CN105969351B - 一种花状纳米颗粒 - Google Patents

一种花状纳米颗粒 Download PDF

Info

Publication number
CN105969351B
CN105969351B CN201610384058.XA CN201610384058A CN105969351B CN 105969351 B CN105969351 B CN 105969351B CN 201610384058 A CN201610384058 A CN 201610384058A CN 105969351 B CN105969351 B CN 105969351B
Authority
CN
China
Prior art keywords
solution
flower
complex
later
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610384058.XA
Other languages
English (en)
Other versions
CN105969351A (zh
Inventor
彭玲玲
韩涛
刘碧桃
赵聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN201610384058.XA priority Critical patent/CN105969351B/zh
Publication of CN105969351A publication Critical patent/CN105969351A/zh
Application granted granted Critical
Publication of CN105969351B publication Critical patent/CN105969351B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明花状Gd2O3:Dy3+纳米颗粒,它按如下步骤:(1)将Gd2O3和Dy2O3加入到HNO3溶液中,加热至溶液澄清;(2)取尿素或柠檬酸作为配体,聚乙二醇、烷基苯磺酸钠、十二烷基磺酸钠或十六烷基三甲基溴化铵作为分散剂,加水配成溶液;(3)将步骤(1)和(2)配得的溶液搅拌混合形成混合液,再将混合液加热至50~80℃逐渐蒸发形成透明溶液,并保温至少2 h,之后继续升温至100~120℃蒸发得到固化凝胶,再将固化凝胶加热使其发生自燃,得到金属离子与配体形成的配合物;(4)将燃烧所得的配合物研磨,之后升温到至少600℃、保温至少2h,最后冷却。本发明方法简单易行。

Description

一种花状纳米颗粒
本发明是申请号为201510204649.X、申请日2015年04月27日、发明名称为“一种Gd2O3:Dy3+纳米颗粒的合成方法”的分案申请。
技术领域
本发明涉及一种花状无机纳米颗粒的制备方法,属于无机纳米材料生产技术领域。
背景技术
Gd2O3是一种重要且容易获取的稀土氧化物,具有优异的物理化学稳定性,且容易掺入稀土离子,而且Gd2O3发光材料的无辐射跃迁几率低、发光效率高,同时可以向发光中心传递能量。因此,Gd2O3被作为基质广泛应用于稀土发光材料。然而到目前为止,关于Dy3+掺杂Gd2O3以制得花状Gd2O3:Dy3+纳米颗粒的制备方法和性能的研究尚未见报道。
发明内容
本发明的目的在于提供一种花状Gd2O3:Dy3+纳米颗粒的制备方法。
本发明的目的是通过如下技术方案实现的:
一种花状Gd2O3:Dy3+纳米颗粒的制备方法,其特征在于,它依次包括以下步骤:
(1)将Gd2O3和Dy2O3加入到HNO3溶液中,加热至溶液澄清;
(2)取尿素或柠檬酸作为配体,聚乙二醇(PEG)、烷基苯磺酸钠(ABS)、十二烷基磺酸钠(SDS)或十六烷基三甲基溴化铵(CTAB)作为分散剂,加水配成溶液;
(3)将步骤(1)和(2)配得的溶液搅拌混合形成混合液,再将混合液加热至50~80℃逐渐蒸发形成透明溶液,并保温至少2h,之后继续升温至100~120℃蒸发得到固化凝胶,再将固化凝胶加热使其发生自燃,固化凝胶逐渐发胀变为蓬松的泡沫状前驱物,该前驱物为金属离子与配体形成的配合物;
(4)将燃烧所得的配合物研磨,之后升温到至少600℃、保温至少2h,使金属离子与配体形成的配合物分解形成多孔隙的氧化物颗粒聚集体,最后再冷却即可。通过二次加热燃烧,使得金属离子与配体形成的配合物完全分解成为花状的Gd2O3:Dy3+纳米颗粒。
作为再进一步优选,上述各物质的用量分别按照以下比例设置Gd3+∶配体∶分散剂=1∶1~3∶1~3,其比例关系为摩尔比;Dy3+的用量小于等于Gd3+用量的1%,其中百分比为摩尔百分比。
本发明具有以下有益效果:
本发明花状纳米颗粒制备方法通过燃烧法这一简单易行的有效手段合成了具有特殊形貌一花状的Gd2O3:Dy3+纳米颗粒,该花状Gd2O3:Dy3+纳米颗粒发光性能好,可作为黄色荧光粉来生产发光材料,可用作医疗器械中的增感荧光材料、光学棱镜添加剂,且将其加入到玻璃原料中有助于形成均质玻璃,提高其化学稳定性和抗压性能;其花状的外貌,比表面积大,可作为吸附剂,用以吸附煤烟或灰尘等污染物,适用于空气净化、灭火等应用情形。此外,它也可用于掺杂纳米结构氧化钛作催化剂,用以高效降解甲基橙及生活污水中的超氧化物歧化酶,还可用作钇铝和钇铁石榴石掺入剂提高反应活性。它可广泛适用于催化剂,陶瓷玻璃工业,固体氧化物燃料电池,发光材料,抛光材料以及核材料等应用领域。
附图说明
图1为本发明实施例1中所制得的花状Gd2O3:Dy3+纳米颗粒在扫描电镜下的形貌照片。
图2为本发明实施例1中所制得的花状Gd2O3:Dy3+纳米颗粒的发射光谱。
图3为本发明实施例1中所制得的花状Gd2O3:Dy3+纳米颗粒的XRD谱图。
图4为本发明实施例2中所制得的花状Gd2O3:Dy3+纳米颗粒在扫描电镜下的形貌照片。
具体实施方式
下面通过实施例对本发明进行具体描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步的说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述发明内容对本发明作出一些非本质的改进和调整。
实施例1
一种花状Gd2O3:Dy3+纳米颗粒的制备方法,它具体是按照以下步骤进行的:
(1)将准确称取的Gd2O3和Dy2O3加入到浓HNO3中,之后再加热至溶液澄清,然后加入适量去离子水,配得含Gd(NO3)3和Dy(NO3)3的透明溶液;其中,Dy3+的用量为Gd3+用量的0.5%,该百分比为摩尔百分比;
(2)量取尿素和PEG,在搅拌下加入去离子水配成溶液;其中,尿素和PEG的用量按照以下比例设置Gd3+∶尿素∶PEG=1∶1∶1,其比例关系为摩尔比;
(3)将步骤(1)和(2)配得的溶液在搅拌下混合形成混合液,再将其逐渐加热至50~80℃蒸发形成透明溶液并保温2h,之后继续升温至100~120℃蒸发得到固化凝胶,再将固化凝胶移入坩埚中升温至300℃使其迅速发生自燃成为蓬松的泡沫状前驱物,该前驱物即为金属离子与尿素的配合物;
(4)将燃烧所得的配合物研磨,之后放入马弗炉中快速升温至600℃保温2h,分解燃烧中金属离子与尿素的配合物分解形成了多孔隙的氧化物颗粒聚集体粉末,最后再自然冷却至室温即可得花状Gd2O3:Dy3+纳米颗粒。
本例中其制备反应的原理为:
Gd2O3+xDy2O3+HNO3→Gd1-XDyX(NO3)3
Gd1-XDyX(NO3)3+NH2CONH2→Gd1-xDyx[OC(NH2)2]6(NO3)3
2Gd1-xDyx[OC(NH2)2]6(NO3)3→Gd2(1-x)O3:2xDy3++NH3+CO2+NO2
其中,由于PEG等分散剂的加入,其表面大量存在的-OH使得离子之间发生空间位阻进而使得离子相互隔离,有效地阻止了颗粒的形成和长大;同时,它们也是一种非离子型分子,对于溶解性盐类或者离子化合物存在屏蔽作用,所以会在颗粒之间形成独立空间,生成三维网络结构,而燃烧时PEG等分散剂的任何分解产物都是挥发性的,因此,随着焙烧而完全脱除,最终产物中出现近似花状的弯曲孔道结构,使得配合物分解为花状的氧化物。
结合附图1、2和3可知:所得Gd2O3:Dy3+纳米颗粒的形貌近似花状,而目前已有的研究结果表明Gd2O3纳米材料的形貌主要为球状、线状、棒状、片状或方块状,花状的Gd2O3:Dy3+纳米颗粒未见报道;且根据发光图表明,该花状Gd2O3:Dy3+纳米颗粒在紫外激发下可发射黄色光,因此它可作为黄色荧光粉来生产发光材料。
实施例2
一种花状Gd2O3:Dy3+纳米颗粒的制备方法,它具体是按照以下步骤进行的:
(1)将准确称取的Gd2O3和Dy2O3加入到浓HNO3中,之后再加热至溶液澄清,然后加入适量去离子水,配得含Gd(NO3)3和Dy(NO3)3的透明溶液;其中,Dy3+的用量占Gd3+用量的1%,该百分比为摩尔百分比;
(2)量取柠檬酸和ABS,在搅拌下加入去离子水配成溶液;其中,柠檬酸和ABS的用量按照以下比例设置Gd3+∶柠檬酸∶ABS=1∶2∶2,其比例关系为摩尔比;
(3)将步骤(1)和(2)配得的溶液在搅拌下混合形成混合液,再将其逐渐加热至70~75℃蒸发形成透明溶液并保温3h,之后继续升温至100~110℃蒸发得到固化凝胶,再将固化凝胶移入坩埚中升温至300℃使其迅速发生自燃成为蓬松的泡沫状前驱物,该前驱物即为金属离子与柠檬酸的配合物;
(4)将燃烧所得的配合物研磨,之后放入马弗炉中快速升温至700℃保温2h,分解燃烧中金属离子与尿素的配合物分解形成了多孔隙的氧化物颗粒聚集体粉末,最后再自然冷却至室温即可得花状Gd2O3:Dy3+纳米颗粒,其形貌形状具体如附图4所示。
实施例3-5
实施例3-5按如下物料、工艺及参数进行,其余设置均与实施例1相同:
结果表明:实施例3-5所制得的Gd2O3:Dy3+纳米颗粒的外貌均为花状。

Claims (1)

1.一种花状Gd2O3:Dy3+纳米颗粒的制备方法,其特征在于,按以下步骤进行:
(1)将准确称取的Gd2O3和Dy2O3加入到浓HNO3中,之后再加热至溶液澄清,然后加入去离子水,配得含Gd(NO3)3和Dy(NO3)3的透明溶液;其中,Dy3+的用量占Gd3+用量的1%,该百分比为摩尔百分比;
(2)量取柠檬酸和烷基苯磺酸钠,在搅拌下加入去离子水配成溶液;其中,按照以下比例设置Gd3+:柠檬酸:烷基苯磺酸钠=1:2:2,其比例关系为摩尔比;
(3)将步骤(1)和(2)配得的溶液在搅拌下混合形成混合液,再将其逐渐加热至70~75℃蒸发形成透明溶液并保温3h,之后继续升温至100~110℃蒸发得到固化凝胶,再将固化凝胶移入坩埚中升温至300℃使其迅速发生自燃成为蓬松的泡沫状前驱物,该前驱物即为金属离子与柠檬酸的配合物;
(4)将燃烧所得的配合物研磨,之后放入马弗炉中快速升温至700℃保温2h,分解燃烧中金属离子与尿素的配合物分解形成了多孔隙的氧化物颗粒聚集体粉末,最后再自然冷却至室温即可得花状Gd2O3:Dy3+纳米颗粒。
CN201610384058.XA 2015-04-27 2015-04-27 一种花状纳米颗粒 Active CN105969351B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610384058.XA CN105969351B (zh) 2015-04-27 2015-04-27 一种花状纳米颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610384058.XA CN105969351B (zh) 2015-04-27 2015-04-27 一种花状纳米颗粒
CN201510204649.XA CN104804737B (zh) 2015-04-27 2015-04-27 一种Gd2O3:Dy3+纳米颗粒的合成方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510204649.XA Division CN104804737B (zh) 2015-04-27 2015-04-27 一种Gd2O3:Dy3+纳米颗粒的合成方法

Publications (2)

Publication Number Publication Date
CN105969351A CN105969351A (zh) 2016-09-28
CN105969351B true CN105969351B (zh) 2018-09-11

Family

ID=53689946

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201510204649.XA Active CN104804737B (zh) 2015-04-27 2015-04-27 一种Gd2O3:Dy3+纳米颗粒的合成方法
CN201610384058.XA Active CN105969351B (zh) 2015-04-27 2015-04-27 一种花状纳米颗粒
CN201610381018.XA Active CN105885838B (zh) 2015-04-27 2015-04-27 一种稀土氧化物纳米颗粒及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510204649.XA Active CN104804737B (zh) 2015-04-27 2015-04-27 一种Gd2O3:Dy3+纳米颗粒的合成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610381018.XA Active CN105885838B (zh) 2015-04-27 2015-04-27 一种稀土氧化物纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (3) CN104804737B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238400A (zh) * 2015-11-20 2016-01-13 济南大学 一种新型单分散球形稀土氧化物荧光粉及其制备方法
CN108975378B (zh) * 2018-05-25 2021-06-22 福建省长汀金龙稀土有限公司 一种氧化镝粉体的制备方法
CN109052450B (zh) * 2018-09-17 2020-10-16 江苏国盛新材料有限公司 一种高纯度氧化钆的制备方法
CN110980813B (zh) * 2019-12-30 2022-06-14 武汉科技大学 一种高近红外反射率铁酸钇粉体及其制备方法
CN111019653B (zh) * 2019-12-31 2022-08-26 河北师范大学 一种掺铕钼钨酸镧红色荧光粉及其制备方法和应用
CN112341933B (zh) * 2020-11-27 2022-04-05 青岛豪纳化工科技有限公司 一种耐磨涂料及其制备方法
CN116443913B (zh) * 2023-04-29 2023-12-08 江苏国盛新材料有限公司 一种超细氧化镧的可控制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265408A (zh) * 2008-04-01 2008-09-17 南昌大学 一种钐掺杂铝酸钆基荧光粉体及其制备方法
CN102220132A (zh) * 2010-04-19 2011-10-19 海洋王照明科技股份有限公司 一种掺杂金属纳米粒子的发光材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265408A (zh) * 2008-04-01 2008-09-17 南昌大学 一种钐掺杂铝酸钆基荧光粉体及其制备方法
CN102220132A (zh) * 2010-04-19 2011-10-19 海洋王照明科技股份有限公司 一种掺杂金属纳米粒子的发光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A facile large-scale synthesis and luminescence properties of Gd2O3:Eu3+ nanoflowers;E. Pavitra,等;《Materials Letters》;20130101;第90卷;134-137 *
Combustion Synthesis and Luminescent Properties of Nano and Submicrometer-Size Gd2O3:Dy3+ Phosphors for White LEDs;Mula Jayasimhadri,等;《Int. J. Appl. Ceram. Technol.》;20100223;第8卷(第4期);709–717 *

Also Published As

Publication number Publication date
CN105969351A (zh) 2016-09-28
CN104804737A (zh) 2015-07-29
CN104804737B (zh) 2016-05-11
CN105885838B (zh) 2018-05-29
CN105885838A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105969351B (zh) 一种花状纳米颗粒
Chen et al. Preparation and characterization of ZrO2: Eu3+ phosphors
Quan et al. Synthesis and characterization of spherical ZrO2: Eu3+ phosphors by spray pyrolysis process
CN100378192C (zh) 以氧化钇为基质的纳米级上转换发光材料及其制备方法
CN102775985B (zh) 一种具有长余辉发光功能的Sr2MgSi2O7:Eu2+,Dy3+纳米线的合成方法
Yin et al. Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb3+-doped hydroxyapatite (Tb-HA) nanocrystallines
Wang et al. 3D-hierachical spherical LuVO4: Tm3+, Dy3+, Eu3+ microcrystal: synthesis, energy transfer, and tunable color
Li et al. Facile synthesis and morphology control of Zn2SiO4: Mn nanophosphors using mesoporous silica nanoparticles as templates
Ratnam et al. Optimization of synthesis technique and luminescent properties in Eu3+-activated NaCaPO4 phosphor for solid state lighting applications
Zhang et al. Blue emission of ZrO2: Tm nanocrystals with different crystal structure under UV excitation
Li et al. Monodisperse and hollow structured Y2O3: Ln3+ (Ln= Eu, Dy, Er, Tm) nanospheres: A facile synthesis and multicolor-tunable luminescence properties
Lian et al. Hydrothermal synthesis and photoluminescence properties of Gd2O2SO4: Eu3+ spherical phosphor
Qian et al. Tunable multicolor emission and energy transfer of cylindrical Gd2O3: Dy3+, Tb3+, Eu3+ particles
Hernández et al. Photoluminescence behavior of YPO4: Tb3+ crystallized in monoclinic, hexagonal or tetragonal phase obtained by hydrothermal process
Chen et al. Size controllable synthesis and multicolor fluorescence of SiO2: Ln3+ (Ln= Eu, Tb) spherical nanoparticles
Li et al. A novel synthetic route towards monodisperse LaOF: Ln 3+(Ln= Eu, Tb) hollow spheres with multicolor luminescence properties
Guo et al. GdPO4: Er3+/Yb3+ nanorods: Hydrothermal synthesis and sensitivity of green emission to Yb3+ concentration
Lu et al. Controlled synthesis of Eu2+-doped barium silicate nanostructures and their optical properties
Tiwari et al. Near UV-blue emission from cerium doped zirconium dioxide phosphor for display and sensing applications
Ji et al. Synthesis of high quality Ce: YAG nanopowders by graphene oxide nanosheet-assisted co-precipitation method
Du et al. Morphology-controlled hydrothermal synthesis and multifunctional luminescence properties of micro-crystals Gd 6 O 5 F 8: Eu 3+/Tb 3+/Tm 3+
Reshmi et al. Novel molybdenum based pyrochlore type red phosphors, NaGd1− xSnMoO7: xEu3+ under near UV and blue excitation
Li et al. Synthesis and luminescent properties of nanoscale Gd2Si2O7: Eu3+ phosphors
Lai et al. Preparation, characterization and luminescence property of YPO4: Eu nanocrystals
CN102807867A (zh) 一种稀土掺杂纳米球形CePO4材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant