CN105973827A - 制备模拟抗体的分子印迹新方法及其细菌检测上的应用 - Google Patents

制备模拟抗体的分子印迹新方法及其细菌检测上的应用 Download PDF

Info

Publication number
CN105973827A
CN105973827A CN201610324750.3A CN201610324750A CN105973827A CN 105973827 A CN105973827 A CN 105973827A CN 201610324750 A CN201610324750 A CN 201610324750A CN 105973827 A CN105973827 A CN 105973827A
Authority
CN
China
Prior art keywords
film
molecular engram
molecular imprinting
solution
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610324750.3A
Other languages
English (en)
Other versions
CN105973827B (zh
Inventor
孙康
周建华
冯罕博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201610324750.3A priority Critical patent/CN105973827B/zh
Publication of CN105973827A publication Critical patent/CN105973827A/zh
Application granted granted Critical
Publication of CN105973827B publication Critical patent/CN105973827B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/12Agar or agar-agar, i.e. mixture of agarose and agaropectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明所述的制备模拟抗体的分子印迹新方法及其细菌检测上的应用,是采用至少两种不同特性且具有不同功能基团的聚合物按比例共混制备分子印迹膜。本发明独特地将无交联的共混聚合物用于模拟抗体的分子印迹技术,通过聚合物不同功能基团与细菌表面之间模拟抗原‑抗体相互作用,增加印迹膜与细菌间的相互作用位点,从而提高印迹膜的特异性识别能力。本发明所述方法可以解决表面分子印迹技术特异性识别能力差、灵敏度低的问题,可提供一种特异性识别能力强、高灵敏度、成本低、简单易行的细菌检测方法。

Description

制备模拟抗体的分子印迹新方法及其细菌检测上的应用
技术领域
本发明涉及一种基于界面诱导组装法制备高仿真模拟抗体的分子印迹新方法及其细菌检测上的应用。
背景技术
分子印迹技术(Molecular Imprinting Technique, MIT)是人工合成与模板分子耦合的聚合物的一种新型实验制备技术,其基本思想源于人们对抗原-抗体以及酶-底物的专一性选择的认识,当模板分子与聚合物单体接触时形成多重作用点,通过聚合过程这种作用会被记忆下来,当把模板分子去除后,聚合物中就形成了与模板分子空间构型相匹配的具有多重作用点的空穴,这样的空穴将对模板分子及其类似物具有选择识别特性。通过MIT制备出的在空间结构和结合位点上与模板分子完全匹配的聚合物也被称为分子印迹聚合物(MIP)。MIT技术自德国Heinrich Heine大学Wuff和Sarhan首次报道人工合成分子印迹聚合物至今,已有将近40年的发展历史。从其发展过程来看,MIT在有机小分子领域的研究已相对成熟,已广泛应用于色谱分离、固相萃取、临床药物分析、化学仿生传感器等;在生物大分子领域的应用相对较少,大部分的研究机构都将重点都投入到生物大分子领域,该技术目前正在从有机小分子向生物大分子发展。而分子印迹聚合物的物理形式则正从三维块状分子印迹聚合物向二维薄膜分子印迹聚合物发展。虽然3D包埋法制备的印迹聚合物具有很好的识别选择性,但是模板分子分布于整个聚合物中,使得部分识别位点被包埋,造成空间位阻,导致聚合物吸附容量受到影响。2D表面印迹法则克服了3D包埋法的空间位阻问题,表面印迹法在薄膜表面形成印迹聚合物,识别位点暴露在载体的表面,使得模板分子能够自由进入或离开聚合物的识别位点。现有的技术多通过聚合物共混交联制备印迹膜,其高交联度易使MIP外部形态松散易碎,模板分子传质过程缓慢,吸附和脱附困难,无法有效的解决MIP特异性吸附效率的问题。同时,现有的表面印迹法的研究大都维持在空间结构相似的作用上,相互作用位点少且单一,导致其特异性识别能力差,影响了表面印迹法在检测领域的推广及应用。
发明内容
本发明的目的在于针对现有的表面分子印迹技术特异性识别能力差、灵敏度低的问题,提供一种制备具有特异性识别能力强、高灵敏度、成本低、简单易行的模拟抗体的分子印迹新方法,且在细菌检测上的应用效果优越。
本发明的技术方案是这样实现的:
本发明所述的制备模拟抗体的分子印迹新方法,其特点是:先将至少两种不同特性且具有不同功能基团的聚合物按一定比例共混成溶液,再将灭活的细菌溶液与该共混溶液混合,然后利用旋转涂膜法将混合溶液旋涂于多孔金膜上,并在常温下缓慢干燥成复合有细菌的共混膜,而在成膜的过程中,聚合物与细菌表面会发生诱导组装,不同功能基团与细菌表面之间形成模拟抗原-抗体的相互识别的位点,随后将复合有细菌的共混膜洗脱细菌模板,再在常温下缓慢干燥成分子印迹膜。
其中,所述不同功能基团为正负电荷和亲疏水基团。
所述共混为非交联共混。
所述共混膜的厚度小于细菌的直径。
本发明所述的模拟抗体的分子印迹在细菌检测上的应用,其特点是:将制备的分子印迹膜置于灭活的细菌样品溶液中吸附细菌,利用紫外分光光度计检测分子印迹膜吸附细菌前后吸收光谱峰值的移动变化,进而用于检测分子印迹膜对细菌特异性吸附能力。
本发明与现有技术相比,具有如下优点:
1.本发明利用多种的聚合物共混,通过分子间相互作用提高共混膜的力学性能,同时聚合物不交联,使得模板分子的传递过程更为顺畅,能很好的应用于印迹膜材料;
2. 由于不同特性的聚合物具有不同的功能基团(如正负电荷基团、亲疏水基团等),在与细菌的充分接触过程中,聚合物与细菌表面会发生诱导组装,聚合物的不同功能基团与细菌表面形成模拟抗原-抗体的相互识别位点,从而极大地增加了印迹膜与细菌间的相互作用位点,使得印迹膜的特异性识别能力大大提高;
因此,本发明采用的基于界面诱导组装法制备高仿真模拟抗体的分子印迹及其检测灭活细菌的应用具有广泛的推广应用价值。
下面结合附图对本发明作进一步的说明。
附图说明
图1为界面诱导组装原理图。
图2为高仿真模拟抗体分子印迹技术检测灭活细菌的过程图。
具体实施方式
本发明所述的制备模拟抗体的分子印迹新方法,先将至少两种不同特性且具有不同功能基团的聚合物按一定比例共混成溶液,再将灭活的细菌溶液与该共混溶液混合,然后利用旋转涂膜法将混合溶液旋涂于多孔金膜上,且旋涂于多孔金膜上的混合溶液是在常温下缓慢干燥成复合有细菌的共混膜,而在成膜的过程中,聚合物与细菌表面会发生诱导组装(如图1所示),不同功能基团与细菌表面之间形成模拟抗原-抗体的相互识别的位点,随后将复合有细菌的共混膜洗脱细菌模板,再在常温下缓慢干燥成分子印迹膜。其中,所述不同功能基团为正负电荷和亲疏水基团。所述共混为非交联共混。所述共混膜的厚度小于细菌的直径。
如图2所示,本发明所述的模拟抗体的分子印迹在细菌检测上的应用,是将制备的分子印迹膜置于灭活的细菌样品溶液中吸附细菌,利用紫外分光光度计检测分子印迹膜吸附细菌前后吸收光谱峰值的移动变化,进而用于检测分子印迹膜对细菌特异性吸附能力。
下面结合具体实施例对本发明作进一步的说明。
实施例1:
将聚乙烯醇(PVA)放置于水中,升温至80℃,恒温搅拌至其完全溶解;将明胶放置于水中,升温至40℃,恒温搅拌至其完全溶解;然后将制成的PVA溶液与明胶溶液按质量比为9:1的比例混合,随后再将灭活大肠杆菌溶液与PVA/明胶的共混溶液混合,利用旋转涂膜法将混合溶液旋涂在多孔金膜上,涂覆厚度为1μm,在常温下缓慢干燥成膜。将旋涂制备出的复合有大肠杆菌的明胶/聚乙烯醇膜(MIP膜),先在4℃环境下用溶菌酶(10mg/ml)预处理MIP膜2小时,将大肠杆菌细胞壁水解破坏,再用10%的Triton X处理MIP膜 80分钟,以除去对细胞壁和聚合物表面多糖之间的强相互作用,随后是用大量蒸馏水洗净MIP膜,最后将MIP膜在常温下干燥成膜。将旋涂在多孔金膜表面的MIP膜置于灭活大肠杆菌溶液中,25℃恒温振荡吸附细菌24h。利用紫外分光光度计检测该MIP膜吸附细菌前后的吸收光谱峰值的移动变化,对比现有的表面印迹膜吸附细菌前后的吸收光谱峰值的移动变化。
实施例2:
将琼脂糖放置于水中,升温至90℃以上,恒温搅拌至其完全溶解;将壳聚糖放置于水中,调节水中PH值至弱酸,恒温搅拌至其完全溶解;然后将制成的琼脂糖溶液与壳聚糖溶液按质量比为1:1的比例混合,随后再将灭活大肠杆菌溶液与琼脂糖/壳聚糖的共混溶液混合,利用旋转涂膜法将混合溶液旋涂在多孔金膜上,涂覆厚度为1μm,在常温下缓慢干燥成膜。将旋涂制备出的复合有大肠杆菌的琼脂糖/壳聚糖膜(MIP膜),先在4℃环境下用溶菌酶(10mg/ml)预处理MIP膜2小时,将大肠杆菌细胞壁水解破坏,再用10%的Triton X处理MIP膜 80分钟,以除去对细胞壁和聚合物表面多糖之间的强相互作用,随后是用大量蒸馏水洗净MIP膜,最后将MIP膜在常温下干燥成膜。将旋涂在多孔金膜表面的MIP膜置于灭活大肠杆菌溶液中,25℃恒温振荡吸附细菌24h。利用紫外分光光度计检测该MIP膜吸附细菌前后的吸收光谱峰值的移动变化,对比现有的表面印迹膜吸附细菌前后的吸收光谱峰值的移动变化。
综上,本研究是发明了一种避免共混高交联的影响,同时增加作用位点,高度仿真模拟抗原-抗体相互作用结合位点的细菌检测方法,提高了分子印迹技术的特异性识别能力和灵敏度,同时成本低且简单易行。
本发明是通过实施例来描述的,但并不对本发明构成限制,参照本发明的描述,所公开的实施例的其他变化,如对于本领域的专业人士是容易想到的,这样的变化应该属于本发明权利要求限定的范围之内。

Claims (5)

1.一种制备模拟抗体的分子印迹新方法,其特征在于:先将至少两种不同特性且具有不同功能基团的聚合物按一定比例共混成溶液,再将灭活的细菌溶液与该共混溶液混合,然后利用旋转涂膜法将混合溶液旋涂于多孔金膜上,并在常温下缓慢干燥成复合有细菌的共混膜,而在成膜的过程中,聚合物与细菌表面会发生诱导组装,不同功能基团与细菌表面之间形成模拟抗原-抗体的相互识别的位点,随后将复合有细菌的共混膜洗脱细菌模板,再在常温下缓慢干燥成分子印迹膜。
2.根据权利要求1所述的制备模拟抗体的分子印迹新方法,其特征在于:所述不同功能基团为正负电荷和亲疏水基团。
3.根据权利要求1所述的制备模拟抗体的分子印迹新方法,其特征在于:所述共混为非交联共混。
4.根据权利要求1所述的制备模拟抗体的分子印迹新方法,其特征在于:所述共混膜的厚度小于细菌的直径。
5.一种如上述任一权利要求所述分子印迹在细菌检测上的应用,其特征在于:将制备的分子印迹膜置于灭活的细菌样品溶液中吸附细菌,利用紫外分光光度计检测分子印迹膜吸附细菌前后吸收光谱峰值的移动变化,进而用于检测分子印迹膜对细菌特异性吸附能力。
CN201610324750.3A 2016-05-17 2016-05-17 制备模拟抗体的分子印迹方法及其细菌检测上的应用 Expired - Fee Related CN105973827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610324750.3A CN105973827B (zh) 2016-05-17 2016-05-17 制备模拟抗体的分子印迹方法及其细菌检测上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610324750.3A CN105973827B (zh) 2016-05-17 2016-05-17 制备模拟抗体的分子印迹方法及其细菌检测上的应用

Publications (2)

Publication Number Publication Date
CN105973827A true CN105973827A (zh) 2016-09-28
CN105973827B CN105973827B (zh) 2018-12-28

Family

ID=56955889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610324750.3A Expired - Fee Related CN105973827B (zh) 2016-05-17 2016-05-17 制备模拟抗体的分子印迹方法及其细菌检测上的应用

Country Status (1)

Country Link
CN (1) CN105973827B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674423A (zh) * 2016-12-07 2017-05-17 浙江大学 一种用于细菌筛分的细菌印迹聚合物薄膜的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775103A (zh) * 2009-12-29 2010-07-14 湖北工业大学 一种蛋白质分子印迹薄膜的制备方法
CN102105493A (zh) * 2008-06-27 2011-06-22 哥伦比亚生物系统公司 用于检测微生物的分子印迹聚合物
CN102514261A (zh) * 2011-12-20 2012-06-27 中国科学院海洋研究所 一种微生物生物印迹薄膜及其制备方法
EP2507278A1 (en) * 2009-12-01 2012-10-10 Cranfield University Preparation of molecularly imprinted polymers
CN104945623A (zh) * 2015-07-03 2015-09-30 华中科技大学 一种抗病毒分子印迹聚合物的制备方法
CN105327684A (zh) * 2015-12-03 2016-02-17 湖北出入境检验检疫局检验检疫技术中心 识别莫西菌素的磁性荧光分子印迹材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105493A (zh) * 2008-06-27 2011-06-22 哥伦比亚生物系统公司 用于检测微生物的分子印迹聚合物
EP2507278A1 (en) * 2009-12-01 2012-10-10 Cranfield University Preparation of molecularly imprinted polymers
CN101775103A (zh) * 2009-12-29 2010-07-14 湖北工业大学 一种蛋白质分子印迹薄膜的制备方法
CN102514261A (zh) * 2011-12-20 2012-06-27 中国科学院海洋研究所 一种微生物生物印迹薄膜及其制备方法
CN104945623A (zh) * 2015-07-03 2015-09-30 华中科技大学 一种抗病毒分子印迹聚合物的制备方法
CN105327684A (zh) * 2015-12-03 2016-02-17 湖北出入境检验检疫局检验检疫技术中心 识别莫西菌素的磁性荧光分子印迹材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674423A (zh) * 2016-12-07 2017-05-17 浙江大学 一种用于细菌筛分的细菌印迹聚合物薄膜的制作方法

Also Published As

Publication number Publication date
CN105973827B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
Miyata Preparation of smart soft materials using molecular complexes
Armstrong et al. Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches
Roy et al. Molecularly imprinted polyaniline film for ascorbic acid detection
Qin et al. Macroporous thermosensitive imprinted hydrogel for recognition of protein by metal coordinate interaction
Veeramuthu et al. Conjugated copolymers through electrospinning synthetic strategies and their versatile applications in sensing environmental toxicants, pH, temperature, and humidity
Miyata et al. Responsive behavior of tumor‐marker‐imprinted hydrogels using macromolecular cross‐linkers
Munir et al. Bienzyme liquid-crystal-based cholesterol biosensor
Liu et al. Switchable boronate affinity materials for thermally modulated capture, separation and enrichment of cis-diol biomolecules
CN103926288B (zh) 一种高灵敏度的纳米氧化钴掺杂的异戊巴比妥分子印迹电化学传感器及其制备方法
CN103926289A (zh) 一种高灵敏度的纳米氧化钴掺杂的小诺米星分子印迹电化学传感器及其制备方法
Zhang et al. Thermosensitive molecularly imprinted hydrogel cross‐linked with N‐malely chitosan for the recognition and separation of BSA
Wang et al. Preparation of an internal surface reversed-phase restricted-access material for the analysis of hydrophobic molecules in biological matrices
CN107271410B (zh) 细菌或真菌的活性快速检测方法
CN105973827A (zh) 制备模拟抗体的分子印迹新方法及其细菌检测上的应用
Wang et al. Facile synthesis and application of teicoplanin‐modified magnetic microparticles for enantioseparation
Liu et al. Separation of peptides with an aqueous mobile phase by temperature‐responsive chromatographic column
CN100586970C (zh) 带双重识别基团聚合物链的蛋白质印迹树脂制备方法及应用
Hernández-Vargas et al. “Smart” polymers: physicochemical characteristics and applications in bio-separation strategies
Buszewski et al. Determination of pathogenic bacteria by CZE with surface‐modified capillaries
Zhao et al. Molecular imprinted polymer based thermo-sensitive electrochemical sensor for theophylline recognition
CN101539555B (zh) 蛇毒指纹图谱的建立方法及其指纹图谱
Yan et al. Interpolymer complex polyampholytic hydrogel of chitosan and carboxymethyl cellulose (CMC): synthesis and ion effect
Liu et al. Evaluation of temperature-responsive open tubular capillary electrochromatographic column modified with poly (N-isopropylacrylamide)
CN103111260A (zh) 哑铃状分子印迹搅拌棒的制备方法
CN105694071A (zh) 分子印迹及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181228

Termination date: 20190517

CF01 Termination of patent right due to non-payment of annual fee