CN106000377A - 两种氧化钛/石墨烯纳米复合材料 - Google Patents

两种氧化钛/石墨烯纳米复合材料 Download PDF

Info

Publication number
CN106000377A
CN106000377A CN201610350459.3A CN201610350459A CN106000377A CN 106000377 A CN106000377 A CN 106000377A CN 201610350459 A CN201610350459 A CN 201610350459A CN 106000377 A CN106000377 A CN 106000377A
Authority
CN
China
Prior art keywords
graphene
titanium oxide
nano
oxide
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610350459.3A
Other languages
English (en)
Other versions
CN106000377B (zh
Inventor
付明来
陈建炜
杨佳诚
苑宝玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201610350459.3A priority Critical patent/CN106000377B/zh
Publication of CN106000377A publication Critical patent/CN106000377A/zh
Application granted granted Critical
Publication of CN106000377B publication Critical patent/CN106000377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及两种氧化钛/石墨烯纳米复合材料。两种氧化钛分别为一维纳米管和二维纳米页,通过化学法制备石墨烯氧化物与氧化钛复合后再还原得到氧化钛/石墨烯纳米复合材料。一维纳米管用水热法合成,二维纳米页经有机大分子溶液振荡剥离合成,两种氧化钛与石墨烯氧化物的复合通过电荷改性、静电自组装及后续的还原步骤完成。长度在80‑100 nm、管径为8‑10 nm的管状氧化钛和横向尺寸在亚微米的层状氧化钛平铺在微米级的如薄纱一样的石墨烯片上,石墨烯氧化物的还原程度高,氧化钛/石墨烯纳米复合材料性能好。本发明具有广阔的应用前景。

Description

两种氧化钛 / 石墨烯纳米复合材料
技术领域
本发明属于两种纳米复合材料,具体地说是两种氧化钛/石墨烯光催化材料,纳米复合材料在材料化学、环境和能源等领域具有广阔的应用前景。
背景技术
近年来,光催化材料由于在自清洁表面、空气和水净化系统、消毒、产氢和光电化学转化等方面的应用受到广泛的研究,特别是氧化钛,由于其具有化学稳定性好、便宜、低毒以及在环境净化和能源开发等领域的高效性备受关注。然而,氧化钛材料的低量子产率和高载流子复合率大大限制了它的应用。与其它功能纳米材料复合及形貌调控无疑是提高氧化钛性能的两条有效途径。
石墨烯(Graphene, GR)自2004年Geim等人成功制备以来,在基础和应用上得到了大量的研究。由于石墨烯独特的平面结构(高比表面)、高电子迁移率以及良好的透明性,研究者们为了把石墨烯的优异性质引入光催化体系中,他们致力于石墨烯基半导体光催化材料的的探索,试图利用石墨烯在提高吸附容量、扩展光吸收范围及电荷分离性能上的功能,充分挖掘石墨烯与半导体复合光催化材料在环境以及能源领域的应用前景。
氧化钛的形貌可以对其性质施加重要影响,进而影响其性能。具体来说,通过形貌调控可以获得特定的晶体结构、暴露晶面、尺寸和孔结构等性质,这些性质对氧化钛的性能起着重要作用。一维的氧化钛纳米管(titania nanotubes, TNT)由于是管状结构,具有较大的长径比、较强的离子交换能力和吸附能力以及较短的电荷载流子扩散距离和光散射性,因此TNT对提高氧化钛光催化性能及光电转换效率是非常有利的。二维的氧化钛纳米页(titania nanosheets, TNS)是一种新型的厚度不到一纳米的二维晶体纳米材料,独特的二维结构赋予TNS不同于块体氧化钛众多优异性质,如高各向异性、高表面能、大比表面、胶体和聚电解质特性等,使得TNS在光电转换、电化学能量存储、自清洁、湿敏传感器、光化学等领域极具应用潜力。
半导体光催化材料与石墨烯的复合研究在近5年已然成为研究热点,石墨烯增强半导体光催化性能的机理基本上达成共识,复合的方法囊括水热/溶剂热法、溶液混合法、原位生长法、电化学沉积法、原子层沉积法等,复合的半导体种类广泛,以氧化钛和石墨烯的复合研究最受关注。科学家们试图对各种不同结构维度的氧化钛与石墨烯进行复合研究,并积极探索复合材料在环境净化和新能源开发的可能性。氧化钛/石墨烯纳米复合材料是一类有前景的复合光催化材料,长度在80-100 nm、管径为8-10 nm的管状氧化钛和横向尺寸在亚微米的单原子层氧化钛纳米页与石墨烯复合材料尚未见报道。
发明内容
本发明的目的在于提供两种氧化钛/石墨烯纳米复合材料。两种氧化钛分别为一维纳米管和二维纳米页,氧化钛纳米管的长度在80-100 nm、管径为8-10 nm,氧化钛纳米页为亚微米尺寸的仅有一个或几个原子层厚度的二维层状纳米材料,石墨烯同样为单原子层到多原子层构成的二维碳纳米材料,管状和层状的氧化钛平铺在石墨烯纳米页上。氧化钛/石墨烯纳米复合材料通过电荷改性、静电自组装先将氧化钛与石墨烯氧化物进行复合再经后续的还原处理方法合成。一维的氧化钛纳米管用水热法合成,二维的氧化钛纳米页由有机大分子溶液振荡剥离合成。所合成的两种氧化钛/石墨烯纳米复合材料性能优异。所述两种氧化钛/石墨烯纳米复合材料能够完好地保持氧化钛和石墨烯原本的形貌,本发明的目的通过以下技术路线实现。
1. 氧化钛纳米管的制备。
(1)取0.1~1.0 g二氧化钛粉末,置于15~45 mL、浓度为5~15 mol·L-1 的NaOH溶液中,搅拌分散30~60 min。
(2)将步骤(1)得到的混合物转移到内衬聚四氟乙烯高压反应釜中,使反应釜在120~180 ℃中保持12~48 h。
(3)将步骤(2)得到的产物用0.05~0.15 mol·L-1的HCl溶液抽滤洗涤3~6次,取出滤饼并浸入到300~700 ml的0.05~0.15 mol·L-1的HCl溶液中搅拌分散1~3 h,再用大量的去离子水洗涤。
(4)将步骤(3)的洗涤产物转移到烘箱中60~120 ℃干燥5~15 h。
(5)将上一步骤得到的产物于空气中300~800 ℃煅烧1~3 h,冷却后研磨制得氧化钛纳米管。
2. 氧化钛纳米页的制备。
(1)钛酸铯的合成:将碳酸铯与二氧化钛粉末按摩尔比1:3~1:7进行混合,混合产物于空气中500~900 ℃煅烧12~36 h,重复煅烧1~3次。
(2)质子型钛酸盐的合成:配置摩尔浓度为0.5~3.0 mol·L-1的盐酸溶液,取1.0~10.0 g钛酸铯置于100~500 ml盐酸溶液中搅拌分散,每隔12~24 h用新配的盐酸溶液置换原来的盐酸溶液,重复3~6次后洗涤并干燥样品得到质子型钛酸盐。
(3)氧化钛纳米页的制备:取步骤(2)得到的产物0.1~1.0 g置于25~250 ml有机大分子(四正丁基氢氧化胺、乙胺等)溶液中浸泡并在室温下用摇床振荡5~14 d得到剥离的纳米页。
3. 氧化石墨的制备。
以改进的Hummer法合成氧化石墨,将100~500 ml浓硫酸、1.0~5.0 g石墨和5.0~30.0 g高锰酸钾在冰水浴下搅拌、分散0.5~3.0 h;然后把反应的混合物在25~50 ℃下保持1~12 h;紧接着往反应容器中加入100~300 ml去离子水,待反应体系冷却降温到90~105 ℃时滴加适量过氧化氢直至反应溶液没有颜色变化;最后依次用150~300 ml盐酸溶液和大量去离子水洗涤产物后,对样品在25~60 ℃条件下进行真空干燥12~48 h得到氧化石墨。
4. 两种氧化钛/石墨烯纳米复合材料的制备。
取0.2~1.0 g氧化钛纳米管粉末分散在500~1500 ml去离子水中形成悬浮液或直接取50~300 ml浓度为4.0~20.0 g·L-1氧化钛纳米页悬浮液并用去离子水稀释到500~1500 ml;取适量石墨烯氧化物(按氧化石墨与氧化钛质量比0.2%~30.0%)于去离子水中超声5~120 min、搅拌分散10~120 min形成石墨烯氧化物悬浮液;将氧化钛悬浮液与石墨烯氧化物悬浮液混合搅拌10~120 min,往混合液中滴加0.2~2.0 ml阳离子聚电解质(聚乙烯亚氨、聚二烯丙基二甲基氯化铵等),继续保持搅拌0.5~3.0 h,反应后用去离子水洗涤反应产物若干次;把洗涤好的氧化钛/石墨烯氧化物纳米复合材料重新分散到去离子水中形成悬浮液并置于紫外光下照射0.5~12.0 h,在照射过程中保持搅拌和N2曝气;将光照后的沉淀用去离子水洗涤3~6次后冻干12~48 h;最后对冻干样品进行微波照射3~60 min得到氧化钛/石墨烯纳米复合材料。
本发明与现有技术相比具有以下优点
(1)本发明首次制备了一维的氧化钛纳米管和二维的氧化钛纳米页以平铺或层层自组装的方式与石墨烯纳米页结合的纳米复合材料。两种氧化钛/石墨烯纳米复合材料能高效地去除亚甲基蓝。复合材料在环境污染治理和新能源开发等领域具有广阔的市场应用前景。
(2)本发明所提供的氧化钛/石墨烯纳米复合材料制备方法简单可行,方法具有通用性。
(3)本发明提供的两种氧化钛/石墨烯纳米复合材料能够较好地保持氧化钛和石墨烯原本的形貌,石墨烯氧化物的还原程度高。
附图说明
图1为氧化钛纳米管/石墨烯纳米复合材料的高分辨透射电镜照片(HRTEM)。
图2为本发明制备的两种氧化钛/石墨烯纳米复合材料及石墨烯氧化物中C 1S的X射线光电子能谱图。
图3为氧化钛纳米页/石墨烯纳米复合材料的高分辨透射电镜照片(HRTEM)。
图4为5%石墨烯复合量的氧化钛纳米页/石墨烯纳米复合材料的宏观形貌。
图5为30%石墨烯复合量的氧化钛纳米页/石墨烯纳米复合材料的宏观形貌。
具体实施方式
下面结合实施例和附图对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。

Claims (2)

1.两种氧化钛/石墨烯纳米复合材料,其特征在于:所述两种氧化钛/石墨烯纳米复合材料能够完好地保持氧化钛和石墨烯原本的形貌,氧化钛纳米管的长度在80-100 nm、管径为8-10 nm;氧化钛纳米页为亚微米尺寸的仅有一个或几个原子层厚度的二维层状纳米材料,石墨烯同样为单原子层到多原子层构成的二维碳纳米材料,管状和片状的氧化钛平铺在石墨烯纳米页上;所合成的两种氧化钛/石墨烯纳米复合材料性能优异。
2.权利要求1所述的两种氧化钛/石墨烯纳米复合材料,其制备方法的特征在于:氧化钛/石墨烯纳米复合材料通过电荷改性、静电自组装先将氧化钛与石墨烯氧化物进行复合再经后续的紫外光照和微波辐照还原处理方法合成;一维的氧化钛纳米管用水热法合成,二维的氧化钛纳米页在有机大分子溶液中振荡剥离得到。
CN201610350459.3A 2016-05-25 2016-05-25 两种氧化钛/石墨烯纳米复合材料 Active CN106000377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610350459.3A CN106000377B (zh) 2016-05-25 2016-05-25 两种氧化钛/石墨烯纳米复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610350459.3A CN106000377B (zh) 2016-05-25 2016-05-25 两种氧化钛/石墨烯纳米复合材料

Publications (2)

Publication Number Publication Date
CN106000377A true CN106000377A (zh) 2016-10-12
CN106000377B CN106000377B (zh) 2019-04-19

Family

ID=57093858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610350459.3A Active CN106000377B (zh) 2016-05-25 2016-05-25 两种氧化钛/石墨烯纳米复合材料

Country Status (1)

Country Link
CN (1) CN106000377B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683897A (zh) * 2016-12-10 2017-05-17 宁国市大荣电器有限公司 一种改性石墨烯超级电容器电极材料
CN107328826A (zh) * 2017-08-08 2017-11-07 肇庆高新区长光智能技术开发有限公司 一种便携式乙醇检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496700A (zh) * 2011-12-20 2012-06-13 中国科学院新疆理化技术研究所 石墨烯-二氧化钛纳米管复合材料及其制备方法
CN102698728A (zh) * 2012-05-14 2012-10-03 无锡润鹏复合新材料有限公司 一种二氧化钛纳米管/石墨烯复合材料及其制备方法
CN104347276A (zh) * 2014-09-09 2015-02-11 华中科技大学 石墨烯管包裹金属氧化物纳米带及其制备方法
CN104868112A (zh) * 2015-05-12 2015-08-26 吉林大学 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
CN105514436A (zh) * 2016-02-02 2016-04-20 陕西科技大学 石墨烯包覆的二氧化钛纳米管的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496700A (zh) * 2011-12-20 2012-06-13 中国科学院新疆理化技术研究所 石墨烯-二氧化钛纳米管复合材料及其制备方法
CN102698728A (zh) * 2012-05-14 2012-10-03 无锡润鹏复合新材料有限公司 一种二氧化钛纳米管/石墨烯复合材料及其制备方法
CN104347276A (zh) * 2014-09-09 2015-02-11 华中科技大学 石墨烯管包裹金属氧化物纳米带及其制备方法
CN104868112A (zh) * 2015-05-12 2015-08-26 吉林大学 碳包覆二氧化钛纳米片阵列与石墨烯复合电极材料及其制备方法
CN105514436A (zh) * 2016-02-02 2016-04-20 陕西科技大学 石墨烯包覆的二氧化钛纳米管的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINNING LUAN ET AL.: "Enhanced photocatalytic activity of grapheme oxide/titania nanosheets composites for methylene blue degradation", 《MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683897A (zh) * 2016-12-10 2017-05-17 宁国市大荣电器有限公司 一种改性石墨烯超级电容器电极材料
CN107328826A (zh) * 2017-08-08 2017-11-07 肇庆高新区长光智能技术开发有限公司 一种便携式乙醇检测装置

Also Published As

Publication number Publication date
CN106000377B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Madkhali et al. Recent update on photocatalytic degradation of pollutants in waste water using TiO2-based heterostructured materials
Hu et al. Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance
Ma et al. Effective photoinduced charge separation and photocatalytic activity of hierarchical microsphere-like C60/BiOCl
Cai et al. Graphitic carbon nitride decorated with S, N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis
Zhang et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst
Hao et al. Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi 2 MoO 6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation
Liu et al. Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
Zhu et al. Construction of 2D/2D TiO2/g-C3N4 nanosheet heterostructures with improved photocatalytic activity
CN103638922B (zh) 介孔三氧化钨/还原氧化石墨烯复合光催化剂的制备方法
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN105664922B (zh) 碳修饰TiO2/WO3复合纳米纤维光催化剂、制备方法及应用
Zhu et al. Construction of Z scheme system of ZnIn2S4/RGO/BiVO4 and its performance for hydrogen generation under visible light
Zhu et al. 2D/2D MoS2/g-C3N4 layered heterojunctions with enhanced interfacial electron coupling effect
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
Liu et al. TiOF2/g-C3N4 composite for visible-light driven photocatalysis
CN106040269A (zh) 一种BiOI‑还原石墨烯复合光催化剂的制备方法及应用
WO2019085532A1 (zh) 一种三价钛自掺杂二氧化钛纳米颗粒-部分还原氧化石墨烯纳米片复合材料及其制备方法
CN103691433A (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
Chen et al. Photocatalytic degradation of MB by novel and environmental ZnO/Bi2WO6-CC hierarchical heterostructures
Ming et al. Fluoride ion-promoted hydrothermal synthesis of oxygenated g-C3N4 with high photocatalytic activity
CN104826628A (zh) 一种在可见光下具有高催化降解活性的石墨烯–铁掺杂TiO2纳米线的制法
CN106000377A (zh) 两种氧化钛/石墨烯纳米复合材料
CN112354559B (zh) 一种二维受体分子/多级孔TiO2复合光催化剂及其制备方法和光催化应用
CN104028309B (zh) 一种复合型可见光催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant