *
杨惠: "颗粒表面形貌对电流变液性能影响的机理研究", 《中国优秀硕士学位论文全文数据库 工程科技》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916159A (zh) * 2017-12-07 2018-04-17 山东冬瑞高新技术开发有限公司 一种润滑油添加剂的制备方法
CN107916159B (zh) * 2017-12-07 2020-10-09 淄博惠华石油添加剂有限公司 一种润滑油添加剂的制备方法
CN108424515A (zh) * 2018-03-28 2018-08-21 西安科技大学 一种微波辅助制备苯胺-吡咯共聚物的方法
CN110512309A (zh) * 2019-08-30 2019-11-29 河南城建学院 一种聚苯胺/聚吡咯复合纳米纤维的连续化制备装置和方法
CN110512309B (zh) * 2019-08-30 2021-09-07 河南城建学院 一种聚苯胺/聚吡咯复合纳米纤维的连续化制备装置和方法
CN114059189A (zh) * 2021-10-01 2022-02-18 东华大学 一种聚合物基半导体纤维及其制备和应用

Also Published As

Publication number Publication date
CN106010734B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
Bhadra et al. Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends
CN106010734A (zh) 一种具有粗糙表面的聚苯胺/聚吡咯共聚型纳米纤维电流变液及其制备方法
Guo et al. Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study
Gill et al. Particle size distributions of polyaniline-silica colloidal composites
Li et al. The preparation of polyaniline waterborne latex nanoparticles and their films with anti-corrosivity and semi-conductivity
Subramania et al. Polyaniline nanofibers by surfactant‐assisted dilute polymerization for supercapacitor applications
CN110551279B (zh) 一种纳米碳材料/聚酰胺微球复合材料及其制备方法
Han et al. Poly (diphenylamine)/polyaniline core/shell composite nanospheres synthesized using a reactive surfactant and their electrorheology
Gao et al. Hollow submicron-sized spherical conducting polyaniline particles and their suspension rheology under applied electric fields
Wang et al. Fluorescent brightener CBS-X doped polypyrrole as smart electrode material for supercapacitors
CN105199104B (zh) 一种以对苯二胺无损改性碳纳米管为导热、抗静电介质的聚醚酰亚胺原位聚合技术
CN103965993A (zh) 一种空心球电流变液及其制备方法
He et al. Facile fabrication of polyaniline/polypyrrole copolymer nanofibers with a rough surface and their electrorheological activities
CN112029096A (zh) 一种植酸掺杂聚吡咯的制备方法
CN103642068A (zh) 一种抗静电浆料
Jun et al. Synthesis and characterizations of monodispersed micron-sized polyaniline composite particles for electrorheological fluid materials
Cho et al. Polyaniline and its modification for electroresponsive material under applied electric fields
CN103012788B (zh) 界面化学氧化聚合制备聚(1-氨基-5-氯蒽醌)纳米纤维的方法
CN107603712B (zh) 一种花状聚苯胺纳米颗粒电流变液及其制备方法
Shown et al. Fabrication of carbon microcoil/polyaniline composite by microemulsion polymerization for electrochemical functional enhancement
Li et al. Preparation and evaluation of fluorinated hydrophobically associating polyacrylamide
CN114317076B (zh) 一种同核异壳纳米颗粒电流变液及其制备方法
JP6929943B2 (ja) 導電性材料
US7687582B1 (en) Methods of production, purification, and processing of poly(heteroaromatic) block copolymers with improved solubility or dispersability
CN1143891C (zh) 聚苯胺/蒙脱土纳米复合材料电流变液及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190312

Termination date: 20210530

CF01 Termination of patent right due to non-payment of annual fee