CN105991137B - 可变分数速率数字重采样的系统和方法 - Google Patents

可变分数速率数字重采样的系统和方法 Download PDF

Info

Publication number
CN105991137B
CN105991137B CN201610164945.6A CN201610164945A CN105991137B CN 105991137 B CN105991137 B CN 105991137B CN 201610164945 A CN201610164945 A CN 201610164945A CN 105991137 B CN105991137 B CN 105991137B
Authority
CN
China
Prior art keywords
filter
output
polyphase
filters
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610164945.6A
Other languages
English (en)
Other versions
CN105991137A (zh
Inventor
J·谭古都
S·巴拉德瓦杰
S·兰加查理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN105991137A publication Critical patent/CN105991137A/zh
Application granted granted Critical
Publication of CN105991137B publication Critical patent/CN105991137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • H03M1/126Multi-rate systems, i.e. adaptive to different fixed sampling rates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0273Polyphase filters
    • H03H17/0275Polyphase filters comprising non-recursive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/028Polynomial filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0642Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being arbitrary or irrational

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明涉及可变分数速率数字重采样的系统和方法。本文所公开的可变分数速率数字重采样的系统和方法的示例性实施例实现可变速率转换。在示例性实施例中,输入样本在升采样器(510)中以因子N被升采样,升采样器(510)后是滤波器(520),之后输入样本通过线性插值器(540)。滤波器(520)清除由于升采样操作产生的信号频谱图像。

Description

可变分数速率数字重采样的系统和方法
技术领域
本公开一般涉及电信,并且更具体地涉及电信系统中的数字信号处理。
背景技术
采样率转换在很多处理应用中至关重要。采样率转换的需要可能由于各种原因引起,包括,例如:(a)数字通信系统中具有不同于接收基带符号率的模数转换器(ADC)率的设计;(b)具有固定模数转换器(ADC)率的可变带宽接收系统;以及(c)具有不同于发送基带采样率的数模转换器(ADC)率的设计。典型的重采样方法包括拉格朗日和B-样条重采样以匹配采样率。
许多信号处理应用在具体时间瞬间而不是在采样情况期间指出采样信号的估计值。这使用通常被称为重采样器的数字采样率转换器实现。重采样器可以被广泛分类成固定速率重采样器和可变速率重采样器。如图1所示,固定速率重采样器(例如重采样器100)将输入信号从固定输入速率转换到固定输出速率。对于可变速率重采样器,输入速率或输出速率或两者都是可变的。重采样器100的输入速率和输出速率由重采样比率关联,重采样比率可以被定义为输出速率与输入速率的比率,r=fo/fi.。通过简单整数比率进行的固定速率转换很容易理解并且可以使用多相结构和固定系数实施。对重采样器的需要可能出现在发送器和接收器信号处理链中。至今为止,对于先前的可变速率重采样解决方案具有待解决的需要。
发明内容
本公开的示例性实施例提供可变分数速率数字重采样的系统。简要地描述,在体系结构上,除其他之外,所述系统的一个示例性实施例能够按照如下方式实现:上采样器,其被配置为以第一频率接收输入序列并以第二较高频率输出序列;滤波器,其被配置为以第二较高频率对序列滤波;和线性插值器,其被配置为对输出速率插值。
本公开的实施例还能够被视为提供用于可变分数速率数字重采样的方法。就这而言,这种方法以及其他的一个实施例中,能够由下面的步骤广泛地概括:以固定速率接收输入序列;以第二可变速率升采样输入序列;滤波升采样后的序列;以及对滤波后的序列应用线性插值。
附图说明
图1是重采样器电路的一个示例性实施例的方框图。
图2A是通用重采样器的一个示例性实施例的方框图。
图2B是插值滤波响应的一个示例性实施例的信号图。
图2C是图2B中以输出速率采样后的响应的一个示例性实施例的信号图。
图3是Farrow结构多项式重采样器的一个示例性实施例的方框图。
图4是可变分数速率数字重采样的系统的一个示例性实施例的方框图。
图5是图4中的线性插值的一个示例性实施例的方框图。
图6是可变分数速率数字重采样的系统的一个示例性实施例的方框图。
图7A是Farrow结构多项式重采样器的一个示例性实施例的方框图。
图7B是升采样后的线性插值的一个示例性实施例的方框图。
图8是基于乘法器的重采样器的一个示例性实施例的方框图。
图9是基于移位寄存器复制的重采样器的一个示例性实施例的方框图。
图10是选择性门控重采样器的一个示例性实施例的方框图。
图11是重采样器中新的子滤波器的生成的一个示例性实施例的方框图。
图12是可变分数速率数字重采样方法的一个示例性实施例的流程图。
图13是可变分数速率数字重采样方法的一个示例性实施例的流程图。
图14是重采样器中的多路复用的一个示例性实施例的方框图。
图15是重采样器中的多路复用的一个示例性实施例的方框图。
具体实施方式
本公开的实施例将在下文参考附图被更充分地描述,附图中相似的附图标记在整个若干附图中表示相似的元件,并且在附图中示出示例性实施例。然而,权利要求的实施例可以以很多不同形式实现并且不应该视为被限制到本文所阐述的实施例。本文阐述的示例是非限制性示例并且其仅仅是其他可能的示例之中的示例。
RF数字通信接收器生成载波频率用于信号降频转换并生成采样时钟用于采样所接收的连续时间信号。典型地,载波频率和期望的采样率可能不具有简单的关系。两个单独的锁相环(PLL)可以用来生成载波时钟和采样时钟。
这种模拟方法要求大量面积和功率消耗。本文所述的可变分数速率数字重采样的系统和方法的示例性实施例在数字基带中利用单个PLL结合可变速率重采样器操作接收器。ADC速率的选择可以由各种因素(例如共存问题、模拟滤波规范以及ADC性能规范)控制。可变速率重采样器可以基于重采样比率通过以期望时间间隔对样本插值来转换ADC输出的采样速率。类似地,具有固定ADC速率的可变带宽系统使得在数字基带中使用可变速率重采样器成为必要。
由于和接收器中相似的原因,发送器中的数字基带采样与DAC采样速率可能不具有简单的关系。在这种情况下,重采样器可以用于基于重采样比率,将基带采样率转换到期望速率。除了前面提到的应用,数字重采样器还可以用于校正单个载波系统中的采样时间误差(这是由于参考晶体的漂移引起)。上面提到的原因证明提出低复杂性重采样器体系结构的需要。
图2A提供通用重采样器200的方框图。通用重采样器200包括乘法和狄拉克梳状函数块210、多项式插值滤波器220和输出采样器230。乘法和狄拉克梳状函数块210通过狄拉克梳状函数δ的乘法将采样率为fi.的输入序列转换成连续时间信号。多项式插值滤波器220衰减以输入频率的倍数重复的输入图像。输出采样器230以期望频率采样滤波输出。重采样过程可以被视为从离散时间到连续时间以及接着滤波并转换回到期望输出速率的离散时间的转换。
图2B提供的信号图240显示输入频率的倍数的信号图像。插值滤波器衰减那些以输入频率重复的输入图像。更高阶多项式插值滤波器(时间-跨度)提供更好的图像抑制。插值滤波器和输出采样器的重采样的输出产生图2C的信号图250。
在许多应用中,重采样比率可以接近1(例如,在0.5-2的范围内)。远离1的比率能够通过插入一组抽取滤波器或者2倍插值滤波器(interpolation-by-2filter)带到更接近1。由于针对不同应用规定的采样率的多样性,存在对可变速率重采样器的需要以支持来自固定采样率σ-δ(sigma-delta)ADC的任意输出采样率。先前,使用多项式重采样器,例如拉格朗日和B-样条重采样器。
使用拉格朗日插值的重采样操作可以被数学地表示为:
Figure BSA0000127948190000041
其中Ts是输入采样周期,P是多项式的阶次,μk是从左边(mk)最近的输入样本的分数延迟以及bn(i)是第n个子滤波器。子滤波器抽头(tap)能够通过在多个输入样本上拟合(fit)第P阶多项式来容易地确定。对于第P阶插值,脉冲响应跨越P+1个输入样本周期。
B-样条重采样器基于B-样条多项式。B-样条多项式是对称的钟形函数,其由表示为下式的矩形脉冲β0的(p+1)重卷积构建:
Figure BSA0000127948190000042
这些多项式具有显著性质:对于第P阶B-样条多项式,直到p-1阶的导数是连续的。相比而言,对于拉格朗日重采样器的情况,对于任意阶,脉冲响应的第一次导数是不连续的。进一步,这个性质意味着,对于相同的阶次,B-样条重采样器与拉格朗日重采样器相比,提供更好的衰减。重要的是注意,βp(x)的傅里叶变换是sinc(p+1)(f)。因此,较高阶的B-样条将以更大的带内下垂(in-band droop)为代价具有更好的旁瓣衰减。
第3阶拉格朗日重采样器的时域响应具有其非连续的导数(与B-样条不同)。与拉格朗日重采样器相比,B-样条具有更好的旁瓣衰减但是具有较差的带内下垂。对于第3阶B-样条,第一旁瓣提供的衰减至少是52dB,而对比同样阶的拉格朗日重采样器,其为29dB。带内下垂可以由下垂校正滤波器校正。下垂校正滤波器可以放置在重采样器之前或之后。如果其被放置在重采样器之前,其能够被做成固定系数滤波器,因为下垂是标准化的输入频率的函数。如果其被放置在具有可变重采样比率的重采样器输出端处,可以实施可编程下垂校正滤波器。
如图3中所提供的,多项式重采样器可以使用Farrow体系结构而有效地实施,Farrow体系结构包括P+1个具有固定系数的子滤波器310、320、330、340。子滤波器的输出被馈送给乘法加法电路350,该电路以由μk给出的分数采样时间瞬间实施多项式求值。用于通用P阶多项式重采样器的Farrow体系结构将包括P+1个子滤波器和图3中所示的类似乘法加法电路。
本文所公开的可变分数速率数字重采样的系统和方法的示例性实施例实现可变速率转换。在示例性实施例中,如图4中所提供的,输入样本在升采样器410中以因子N被升采样,升采样器410后跟滤波器420,然后输入样本通过线性插值器430达到期望输出速率。
滤波器420清除由于升采样器410中的升采样操作产生的信号的频谱图像。在接收应用中,清除在重采样之后混叠(aliase)回到带内的部分频谱图像。滤波之后的信号频谱在k*N*Fi处具有基本相同的副本,其中k是整数并且Fi是输入样本速率。对于k为除零以外的其他整数值时,线性插值器430的傅里叶变换在k*N*Fi处为零。因此,基于输出采样速率,由于线性插值导致的频谱零点对可能混叠在带内的信号图像提供抑制。升采样因子N可以是目标衰减A和输入过采样比率OSRi的函数并由下式给出:
Figure BSA0000127948190000051
其中B是期望信号的双边带宽,并且A被定义为混杂在带内的图像功率与信号功率的比率。上述公式基于由第一图像的线性插值在N*Fi的sinc2频谱响应提供的衰减。
在一个示例性实施例中,升采样器410之后的滤波器420以输入速率Fi的N倍速率运行。因此,滤波器420可以被视为传统多相滤波器,其中每个多相能够被理解为子滤波器440的相位,子滤波器的输出对应于不同的时间间隔pTi/N,Ti=1Fi,0≤p≤N-1。升采样滤波器功能和线性插值功能的结合过程可以经实施以实现任何通用输出速率。不使用子滤波器440的所有多相输出的计算。替代地,对于每个输出样本,可以使用子滤波器440的两个邻近多相输出。对于宏观体系结构,此观察获得两种方法。
在示例性实施例中,升采样滤波器每个多相具有L个抽头(固定系数),实现分数延迟的可能方法包括对两个邻近的多相子滤波器系数进行线性插值以及生成新的子滤波器。然后所生成的子滤波器被用于滤波输入数据。
在线性插值方法的一个示例性实施例中,如图5所提供的,插值可以发生在根据邻近的多相滤波器计算的两个输出样本之间,其中:
Figure BSA0000127948190000052
其中x(n)作为输入序列,hp(k)作为第P阶多相滤波器,以及Δ作为对应于第p个多相输出和第p+1个多相输出的时间瞬间之间的标准化分数延迟。线性插值方法可以使用2L+2乘法运算和2L加法操作计算每个输出样本。移位寄存器510存储输入样本x(n),……x(n-(L-1))的当前设置。μ累加器530存储输出采样点相对于输入采样点的时序偏移(μ)。每当μ交叉一次并翻转,其相当于将输入序列移位一个样本。多相滤波器520描述运行来自移位寄存器510的输入样本的当前设置的两个邻近的多相滤波器p和p+1。线性插值器540获取多相滤波器520的两个输出并且对它们线性插值以生成对应于输出采样瞬间的最终输出。多相滤波器指数p和插值系数Δ可以基于μ计算,如下式给出的:
p=floor(μ*N)
Figure BSA0000127948190000061
μ累加器更新公式,给出:
μ(k+1)=mod(μ(k)+r,1.0)
整数移位=floor(μ(k)+r)
其中r是重采样比率,其由下式给出
Figure BSA0000127948190000062
一种通过在邻近子滤波器多相系数之间线性插值而生成新的子滤波器的方法的一个示例性实施例(如图6所示)在数学上等同于图5的线性插值方法:
Figure BSA0000127948190000063
Figure BSA0000127948190000064
μ累加器610用作图5中的累加器530。μ累加器610输出整数移位和分数延迟μ。该分数延迟分裂成p和
Figure BSA0000127948190000065
。选择器630接收p作为输入并输出与第p个多相滤波器和第p+1个多相滤波器对应的系数。线性插值器640接收第p个和第p+1个多相滤波器以及
Figure BSA0000127948190000066
作为输入并在两个多相滤波器之间线性插值以生成新的子滤波器。重采样器620接收输入数据和整数移位值以及所生成的子滤波器。对于每个整数移位值,重采样器620相应地移位输入序列。重采样器620使用当前输入序列和动态生成的子滤波器并计算最终输出。
这个方法使用L乘法和L加法运算以计算新的滤波器抽头。总的2L乘法和2L-1加法运算可以用于计算一个输出样本。由于大的升采样因子N,连续子滤波器抽头的差异很小并且可以使用较少位用于表示。类似地,与分数延迟相比,Δ将使用较低位数进行表示,因为其被有效地标准化为输入速率的N倍。因此,用于生成插值的子滤波器抽头的L乘法具有较低位宽和较低复杂性。从N个多相中挑选第p个多相滤波器的系数多路复用实施可以通过利用插值滤波器是对称的事实来进一步优化。这将获得L(N/2∶1)多路复用器而不是L(N∶1)多路复用器。
典型通信收发器应用具有I(同相)和Q(正交相)支路(arm)。新的子滤波器可以在I和Q支路之间被共享。在其他应用如MIMO波束形成中,多个收发器链可以被相同地配置并且所有的链能够共享子滤波器生成逻辑,从而在面积和功率消耗方面提供附加增益,如随后图11中所示的。
汽车雷达应用可以作为示例强调使用本文所述的系统和方法与多项式重采样器之间的关键不同。汽车雷达系统的ADC规范十分严格,具有大于10位的有效位数(ENOB)和大于80dB的无杂散动态范围(SFDR)。对于这个示例,可以使用以3.6GHz频率运行的σ-δADC。这种实施的关键因素之一是,抽取之后的最终采样速率是可变的。在汽车雷达领域,IF信号的带宽能够根据使用情况低至1MHz和高达26MHz。较小的带宽通常可适用于慢调频连续波(FMCW)系统和特定短程雷达应用,而较大的带宽可适用于产生快FMCW高性能长距离雷达系统。因此重采样器块的目的是从3.6GHzσ-δ固定速率ADC生成完全灵活的输出采样速率,并保持严格的SFDR规范。
如图7A所示的S-样条多项式重采样器将使用第6阶滤波器,这暗示脉冲响应的跨度是7个样本,其中每个输出计算执行6次乘法。另一方面,使用图7B中所公开的系统和方法包括升采样N=64,之后是384(64*6)抽头滤波器,这暗示每个子滤波器L=6个抽头,因此一旦子滤波器被生成,每个输出执行6次乘法。两种方案将对每个输出样本计算相同次数的乘法,但是本文所公开的系统和方法的示例性实施例(图7B)不使用下垂校正滤波器,因为384抽头滤波器经设计不在带内频谱中引入任何下垂。进一步,所公开的示例性实施例不使用出现在B-样条多项式重采样器中的Farrow结构中的Farrow滤波器组720。对于脉冲响应的相似跨度,多项式重采样器的频率响应固定,而升采样滤波器具有更大的灵活性并且可以经设计用于具体规范。
如图3中提供的Farrow结构可以用于多项式重采样器方法与本文所公开的示例性实施例进行功率比较。如图7A中提供的第6阶B-样条多项式重采样器可以与用于如图7B中所提供的所公开的系统和方法中的插值器的384抽头FIR滤波器(N=64多相,每个多相具有L=6个抽头)相比较。为了计算功率,实施的复杂性可以在用于计算每个输出样本的乘法和加法运算的数量方面比较。因为对于此处提到的两种方法,输出数据速率相同,这种复杂性分析与总的功耗直接相关。
图7A的方法通过使用第6阶多项式来使用6乘和6加运算以计算一个输出样本。图7B的方法使用1乘和2加运算,因为其为第一阶线性重采样器。7个子滤波器用于图7A的方法,其中每个子滤器长度为7,而图7B的方法使用2个多相滤波器输出725(选自64个多相)以利用线性插值器745计算一个输出样本。对于这两种方法,移位寄存器长度710和715近似相等。两者也都使用相同的μ累加器730和735。在多项式重采样器中,使用第6阶多项式插值器740,而图7B的升采样线性插值法使用第1阶线性插值器745。一般地,系数插值逻辑也可以使用线性插值以外的任何插值算法,例如零阶保持插值、二阶多项式插值等。
为了在固定系数FIR滤波器实施中获得较低的功耗,经典符号数(CSD)实施可以提供比使用通用乘法器更好的结果。在如图7B提供的插值滤波器的情况下,通过移位寄存器715将相同的输入样本连接到所有多相滤波器725导致计算所有的输出,尽管64个输出中只有2个被挑选用于最终输出计算。
所公开的系统和方法的示例性实施例解决过度输出计算问题,如图8、图9、图10所示。在图8中,基于乘法器的实施,在多路复用器865中,从64个多相855中挑选合适的系数集,并且通用的乘法-加法结构825计算每个输出。多路复用器865可以是,例如,在其他实施中,32×2多路复用器或64×1多路复用器。基于乘法器的实施使用较少的面积,因为单个乘法器/累加器能够在所有多相系数集上重复使用,但是其针对每个输出样本使用12次通用乘法。移位寄存器815存储6个输入x(n),...x(n-5)以用于计算当前输出。这6个输入被提供给多相滤波器825。μ累加器835(如图5的μ累加器530和图6的μ累加器610一样)输出整数移位和分数延迟μ。线性插值器845从两个多相滤波器p和p+1中得到两个输出并在两者之间线性插值以基于由μ累加器835提供的Δ计算最终输出。
在图9中,移位寄存器复制实施,使用数据缓冲器的64个副本,使得仅从输入复制二个多相缓冲器,并保持其他多相的输入静态。与其他选择相比,移位寄存器复制实施在FIR CSD计算逻辑块995中使用很少的切换(toggling),但是它在时钟树上呈现相当大的负荷。与基于乘法器的选择相比,它还使用更大的面积,因为CSD加法器不能在不同的多相上被共享。附加地,动态多路复用器997用于挑选期望的多相输出。移位寄存器915存储6个输入样本集以用于计算当前输出。移位寄存器975获取由915提供的6个输入并将它们载入64个移位寄存器集合中的2个中。这两个与第p个和第p+1个多相滤波器对应。移位寄存器985提供64个移位寄存器集合,其中每个集合能够存储6个样本。FIR CSD计算逻辑995针对所有64个多相实施64个多相滤波器。μ累加器935生成整数移位p和Δ。线性插值器945从多路复用器997获取两个多相滤波器输出并从μ累加器935获取Δ值,以及通过对两个多相滤波器输出线性插值计算最终输出。
在图10中,选择性门控实施,每个多相CSD加法器树的输入端处的门控逻辑1087使能合适的系数集并保持其他多相的输入为零。对于选择性门控实施,输出多路复用可以被简单的或门1077替代,因为未选择的多相输入/输出通过门控被明确地设为零。它还使用比基于乘法器的实施更低的切换。然而,选择性门控实施使用比基于乘法器的实施更大的面积,因为CSD加法器不能在不同的多相上被共享。如果p多相是偶数,那么p+1多相是奇数,反之亦然。求和逻辑(或)1075用于奇数个多相集合并且求和逻辑(或)1077用于偶数个多相集合。移位寄存器1015存储6个输入样本的集合以用于计算当前输出。FIR CSD计算逻辑1095针对所有64个多相实施64个多相滤波器。μ累加器1035生成整数移位p和Δ。线性插值器1045从求和逻辑(或)1075和求和逻辑(或)1077获取两个多相滤波器输出并从μ累加器1035获取Δ值以及通过对两个多相滤波器输出线性插值计算最终输出。第p个多相从偶数集合中获得并且第p+1个多相从奇数集合中获得。类似地,如果第p个多相从奇数集合获得,则第p+1个多相从偶数集合获得。
针对单个信道测试上述比较。在具有I和Q成分的接收器和多个并联链(MIMO)的情况下,所提出的方法的功耗可以通过使用“系数多路复用和插值”方法被进一步降低,这使得在不同链上能够共享设计的主要部分。这种共享对于多项式重采样器是不可能的,因为整个算法运算是基于数据的。
图11提供两个接收器链的一个示例性实施例,每接收器链都有I和Q成分(总计4个并联路径)、共享插值器1145。新的子滤波器计算可以通过在两个邻近的多相滤波器成分之间线性插值被实施。使用系数插值的新的子滤波器计算可以在所有4条链和插值器1145上被共享,插值器1145计算最终输出并且针对每个接收器链可以被保持分离。插值器一般使用通用乘法器,因为子滤波器是可变的并且取决于重采样系数μ的瞬时值。子滤波器1157的计算在所有4条链(也被称为输入序列或输入流)上被共享,具有大幅节省。该附图示出两个邻近的多相滤波器系数之间的线性插值。一般地,可以针对系数实现任何插值方案,例如零阶保持、二阶和三阶以及其他。移位寄存器1115针对四个输入流中的每个接收输入。64×1多路复用器1137挑选第p个多相滤波器HP(k)。64×1多路复用器1147在64个不同的多相滤波器上挑选HP+1(k)-HP(k)。线性插值器1157接收HP(k)、HP+1(k)-HP(k)和Δ并生成线性插值的子滤波器HP(k)+Δ*(HP+1(k)-HP(k))以由四个流使用。
在具有固定ADC速率Fabc但可变带宽的一个示例接收系统中,Bmin≤B≤Bmax,具有可变输出速率规范B*OSR。进一步,假定为了执行基带处理,接收链被2个滤波器抽取以降低采样率。在链中被2个滤波器抽取的数量由下式给出:
Figure BSA0000127948190000101
其中Bmin是系统的最小带宽。如果重采样器放置在2个滤波器进行的第n次抽取的输出处,具有重采样率r∈[1-2],那么r=1对应于带宽Bmin并且r=2对应于带宽Bmax
对于给定的阻带衰减A(dB),滤波器使用的抽头数由下式给出:
Figure BSA0000127948190000102
其中,Fs是滤波器的输入采样率,fΔ是转变带宽并且A是目标阻带衰减。因此,滤波器复杂性成本函数由下式给出:
Figure BSA0000127948190000103
其中FOP是滤波器的输出速率。如果重采样器放置得更靠近ADC,使用的抽头数变少,但是工作频率增大。最佳位置是它们的乘积被最小化的地方。重采样滤波器可以经放置用于获得最小转变带宽的最大通带边缘和最小阻带起点。因为重采样比率处于[1-2]的范围内,对于转变带宽fΔ1和fΔ2具有两个极端选择。
Figure BSA0000127948190000111
Figure BSA0000127948190000112
因为fΔ1<fΔ2,重采样滤波器成本函数由下式给出:
Figure BSA0000127948190000113
关于n最小化上述式子得到:
Figure BSA0000127948190000114
因此,最小化重采样器的最大成本的设置
Figure BSA0000127948190000115
由下式给出:
Figure BSA0000127948190000116
对于输出OSR=3/2,最佳设置由
Figure BSA0000127948190000117
给出。重采样器的输出端处的最佳过采样规范接近3。对于发送器链中的重采样器的设置,相同的分析保持适用,其中ADC由数模转换器(DAC)替代,2个滤波器的抽取由2个滤波器的升采样替代,并且信号流的方向被反向。一般,对于具有给定规范的任何其他系统,能够进行相似的分析。
图12提供本文所公开的可变分数速率数字重采样的方法的一个示例性实施例的流程图。在块1210中,以固定速率接收输入序列。在块1220中,输入序列被升采样到较高速率。在块1230中,升采样的序列被滤波。在块1240中,线性插值被应用到滤波后的序列以得到期望的输出速率。
图13提供如本文所公开的可变分数速率数字重采样的方法的一个示例性实施例的流程图。在块1310中,接收来自全部链的新的输入样本。在块1320中,更新μ累加器并且计算输出样本数。针对每个输出,计算多相指数p以及p和p+1之间的插值系数。在块1330中,插值多相滤波器p和p+1生成新的子滤波器。在块1340中,利用生成的子滤波器滤波输入数据以计算输出样本,并且针对每个链计算输出。可以针对每个输出样本重复该过程。
图14提供一种使用系数多路复用逻辑从N个多相中挑选多相滤波器p的方法。在一个示例实施中,使升采样因子N=64并且滤波器长度为128。每个多相将存在64个多相和2个系数。该系数可以被编索引为c(-64)到c(+63)。因为它是对称滤波器,
c(-64)=c(63),
c(-63)=c(62),
c(-1)=c(0)
现在多相可以被编索引为P(0)到P(63)。每个多相可以被定义为
P(0)={c(-64),c(0)},
P(1)={c(-63),c(1)},
P(63)={c(-1),c(63)}.
在一个典型实施中,如图14所提供的,将使用两个多路复用器1410和1420。多路复用器1410可以用于从c(-64)到c(-1)之间的系数中选择第一系数,以及多路复用器1420可以用于从c(0)到c(63)之间的系数中选择第二系数。
图15提供使用两个较小多路复用器1510和1520的、利用系数的对称性的一个示例性实施例。多路复用器1510从{c(0),c(1)...c(31)}接收输入,并且多路复用器1520从{c(32),c(33)...c(63)}接收输入。多路复用器1510生成临时系数1并且多路复用器1520生成临时系数2。临时系数被馈送到一对2×1多路复用器1530、1540。多路复用器1530从两个临时系数中选择第一系数,以及多路复用器1540从两个临时系数选择第二系数。
多相滤波器能够被改写为
P(0)={c(63),c(0)},
P(1)={c(62),c(1)},
P(31)={c(32),c(31)},
P(32)={c(31),c(32)},
P(0)={c(0),c(63)}.
对于前面32个多相,P(0)...P(31),第一系数来自多路复用器1540以及第二系数来自多路复用器1530。对于后面32个多相,P(32)...P(63),第一系数来自多路复用器1530以及第二系数来自多路复用器1540。这个实施使用两个32×1多路复用器而不是两个64×1多路复用器,其中每个32×1多路复用器的输出被适当地指向第一或第二系数。尽管这个示例性实施在每个多相指向两个系数,但是其能够被概括为每个多相指向任何数量的系数。
图12和图13的流程图示出可变分数速率数字重采样软件的可能的实施的体系结构、功能和操作。据此而言,每个块代表模块、段或代码部分,其包括实现规定逻辑功能的一个或更多可执行指令。还应该注意,在一些替代实施中,块中示出的功能可以不按图12和图13所示出的顺序发生。例如,图12中示出的两个连续块实际上可以基本同时地被执行,或者块有时可以以相反的顺序被执行,这取决于所涉及的功能。流程图中的任何程序说明或块应该被理解为表示模块、段或代码部分,其包括用于实现具体逻辑功能或过程中的步骤的一个或更多可执行指令,并且替代实施方式包括在示例性实施例的范围内,其中功能可以以所示或所讨论的顺序不同的顺序执行,包括基本同时或以相反顺序执行,这取决于所涉及的功能。此外,流程图中的程序说明或块应该被理解为表示由硬件结构(例如状态机)所做的决策。
示例性实施例(一个或更多)的逻辑能够在硬件、软件、固件或其组合中实施。在示例性实施例中,在软件或固件中实施所述逻辑,其中软件或固件被存储在存储器中并且其由合适的指令执行系统执行。如果在硬件中实施,如在一个替代实施例中,能够利用下列任何技术(本领域熟知的)或其组合实施所述逻辑:具有对数据信号实施逻辑功能的逻辑门的分立逻辑电路(一个或更多)、具有合适的组合逻辑门的专用集成电路(ASIC)、可编程门阵列(一个或更多)(PGA)、现场可编程门阵列(FPGA)等。此外,本公开的范围包括在嵌入在硬件或软件配置的介质中的逻辑中体现本文所公开的示例性实施例的功能。
软件实施例(其包括用于实现逻辑功能的可执行指令的有序列表)能够以任何计算机可读介质体现,以由指令执行系统、设备或装置(例如基于计算机的系统、包含处理器的系统)或能够从指令执行系统、设备或装置获取指令并执行指令的其他系统使用或与其结合。在本文的上下文中,“计算机可读介质”能够是能够包含、存储或传达程序以由指令执行系统、设备或装置使用或与其结合的任何装置。计算机可读介质能够是,例如但不限于,电子、磁、光学、电磁、红外或半导体系统、设备或装置。计算机可读介质的更具体例子(非穷尽性列表)可以包括下列项:便携式计算机软盘(磁盘)、随机存取存储器(RAM)(电子系统)、只读存储器(ROM)(电子系统)、可擦可编程只读存储器(EPROM或闪存)(电子系统)以及便携式光盘只读存储器(CDROM)(光学系统)。此外,本公开的范围包括在嵌入在硬件或软件配置的介质中的逻辑中体现本公开的示例性实施例的功能。
尽管已经详细地描述了本公开,应该理解,在不偏离由所附权利要求限定的本发明的精神和范围的情况下,能够对本公开进行各种改变、替换和修改。

Claims (14)

1.一种用于数字重采样的方法,包括:
提供多个多相滤波器;
以固定输入速率接收输入序列;
以所述固定输入速率的整数倍对所述输入序列升采样;
将线性插值应用到所述多相滤波器中的两个邻近的多相滤波器以生成新的子滤波器;以及
使用所述新的子滤波器对升采样后的序列滤波以期望的输出速率生成输出样本。
2.根据权利要求1所述的方法,其中应用线性插值包括将线性插值应用到所述两个邻近的多相滤波器的系数以生成所述新的子滤波器。
3.根据权利要求1所述的方法,其中所生成的新的子滤波器在应用到不同输入序列的多个有限脉冲响应滤波器之间被共享。
4.根据权利要求1所述的方法,进一步包括从对称的有限响应脉冲滤波器的负系数中挑选第一多相滤波器系数以及从正系数中挑选第二多相滤波器系数;并且其中将线性插值应用到所述两个邻近的多相滤波器的所述系数包括将线性插值应用到所述第一多相滤波器系数和所述第二多相滤波器系数以生成所述新的子滤波器。
5.根据权利要求2所述的方法,进一步包括:
将滤波器系数分离成第一半和第二半;
从所述系数的所述第一半中挑选第一临时系数以及从所述系数的所述第二半中挑选第二临时系数;以及
将所述第一临时系数选为第一输出系数以及将所述第二临时系数选为第二输出系数,或者将所述第一临时系数选为第二输出系数以及将所述第二临时系数选为第一输出系数;以及
其中将线性插值应用到所述两个邻近的多相滤波器的系数包括将线性插值应用到所述第一输出系数和所述第二输出系数以生成所述新的子滤波器。
6.一种用于数字重采样的系统,包括:
升采样器,其被配置为接收第一频率的输入序列并输出第二较高频率的序列;
滤波器,其被配置为对所述第二较高频率的序列进行滤波,所述滤波器包括多个多相滤波器元件,通过将输入载入挑选的多相滤波器中能够动态挑选所述多个多相滤波器元件;和
线性插值器,其被配置为对第一挑选的多相滤波器元件和第二挑选的多相滤波器元件的输出插值从而以期望速率生成输出样本。
7.根据权利要求6所述的系统,其中所述多个多相滤波器元件包括多个有限脉冲响应滤波器即FIR滤波器。
8.根据权利要求7所述的系统,其中所述多个多项滤波器元件中的每一个可操作以生成滤波器输出,所述系统进一步包括:
逻辑,其可操作用于将不用于给定样本的所述多个多相滤波器元件的多相滤波器元件的输入动态地调零;
第一或门,其被配置为将所述多个多相滤波器元件的第一子集的输出进行或运算以生成第一滤波器输出;以及
第二或门,其被配置为将所述多个多相滤波器元件的第二子集的输出进行或运算以生成第二滤波器输出;并且
其中所述线性插值器可操作用于在所述第一滤波器输出和所述第二滤波器输出之间线性插值。
9.根据权利要求6所述的系统,其中所述线性插值器被配置为将插值应用到两个邻近的多相滤波器。
10.一种包括软件的计算机可读介质,所述软件包括指令,所述指令用于:
以固定输入速率接收输入序列;
以第二较高速率对所述输入序列升采样,所述较高速率是所述固定输入速率的整数倍;
通过将输入载入多个多相滤波器元件中的两个挑选的多相滤波器元件,来针对给定的输出样本动态地激活所述两个挑选的多相滤波器元件,从而使能所述两个挑选的多相滤波器元件的输出;
使用所述两个挑选的多相滤波器元件对升采样后的序列滤波;以及
对所述两个挑选的多相滤波器元件的输出插值从而以期望的输出速率生成输出样本。
11.根据权利要求10所述的计算机可读介质,其中用于滤波的指令包括用于利用平坦阻带进行滤波的指令。
12.根据权利要求10所述的计算机可读介质,其中用于动态激活所述多个多相滤波器的两个挑选的多相滤波器的指令包括用于动态激活多个有限脉冲响应滤波器即FIR滤波器的两个挑选的FIR滤波器的指令。
13.根据权利要求10所述的计算机可读介质,进一步包括用于以下操作的指令:
将不用于给定输出样本的所述多个多相滤波器元件中的多相滤波器元件的输入动态地调零;
将所述多个多相滤波器元件的第一子集的输出进行或运算以生成第一滤波器输出;
将所述多个多相滤波器元件的第二子集的输出进行或运算以生成第二滤波器输出;以及
其中用于线性插值的指令包括用于在所述第一滤波器输出和所述第二滤波器输出之间线性插值的指令。
14.根据权利要求10所述的计算机可读介质,其中用于插值的指令包括用于对两个邻近的多相滤波器元件的输出插值的指令。
CN201610164945.6A 2015-03-20 2016-03-21 可变分数速率数字重采样的系统和方法 Active CN105991137B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/664,078 2015-03-20
US14/664,078 US9531343B2 (en) 2015-03-20 2015-03-20 Systems and methods of variable fractional rate digital resampling

Publications (2)

Publication Number Publication Date
CN105991137A CN105991137A (zh) 2016-10-05
CN105991137B true CN105991137B (zh) 2021-09-24

Family

ID=56924158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610164945.6A Active CN105991137B (zh) 2015-03-20 2016-03-21 可变分数速率数字重采样的系统和方法

Country Status (2)

Country Link
US (1) US9531343B2 (zh)
CN (1) CN105991137B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014153607A1 (en) * 2013-03-26 2014-10-02 Barratt Lachlan Paul Audio filtering with adjusted averaging curves
US9966977B1 (en) * 2016-10-25 2018-05-08 Samsung Electronics Co., Ltd Efficient polyphase architecture for interpolator and decimator
CN106897020A (zh) * 2017-01-13 2017-06-27 深圳市鼎阳科技有限公司 一种数字信号固定插值倍数的线性插值方法和装置
US11047970B2 (en) 2017-05-05 2021-06-29 Texas Instruments Incorporated Multi-mode radar systems, signal processing methods and configuration methods using pushing windows
GB2562253B (en) * 2017-05-09 2021-11-03 Imagination Tech Ltd Efficient detection of ranging code correlation function of a GNSS signal
CN108648148A (zh) * 2018-05-10 2018-10-12 东南大学 一种基于数字升采样再三次样条的数字图像任意点插值方法
CN108777569A (zh) * 2018-05-23 2018-11-09 成都玖锦科技有限公司 基于多相滤波器的任意延时方法
CN108768343A (zh) * 2018-05-23 2018-11-06 成都玖锦科技有限公司 基于多相滤波器的高精度延时方法
EP3844873A4 (en) * 2018-08-31 2022-10-05 CommScope Technologies LLC EFFICIENT IMPLEMENTATION OF A FIXED-RATE FARROW-BASED RESAMPLE FILTER
CN109471073B (zh) * 2018-10-31 2020-08-28 中国科学院电子学研究所 基于增广拉格朗日粒子群算法的nlfm信号生成方法及装置
CN110635780A (zh) * 2019-08-30 2019-12-31 北京电子工程总体研究所 一种基于fpga的变速率基带脉冲成形滤波器实现方法及滤波器
US20210133124A1 (en) * 2019-11-06 2021-05-06 Stmicroelectronics International N.V. High throughput digital filter architecture for processing unary coded data
US11121680B1 (en) * 2020-03-30 2021-09-14 Mitsubishi Electric Research Laboratories, Inc. All-digital transmitter with wideband beamformer
CN117459064B (zh) * 2023-12-25 2024-03-26 武汉市品持科技有限公司 多路adc采样方法、装置及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378530A (zh) * 2013-08-16 2015-02-25 英特尔公司 用于图像升频的像素自适应内插算法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907295A (en) * 1997-08-04 1999-05-25 Neomagic Corp. Audio sample-rate conversion using a linear-interpolation stage with a multi-tap low-pass filter requiring reduced coefficient storage
US6714144B1 (en) * 2000-10-23 2004-03-30 Cirrus Logic, Inc. Data randomization in a data storage system
US6757117B1 (en) * 2001-08-24 2004-06-29 Cirrus Logic, Inc. Data detection in a disk drive system using erasure pointers
US6987953B2 (en) * 2003-03-31 2006-01-17 Nortel Networks Limited Digital transmitter and method
US7136430B2 (en) * 2003-03-31 2006-11-14 Nortel Networks Limited Digital receiver and method
JP2005217837A (ja) * 2004-01-30 2005-08-11 Sony Corp サンプリングレート変換装置およびその方法、並びに、オーディオ装置
CN1862960B (zh) * 2005-12-31 2011-07-20 华为技术有限公司 一种分数倍插值多相滤波器和滤波方法
GB2452309A (en) * 2007-08-31 2009-03-04 Agilent Technologies Inc Circuit for sample rate conversion
US8369973B2 (en) * 2008-06-19 2013-02-05 Texas Instruments Incorporated Efficient asynchronous sample rate conversion
CN101540749B (zh) * 2009-04-22 2012-09-26 吕正德 可配置变换长度dft的前处理单元的实现方法及装置
US8619840B2 (en) * 2010-02-26 2013-12-31 Qualcomm Incorporated Apparatus and methods for sampling rate conversion for wireless transceivers
CN102064797B (zh) * 2010-11-12 2013-06-05 清华大学 分数倍采样率变换的并行实现方法及其装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378530A (zh) * 2013-08-16 2015-02-25 英特尔公司 用于图像升频的像素自适应内插算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tunable multi-wavelength microwave photonic filter based on the superposition of transfer functions;俞杨等;《Chinese Optics Letters》;20131210(第12期);644-647 *
全数字可配置信道分路技术的设计方法;岳田等;《无线电工程》;20131205(第12期);123-127 *

Also Published As

Publication number Publication date
CN105991137A (zh) 2016-10-05
US20160277007A1 (en) 2016-09-22
US9531343B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
CN105991137B (zh) 可变分数速率数字重采样的系统和方法
US10555256B2 (en) Re-sampling with reduced power consumption and complexity
USRE43489E1 (en) Systems and methods for implementing a sample rate converter using hardware and software to maximize speed and flexibility
EP0695032B1 (en) Digital-to-digital sample rate converter
EP1729420A1 (en) Analog-to-digital converter device of improved time interleaving type, and high-speed signal processing system using the device
WO2001073947A1 (en) Sample rate conversion method and apparatus
KR20160088924A (ko) 상쇄 펄스 파고율 저감
WO2010124523A1 (en) Methods or structures for reconstruction of substantially uniform samples from substantially nonuniform samples
US9923737B2 (en) Analog-digital compatible re-sampling
US8300730B2 (en) Multiplier-less data processing techniques and related implementations adapted for use in polar modulator
US8249208B2 (en) Method and device for downconverting the sampling frequency of a digital signal, for example in a non-integer frequency ratio
US10224062B1 (en) Sample rate conversion with pitch-based interpolation filters
Harris et al. Cascade linear phase recursive half-band filters implement the most efficient digital down converter
CN112671418A (zh) 一种基于带通采样结构解调器的调解方法及装置
Alonso et al. Parallel implementation of a sample rate conversion and pulse-shaping filter for high speed backhauling networks
US11949395B1 (en) Polyphase filter control scheme for fractional resampler systems
CN110190829B (zh) 一种滤波器及滤波方法
Blok Fractional delay filter design with extracted window offsetting
JP4276258B2 (ja) 速度とフレキシビリティを最大にするためにハードウエアとソフトウエアを用いてサンプルレートコンバータを実装するシステム及び方法
Babic et al. Decimation by non-integer factor in multistandard radio receivers
EP2528231B1 (en) Signal generation device and signal generation method
JP2002330029A (ja) 周波数変換器
KR100895176B1 (ko) 주파수 변환기
Kouada Multirate digital signal processing for time interleaved analog to digital converters
Sahukar et al. Area Efficient Fractional Sample Rate Conversion Architecture For Software Defined Radios

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant