CN112029096A - 一种植酸掺杂聚吡咯的制备方法 - Google Patents

一种植酸掺杂聚吡咯的制备方法 Download PDF

Info

Publication number
CN112029096A
CN112029096A CN202010921215.2A CN202010921215A CN112029096A CN 112029096 A CN112029096 A CN 112029096A CN 202010921215 A CN202010921215 A CN 202010921215A CN 112029096 A CN112029096 A CN 112029096A
Authority
CN
China
Prior art keywords
phytic acid
ppy
deionized water
pyrrole monomer
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010921215.2A
Other languages
English (en)
Inventor
谢国元
王圣武
邵鸿
欧正清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING HONGRUI PLASTIC PRODUCTS CO Ltd
Original Assignee
NANJING HONGRUI PLASTIC PRODUCTS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING HONGRUI PLASTIC PRODUCTS CO Ltd filed Critical NANJING HONGRUI PLASTIC PRODUCTS CO Ltd
Priority to CN202010921215.2A priority Critical patent/CN112029096A/zh
Publication of CN112029096A publication Critical patent/CN112029096A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供一种植酸掺杂聚吡咯的制备方法,具体涉及植酸掺杂聚吡咯领域,S1、取浓度为0.1mol/L的吡咯单体70μL放入烧杯中,再加入20mL去离子水,超声分散使其混合均匀;S2、将过硫酸铵水溶液缓慢加入到烧杯中,至停止反应;S3、将所得反应液抽滤,所得固体分别用无水乙醇和去离子水反复洗涤,干燥得黑色的PPy;S4、取吡咯单体与植酸的物质的量之比分别为1∶1,3∶1,5∶1;S5、将植酸溶于20mL去离子水,超声分散均匀后;再向溶液中加入70μL吡咯单体,在搅拌条件下向其中缓慢加入过硫酸铵水溶液;S6、将所得反应液抽滤,所得固体用乙醇和去离子水反复淋洗干燥得植酸掺杂PPy。本发明可调控构筑PPy的微结构;且可提高导电性能的同时实现电化学性能的提升。

Description

一种植酸掺杂聚吡咯的制备方法
技术领域
本发明属于植酸掺杂聚吡咯领域,具体涉及一种植酸掺杂聚吡咯的制备方法。
背景技术
超级电容器以其高的功率密度、循环稳定性及可实现快速充放电、安全性高等优点,在电动汽车、新能源发电、航空航天、国防科技等领域具有广阔的应用前景。电极材料作为超级电容器的重要组成部分,是影响超级电容器性能和生产成本的关键因素。目前用于制备超级电容器的电极材料主要分为碳材料(碳纳米管、石墨烯、活性炭等),金属氧化物、导电聚合物三大类。以导电聚合物作为电极材料的准电容虽具有较高的理论比电容,导电聚合物主要包括聚苯胺(PANI)、聚吡咯(PPy)、聚噻吩及其衍生物。导电聚合物的导电性能的掺杂结构决定其导电性能,从而影响其作为超级电容器电极材料的电化学性能;植酸也称为环己六醇磷酸酯,其环保无毒,是一种天然的有机磷酸化合物。植酸结构中丰富的磷酸根基团赋予其良好的掺杂特性;但目前尚未有将植酸对PPy进行掺杂并改善其微结构与电化学性能;
针对上述不足,现需要一种植酸掺杂聚吡咯的制备方法,不仅可利用植酸丰富的含氧基团与吡咯的多重氢键作用一方面诱导PPy链的生长,调控构筑PPy的微结构;且可利用植酸的磷酸根负离子对PPy进行有效掺杂,提高其导电性能的同时实现电化学性能的提升。
发明内容
本发明的目的是提供一种植酸掺杂聚吡咯的制备方法,不仅可利用植酸丰富的含氧基团与吡咯的多重氢键作用一方面诱导PPy链的生长,调控构筑PPy的微结构;且可利用植酸的磷酸根负离子对PPy进行有效掺杂,提高其导电性能的同时实现电化学性能的提升。
本发明提供了如下的技术方案:
一种植酸掺杂聚吡咯的制备方法,
S1、取浓度为0.1mol/L的吡咯单体70μL放入烧杯中,再加入20mL去离子水,超声分散使其混合均匀;
S2、将过硫酸铵水溶液缓慢加入到烧杯中,至停止反应;
S3、将所得反应液抽滤,所得固体分别用无水乙醇和去离子水反复洗涤,干燥得黑色的PPy。
S4、取吡咯单体与植酸的物质的量之比分别为1∶1,3∶1,5∶1,分别记为Pyp1,Pyp3与Pyp5。
S5、将植酸溶于20mL去离子水,超声分散均匀后;再向溶液中加入70μL吡咯单体,在搅拌条件下向其中缓慢加入过硫酸铵水溶液;
S6、将所得反应液抽滤,所得固体用乙醇和去离子水反复淋洗,在60℃下干燥24h,得植酸掺杂PPy
优选的,S3步骤中,控制滴加时间在5min左右,同时磁力搅拌24h
优选的,S3步骤中,在60℃干燥24h可得黑色的PPy。
优选的S4步骤中,当吡咯取70μL时,浓度为0.1mol/L的植酸分别取0.666,0.222,0.133g。
优选的,S5步骤中,控制滴加时间在5min左右,同时在磁力搅拌器上反应24h
优选的,硫酸铵水溶液配比为1mmol硫酸铵溶于5mL水中。
本发明的有益效果:
本发明利用植酸作为掺杂剂制备了不同比例的掺杂复合材料,利用植酸丰富的含氧基团与吡咯的多重氢键作用一方面诱导PPy链的生长,调控构筑PPy的微结构;另一方面,利用植酸的磷酸根负离子对PPy进行有效掺杂,提高其导电性能的同时实现电化学性能的提升。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为纯PPy,Pyp1,Pyp3,PyP5的FTIR谱图;
图2为PPy及植酸掺杂PPy的SEM照片;
图3为纯PPy,Pyp1,Pyp3,Pyp5的XRD图;
图4为纯PPy,Pyp1,Pyp3,Pyp5的恒电流充放电曲线;
图5为纯PPy,Pyp3的CV曲线图;
图6为纯PPy,Pyp3的交流阻抗谱图。
具体实施方式
S1、取浓度为0.1mol/L的吡咯单体70μL放入烧杯中,再加入20mL去离子水,超声分散使其混合均匀;
S2、将过硫酸铵水溶液(1mmol溶于5mL水中)缓慢加入到烧杯中,控制滴加时间在5min左右,同时磁力搅拌24h后停止反应;
S3、将所得反应液抽滤,所得固体分别用无水乙醇和去离子水反复洗涤,然后在60℃干燥24h可得黑色的PPy。
S4、取吡咯单体与植酸的物质的量之比分别为1∶1,3∶1,5∶1,分别记为Pyp1,Pyp3与Pyp5;即当吡咯取70μL1mmol时,浓度为0.1mol/L的植酸分别取0.666,0.222,0.133g;
S5、首先将植酸溶于20mL去离子水,超声分散均匀后;再向溶液中加入70μL(1mmol)吡咯单体,在搅拌条件下向其中缓慢加入过硫酸铵水溶液(1mmol溶于5mL水中);控制滴加时间在5min左右,同时在磁力搅拌器上反应24h。
S6、将所得反应液抽滤,所得固体用乙醇和去离子水反复淋洗,在60℃下干燥24h,得植酸掺杂PPy。
实验分析:
FTIR表征:溴化钾压片,分辨率为4cm–1。
SEM观察:测试前镀铂金,观察表面并拍照。
XRD测试:铜靶,λ=0.1541nm。
室温电导率的测定:将PPy样品经压片成型后(成型片的直径为12.7mm,压力为20MPa),利用四探针测试仪,采用四电极法测定室温电导率。
恒电流充放电测试:利用蓝电测试系统来测试。该材料的比电容。该体系为三电极系统,其中Pt片和饱和甘汞电极(SCE)分别用作对电极和参比电极。取5mg的聚吡咯和0.9mg的乙炔黑混合均匀,滴加1~2滴聚四氟乙烯,将该混合物压制在石墨电极上制备工作电极。电解质为1MKCl
循环伏安(CV)测试:扫描范围–0.7~–0.3V,扫速为10mV/s;
电化学交流阻抗(EIS)测试:测试频率为0.01~100kHz,振幅为5mV;
结果与讨论
复合材料的FTIR表征
纯PPy,Pyp1,Pyp3与Pyp5的FTIR谱图如图1所示,纯PPy在1561cm–1和1467cm–1左右的吸收峰分别对应了对称与反对称吡咯环的伸缩振动峰,位于1204cm–1附近的峰为C—N键的伸缩振动峰,在929cm–1处出现了=C—H键的面外振动峰。PyP1和PyP3中的FTIR中(图1b,图1d),C—N键的伸缩振动峰由1204cm–1分别红移至1179,1185cm–1,这可能是由于植酸中丰富的—OH与C—N间形成多重氢键的缘故。纯PPy中位于929cm–1附近=C—H的吸收峰在Pyp3中红移至904cm–1处,这是P=O与=C—H间的共轭效应所致。值得一提的是,植酸掺杂PPy中均显示了PPy特征峰,表明PPy在植酸的掺杂下成功聚合
植酸掺杂PPy的形貌表征
图2为PPy及植酸掺杂PPy的SEM照片。由图2a可见,纯PPy的表面形貌为无规颗粒状结构,颗粒尺寸为500~700nm,这些亚微米颗粒相互堆积,形成数微米的聚集体,这种颗粒的堆积使纯PPy形成以大孔为主的孔隙结构,不利于其导电性能及电化学性能的提高。经过植酸掺杂后的PPy的颗粒尺寸明显变小(如图2b~图2d),颗粒尺寸为200~400nm,而且PPy颗粒之间的团聚堆积现象明显减少,三种植酸掺杂PPy中,Pyp1与Pyp5中的PPy颗粒显示出松散的分离结构,其电导率分别为0.03,0.52S/cm,这不利于复合材料导电通路的形成,而
Pyp3中的亚微米PPy颗粒之间相互搭接,形成典型的三维网路结构,其电导率为8.5S/cm,比未掺杂PPy(4.3×10–3S/cm)高4个数量级。这说明植酸的引入量过多或过少均不利PPy获得良好的3D网络结构。与纯PPy相比,Pyp3孔径明显减小,表现出明显的分级多孔结构,这种独特的多孔结构将有利于电解质/电子的快速扩散/传输,从而利于其作为超级电容器电极材料电化学性能的提高;
复合材料的XRD表征
纯PPy,Pyp1,Pyp3与Pyp5的XRD图如图3所示。从图3可以看出,位于2θ=22°左右出现一宽的弥散的衍射峰,表明PPy分子链为无定形结构。当利用植酸进行掺杂后,位于2θ=22°左右的衍射峰的强度增大,而且Pyp1,Pyp3与Pyp5在2θ=17°左右出现一新的衍射峰,这表明植酸的引入可能有利于PPy分子链的有序生长
植酸掺杂PPy的电化学性能
植酸掺杂PPy在超级电容器电极材料中的潜在应用可通过恒电流充放电、CV技术进行测试。图4给出PPy,Pyp1,Pyp3与Pyp5在0.5A/g的充放电曲线。从图4a可以看出,纯PPy及复合材料的充放电曲线几乎为直线并且呈典型的对称三角形形状。具体的比电容可参照下式进行计算:
C=(I×Δt)/(ΔV×m);
式中:C—比电容;I—恒定电流;t—放电时间;ΔV—t时间内的电压降。m—工作电极中活性物质的质量
计算得到PPy,Pyp1,Pyp3和Pyp5的比电容分别为153,155,265F/g和208F/g。显然,过多的植酸的引入(吡咯∶植酸=1∶1)不利于PPy比电容的提高。而Pyp3(吡咯∶植酸=3∶1)的三维多孔结构有利于离子渗透及界面电荷的传输,其比电容可达265F/g。继续减少植酸的引入量,则不利于PPy比电容的进一步提高。因此,在所有掺杂PPy中Pyp3可获得最高的比电容,其作为超级电容器电极材料显示出良好的优越性。为了进一步探讨其电化学性能,对Pyp3进行了循环伏安与交流阻抗测试,并与纯PPy做对比。图5为纯PPy与Pyp3的CV曲线,扫描速度为10mV/s,电位区间为–0.7~–0.3V,电解质为1MKCl
PPy的CV曲线偏离矩形,与之形成鲜明对比的是,Pyp3的CV曲线形状则接近于矩形,表明其具有较理想的电容行为。结果表明,与纯PPy相比,Pyp3表现出更好的电荷传输行为以及离子响应。从图5还可以看出,Pyp3表现出高的峰电流强度,表明在同一扫速下,与纯PPy相比Pyp3具有更高的比电容,这与充放电的结果一致。交流阻抗可用来研究电极/电解质界面的电导率,结构以及电荷传输性能。图6为PPy与Pyp3的交流阻抗谱图。从图6可以看出,交流阻抗曲线由三部分构成:高频区、中频区和低频区。在高频区,通过高频区阻抗曲线与零基线的交点可以估算电极材料的内阻(Rs)。Pyp3和PPy的Rs均小于1Ω,两者低的Rs归因于电极与电解质间低的欧姆电阻。在中频区,曲线有一圆弧,它的直径反映的是由于离子或电子迁移阻抗造成的传荷电阻(Rct);
由图6可见,Pyp3与PPy均表现出小的传荷电阻。低频区曲线的斜率在45°~90°,对应于介于Warburg扩散与理想电容离子扩散间的离子扩散机理,在理想电容器中表现为接近90°的直线。明显地,与PPy相比,Pyp3的低频区的直线斜角更接;近90°,说明,Pyp3表现出理想电容器的特性;
结论
采用化学氧化聚合法,将吡咯单体与植酸在氧化剂的存在下进行聚合制备得到植酸掺杂PPy,研究了植酸与吡咯的不同配比对复合材料的结构及电化学性能的影响。结果表明,吡咯与植酸的物质的量之比太低(1∶1)或太高(5∶1)均不利于植酸掺杂聚吡咯电化学性能的提高。当吡咯与植酸的物质的量之比为3∶1时,Pyp3表现为亚微米球相互搭接的3D网络结构,PPy的分子链有较高的规整性,其主要归因于PPy与植酸间的多重氢键及共轭效应。Pyp3作为超级电容器电极材料比电容为265F/g,比纯PPy的153F/g高,具有更为理想的超电容特性;
以上仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种植酸掺杂聚吡咯的制备方法,其特征在于,具体步骤如下:
S1、取浓度为0.1mol/L的吡咯单体70μL放入烧杯中,再加入20mL去离子水,超声分散使其混合均匀;
S2、将过硫酸铵水溶液缓慢加入到烧杯中,至停止反应;
S3、将所得反应液抽滤,所得固体分别用无水乙醇和去离子水反复洗涤,干燥得黑色的PPy;
S4、取吡咯单体与植酸的物质的量之比分别为1∶1,3∶1,5∶1,分别记为Pyp1,Pyp3与Pyp5;
S5、将植酸溶于20mL去离子水,超声分散均匀后;再向溶液中加入70μL吡咯单体,在搅拌条件下向其中缓慢加入过硫酸铵水溶液;
S6、将所得反应液抽滤,所得固体用乙醇和去离子水反复淋洗,在60℃下干燥24h,得植酸掺杂PPy。
2.根据权利要求1所述的一种植酸掺杂聚吡咯的制备方法,其特征在于:S3步骤中,控制滴加时间在5min左右,同时磁力搅拌24h。
3.根据权利要求1所述的一种植酸掺杂聚吡咯的制备方法,其特征在于:S3步骤中,在60℃干燥24h可得黑色的PPy。
4.根据权利要求1所述的一种植酸掺杂聚吡咯的制备方法,其特征在于:S4步骤中,当吡咯取70μL时,浓度为0.1mol/L的植酸分别取0.666,0.222,0.133g。
5.根据权利要求1所述的一种植酸掺杂聚吡咯的制备方法,其特征在于:S5步骤中,控制滴加时间在5min左右,同时在磁力搅拌器上反应24h。
6.根据权利要求1所述的一种植酸掺杂聚吡咯的制备方法,其特征在于:硫酸铵水溶液配比为1mmol硫酸铵溶于5mL水中。
CN202010921215.2A 2020-09-04 2020-09-04 一种植酸掺杂聚吡咯的制备方法 Pending CN112029096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010921215.2A CN112029096A (zh) 2020-09-04 2020-09-04 一种植酸掺杂聚吡咯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010921215.2A CN112029096A (zh) 2020-09-04 2020-09-04 一种植酸掺杂聚吡咯的制备方法

Publications (1)

Publication Number Publication Date
CN112029096A true CN112029096A (zh) 2020-12-04

Family

ID=73591480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010921215.2A Pending CN112029096A (zh) 2020-09-04 2020-09-04 一种植酸掺杂聚吡咯的制备方法

Country Status (1)

Country Link
CN (1) CN112029096A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874439A (zh) * 2022-06-22 2022-08-09 武汉工程大学 一种三维导电网络聚吡咯材料、硫正极材料和锂硫电池
CN115602454A (zh) * 2022-12-12 2023-01-13 深圳市今朝时代股份有限公司(Cn) 一种超级电容器极片及其制备方法
CN116003788A (zh) * 2022-12-21 2023-04-25 太原理工大学 一种聚吡咯水凝胶包覆碳纳米管复合材料及其制备方法和在检测苋菜红中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨颖: ""植酸掺杂聚吡咯制备及电化学性能"", 《工程塑料应用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874439A (zh) * 2022-06-22 2022-08-09 武汉工程大学 一种三维导电网络聚吡咯材料、硫正极材料和锂硫电池
CN114874439B (zh) * 2022-06-22 2023-11-28 武汉工程大学 一种三维导电网络聚吡咯材料、硫正极材料和锂硫电池
CN115602454A (zh) * 2022-12-12 2023-01-13 深圳市今朝时代股份有限公司(Cn) 一种超级电容器极片及其制备方法
CN116003788A (zh) * 2022-12-21 2023-04-25 太原理工大学 一种聚吡咯水凝胶包覆碳纳米管复合材料及其制备方法和在检测苋菜红中的应用

Similar Documents

Publication Publication Date Title
Viswanathan et al. Facile in-situ single step chemical synthesis of reduced graphene oxide-copper oxide-polyaniline nanocomposite and its electrochemical performance for supercapacitor application
Bhattacharya et al. High-conductivity and high-capacitance electrospun fibers for supercapacitor applications
Zhu et al. Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications
Zhu et al. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor
Male et al. Synthesis and characterization of polyaniline-grafted CNT as electrode materials for supercapacitors
Chen et al. Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles
Fan et al. Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode
Huang et al. Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate
CN112029096A (zh) 一种植酸掺杂聚吡咯的制备方法
Heydari et al. An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor
Xiong et al. Preparation of high-performance covalently bonded polyaniline nanorods/graphene supercapacitor electrode materials using interfacial copolymerization approach
Sahoo et al. Modified graphene/polyaniline nanocomposites for supercapacitor application
Wang et al. Synthesis of flake-shaped nitrogen-doped carbon quantum dot/polyaniline (N-CQD/PANI) nanocomposites via rapid-mixing polymerization and their application as electrode materials in supercapacitors
Kazemi et al. Metal-polyaniline nanofibre composite for supercapacitor applications
Ran et al. Preparation of hierarchical polyaniline nanotubes based on self‐assembly and its electrochemical capacitance
Wang et al. Facile fabrication of urchin-like polyaniline microspheres for electrochemical energy storage
Sk et al. Facile growth of heparin-controlled porous polyaniline nanofiber networks and their application in supercapacitors
Xu et al. Synthesis and electrochemical capacitance performance of polyaniline doped with lignosulfonate
CN109411240B (zh) 一维结构的二氧化锰纳米管@Ni-Co LDH纳米笼核壳复合材料及其制备方法和应用
Samyn et al. Electropolymerization of p-phenylenediamine films on carbon fiber fabrics electrode for flexible supercapacitors: surface and electrochemical characterizations
Dhibar et al. Copper chloride‐doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications
Gao et al. Interfacial polymerization for controllable fabrication of nanostructured conducting polymers and their composites
Liu et al. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells
Njomo et al. Graphenated tantalum (IV) oxide and poly (4-styrene sulphonic acid)-doped polyaniline nanocomposite as cathode material in an electrochemical capacitor
Hou et al. Micromorphology-controlled synthesis of polypyrrole films by using binary surfactant of Span80/OP10 via interfacial polymerization and their enhanced electrochemical capacitance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204

RJ01 Rejection of invention patent application after publication