CN105964273B - 一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法 - Google Patents

一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法 Download PDF

Info

Publication number
CN105964273B
CN105964273B CN201610313264.1A CN201610313264A CN105964273B CN 105964273 B CN105964273 B CN 105964273B CN 201610313264 A CN201610313264 A CN 201610313264A CN 105964273 B CN105964273 B CN 105964273B
Authority
CN
China
Prior art keywords
water
short tube
preparation
composite
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610313264.1A
Other languages
English (en)
Other versions
CN105964273A (zh
Inventor
吴伟
刘军
肖湘衡
廖蕾
蒋昌忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610313264.1A priority Critical patent/CN105964273B/zh
Publication of CN105964273A publication Critical patent/CN105964273A/zh
Application granted granted Critical
Publication of CN105964273B publication Critical patent/CN105964273B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种高活性复合光催化剂α‑Fe2O3/Ag6Si2O7的制备方法。利用水热法合成的α‑Fe2O3纳米短管表面分布许多羟基,能够很好地与硅烷偶联剂在其水解时与其形成牢固的化学键,从而使α‑Fe2O3纳米短管表面修饰上氨基。利用α‑Fe2O3纳米短管表面的氨基在水溶液中与水形成氨基正离子,这种正离子能够吸引硅酸根离子,使硅酸根离子均匀分布于α‑Fe2O3纳米短管表面。此方法第一次实现将Ag6Si2O7与α‑Fe2O3进行复合,并且此反应在非常温和的条件下进行,反应时间短,操作简便等优点。相比于单组份半导体,本发明制备的α‑Fe2O3/Ag6Si2O7复合结构具有良好的光催化性能,能够应用于光催化领域。并且此方法制备的复合纳米材料均匀,操作简便,反应条件温和,能够应用于多种复合纳米材料的制备与应用。

Description

一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法
技术领域
本发明涉及一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法,属于催化技术领域。
背景技术
有机污染物造成的水体污染已经成为当今世界的重要问题,半导体光催化技术是一种很好的解决方法。通过光催化反应,半导体可以直接将光能转化为化学能,产生活性物质降解有机污染物。最近少量报道显示,硅酸盐能够作为一种光催化剂降解有机污染物。硅酸盐在地壳中的含量最高,并且其也是一种廉价的材料。基于此种因素,硅酸盐系列可以广泛应用于光催化领域。尤其是具有配位结构的过渡金属硅酸盐,如Ag6Si2O7和Ag2SiO3。它们不仅具有良好的光生电子转移效率,而且具有宽光谱响应范围。主要是由于这些纳米粒子内存在一个内建电场,能够促进电子的转移。
然而当前,对于单组份硅酸盐半导体光催化剂而言,其也存在一些弊端,如电子空穴对的高复合率等。因此,偶合两种不同的半导体形成异质结构是一种提高半导体光催化性能的方法,因为在这两种半导体界面,光生电子空穴对可以得到有效分离。在Ag6Si2O7的光催化体系中引入另一种半导体是一种很好的提高其催化效率的技术手段。而当前很少有文献对硅酸盐的复合催化剂进行过报道。α-Fe2O3作为一种n-型半导体,其禁带宽度为2.2eV。并且它是一种磁性材料,在外磁场的作用下,能够进行磁分离。α-Fe2O3在可回收光催化剂中的应用得到广泛关注,正由于其化学稳定性和可见光驱动的光催化性能。因此,将α-Fe2O3与Ag6Si2O7进行偶合,能够提高光催化效率。利用这种表面修饰、离子吸附和表面沉积的三部法将Ag6Si2O7颗粒沉积在α-Fe2O3表面,能够得到均匀地分布的纳米异质结构。并且利用此种方法,可以为制备出其他更多的半导体复合光催化剂提供良好的借鉴。
发明内容
本发明所要解决的技术问题是提供一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法。通过该方法制备出基于硅酸盐的高效复合光催化剂,实现Ag6Si2O7与α-Fe2O3的复合,并且本发明方法在非常温和的条件下进行,反应时间短,操作简便。
本发明方法采用表面修饰和原位离子沉积的制备方法,主要是通过表面修饰、离子吸附和表面沉积三个阶段。
具体包括下述步骤:
1)α-Fe2O3的表面氨基修饰,具体方法为:称取一定量的干燥的α-Fe2O3纳米短管粉末加入到无水乙醇中,超声分散后30 ℃水浴上搅拌,然后加入3-氨丙基三乙氧基硅烷(APTES)乙醇溶液和水,继续反应2-3小时;
2)将所合成的氨基修饰α-Fe2O3进行清洗,具体方法为:将反应完成的溶液离心分离进行收集,通过乙醇和水交替洗涤3次以上,然后将其放置在真空干燥箱中干燥;
3)α-Fe2O3/Ag6Si2O7复合光催化剂的制备,具体方法为:称取10重量份的氨基功能化的α-Fe2O3纳米短管粉末加入烧瓶中,加水超声分散20-30分钟;
4)称取0.0116~0.087重量份的Na2SiO3·9H2O加入3)所得溶液中,搅拌1-2小时;然后称取0.0153~0.0408重量份的AgNO3固体加入另一水中,并将此AgNO3溶液滴加入3)所得溶液中,在30 ℃水浴上搅拌20-60分钟使其充分反应;
5)将反应完成的溶液离心分离,通过乙醇和水交替洗涤3次以上,然后将得到的沉淀在真空干燥箱中不超过50℃下干燥。
本发明相比现有技术具有如下优点:
1、本发明方法引入了硅烷偶联剂作为连接剂,利用α-Fe2O3纳米短管表面均匀分布的羟基,硅烷偶联剂与羟基之间发生水解反应,使硅烷偶联剂偶联在α-Fe2O3纳米短管表面,最终使其表面带上氨基基团。
2、利用氨基在水中表现出正电性,能够对吸引负离子分布周围的这一特点。将硅酸根均匀吸附到α-Fe2O3纳米短管表面。
3、通过缓慢加入硝酸银溶液,使银离子与硅酸根离子在α-Fe2O3纳米短管表面沉积为Ag6Si2O7小颗粒。
附图说明
图1,α-Fe2O3/Ag6Si2O7复合催化剂对亚甲基蓝的降解效果:亚甲基蓝(MB)的紫外-可见光吸收谱。
具体实施方式
实施例1
本发明涉及一种复合光催化剂α-Fe2O3/Ag6Si2O7的表面修饰和原位离子沉积制备方法。具体如下:1)40 mg α-Fe2O3粉末加入100 mL 无水乙醇中,超声30 min,然后再30 ℃下搅拌。然后依次逐滴加入0.5 mL 3-氨丙基三乙氧基硅烷(APTES)乙醇溶液和1mL 水。保持3小时后10000转离心分离。然后通过乙醇和水交替洗涤3次以上,在10000转离心10分钟。然后将其在60℃的真空干燥箱中干燥5小时。称取10 mg的氨基功能化的α-Fe2O3纳米短管粉末加入50 mL烧瓶中,然后加入20mL水超声分散。称取0.087 g的Na2SiO3·9H2O加入上述溶液,并搅拌1小时。然后称取0.0153 g的AgNO3固体加入20 mL水中,并将20 mL硝酸银溶液逐滴加入上述氨基功能化的α-Fe2O3纳米短管溶液中。在30 °C水浴上搅拌1小时。
实施例2
本发明涉及一种复合光催化剂α-Fe2O3/Ag6Si2O7的表面修饰和原位离子沉积制备方法。具体如下:1)40 mg α-Fe2O3粉末加入100 mL 无水乙醇中,超声30 min,然后再30 ℃下搅拌。然后依次逐滴加入0.5 mL 3-氨丙基三乙氧基硅烷(APTES)乙醇溶液和1mL 水。保持3小时后10000转离心分离。然后通过乙醇和水交替洗涤3次以上,在10000转离心10分钟。然后将其在60℃的真空干燥箱中干燥5小时。称取10 mg的氨基功能化的α-Fe2O3纳米短管粉末加入50 mL烧瓶中,然后加入20 mL水超声分散。称取0.0116 g的Na2SiO3·9H2O加入上述溶液,并搅拌1小时。然后称取0.0204 g的AgNO3固体加入20 mL水中,并将20 mL硝酸银溶液逐滴加入上述氨基功能化的α-Fe2O3纳米短管溶液中。在30 °C水浴上搅拌1小时。
实施例3
本发明涉及一种复合光催化剂α-Fe2O3/Ag6Si2O7的表面修饰和原位离子沉积制备方法。具体如下:1)40 mg α-Fe2O3粉末加入100 mL 无水乙醇中,超声30 min,然后再30 ℃下搅拌。然后依次逐滴加入0.5 mL 3-氨丙基三乙氧基硅烷(APTES)乙醇溶液和1mL 水。保持3小时后10000转离心分离。然后通过乙醇和水交替洗涤3次以上,在10000转离心10分钟。然后将其在60℃的真空干燥箱中干燥5小时。称取10 mg的氨基功能化的α-Fe2O3纳米短管粉末加入50 mL烧瓶中,然后加入20 mL水超声分散。称取0.0232 g的Na2SiO3·9H2O加入上述溶液,并搅拌1小时。然后称取0.0408 g的AgNO3固体加入20 mL水中,并将20 mL硝酸银溶液逐滴加入上述氨基功能化的α-Fe2O3纳米短管溶液中。在30 ℃水浴上搅拌1小时。
实施例4光催化测试过程
本实验采用光催化降解亚甲基蓝(MB)染料分子的实验来检测样品的光催化性能。典型的光催化反应过程为:将3 mg的实施例1制备的α-Fe2O3/Ag6Si2O7复合催化剂超声分散到装有10 ml的10 mg/L的MB水溶液的石英试管中;将石英管置于黑暗环境中并不断搅拌,暗场吸附30分钟,使光催化剂与MB分子达到吸附/脱附的动态平衡;吸附完全之后打开光源,混合液置于300 W汞和钨混合光灯照射下(包括可见光和紫外光部分),每光照15分钟取其2 ml混合溶液离心分离并取上层溶液,通过岛津(Shimadzu)2450/2550PC分光光度计测量其在200-800 nm的波长范围内紫外-可见光吸收,通过记录分析MB在664nm的光吸收峰峰强来观察光降解情况。反应均在环境温度18 ℃条件下进行。结果如图1所示。

Claims (2)

1.一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法,包括以下步骤:
1)α-Fe2O3的表面氨基修饰,具体方法为:称取一定量的干燥的α-Fe2O3纳米短管粉末加入到无水乙醇中,超声分散后30℃水浴上搅拌,然后加入3-氨丙基三乙氧基硅烷乙醇溶液和水,继续反应2-3小时;
2)将所合成的氨基修饰α-Fe2O3进行清洗,具体方法为:将反应完成的溶液离心分离进行收集,通过乙醇和水交替洗涤3次以上,然后将其放置在真空干燥箱中干燥;
3)α-Fe2O3/Ag6Si2O7复合光催化剂的制备,具体方法为:称取10重量份的氨基功能化的α-Fe2O3纳米短管粉末加入烧瓶中,加水超声分散20-30分钟;
4)称取0.0116~0.087重量份的Na2SiO3·9H2O加入3)所得溶液中,搅拌1-2小时;然后称取0.0153~0.0408重量份的AgNO3固体加入另一水中,并将此AgNO3溶液滴加入3)所得溶液中,在30℃水浴上搅拌20-60分钟使其充分反应;
5)将反应完成的溶液离心分离,通过乙醇和水交替洗涤3次以上,然后将得到的沉淀在真空干燥箱中不超过50℃下干燥。
2.根据权利要求1所述的制备方法,其特征在于,步骤2)的干燥在60℃下进行。
CN201610313264.1A 2016-05-12 2016-05-12 一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法 Expired - Fee Related CN105964273B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610313264.1A CN105964273B (zh) 2016-05-12 2016-05-12 一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610313264.1A CN105964273B (zh) 2016-05-12 2016-05-12 一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法

Publications (2)

Publication Number Publication Date
CN105964273A CN105964273A (zh) 2016-09-28
CN105964273B true CN105964273B (zh) 2018-05-11

Family

ID=56992047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610313264.1A Expired - Fee Related CN105964273B (zh) 2016-05-12 2016-05-12 一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法

Country Status (1)

Country Link
CN (1) CN105964273B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107200361A (zh) * 2017-06-29 2017-09-26 济南大学 一种rGO/Fe2O3纳米复合材料的制备方法
CN107824204B (zh) * 2017-11-07 2019-12-10 武汉大学 基于上转换发光的高效z型光催化剂的制备方法
CN108102923A (zh) * 2018-01-05 2018-06-01 茂名市金阳热带海珍养殖有限公司 一种高活性且抗逆性强的卵囊藻藻种的选育方法
CN108671945A (zh) * 2018-01-16 2018-10-19 中国地质大学(北京) 一种溴氧化铋/硅酸银复合光催化材料及应用
CN109023926B (zh) * 2018-07-05 2020-09-15 盐城工学院 一种负载Ag6Si2O7/g-C3N4自清洁纺织品及其制备方法
CN109137491B (zh) * 2018-07-05 2020-10-09 盐城工学院 一种负载Ag6Si2O7@AgCl@Ag自清洁纺织品及其整理方法
CN109338711B (zh) * 2018-08-20 2020-11-24 盐城工学院 一种原位沉积焦硅酸银/碳纳米管自清洁纺织品及其制备方法
CN109126783A (zh) * 2018-08-20 2019-01-04 盐城工学院 一种焦硅酸银/碳纳米管可见光光催化剂及其制备方法
CN109395724A (zh) * 2018-11-09 2019-03-01 南通大学 一种焦硅酸银-二氧化钛可见光光催化剂及其制备方法
CN110961128A (zh) * 2019-10-24 2020-04-07 武汉大学苏州研究院 金属-碳氮复合电催化材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173400A2 (en) * 2011-06-15 2012-12-20 Samsung Electronics Co., Ltd. Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ag6Si2O7: a Silicate Photocatalyst for the Visible Region;Zaizhu Lou,et.al.;《Chem. Mater.》;20140612;第26卷;第3873页左栏第2段-右栏第1段,第3874页左栏最后1段 *
Ti02/a-Fe2O3复合光催化剂的制备及表征;龚潇;《硅酸盐学报》;20080630;第36卷(第6期);第838-843页 *
铁氧体/半导体磁性复合纳米材料的可控制备、表征及其光催化应用;吴伟;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20150515(第05期);第35-36页第2.3.2.2节,第73-74页3.3.2节 *

Also Published As

Publication number Publication date
CN105964273A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105964273B (zh) 一种高活性复合光催化剂α-Fe2O3/Ag6Si2O7的制备方法
CN108786792B (zh) 一种金属/半导体复合光催化剂及其制备与应用
Bishop et al. A citric acid-derived ligand for modular functionalization of metal oxide surfaces via “click” chemistry
Zhang et al. Precious-metal nanoparticles anchored onto functionalized halloysite nanotubes
CN103480399B (zh) 一种微纳结构磷酸银基复合可见光催化材料及其制备方法
Li et al. Hollow mesoporous SiO2–BiOBr nanophotocatalyst: Synthesis, characterization and application in photodegradation of organic dyes under visible-light irradiation
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
CN106984312B (zh) 一种复合型光催化剂及其制备方法
Jiao et al. Rodlike AgI/Ag2Mo2O7 heterojunctions with enhanced visible-light-driven photocatalytic activity
CN102120168A (zh) 多功能核壳结构荧光编码磁性微球及其制备方法
Kong et al. Rattle-type Au@ TiO2 hollow microspheres with multiple nanocores and porous shells and their structurally enhanced catalysis
Jiang et al. Thermal perturbation nucleation and growth of silver molybdate nanoclusters by a dynamic template route
CN110530839B (zh) 一种二硫化钼/银纳米免疫基底材料的制备方法及其可重复免疫检测应用
CN103977826B (zh) 一种改性的TiO2涂层及其制备方法
Derikvandi et al. A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu@ Cu 2 O/SiO 2 as a visible-light driven nanophotocatalyst
CN108722445B (zh) 一种超薄卤氧化铋基固溶体光催化剂及其制备方法和应用
CN106323935B (zh) 一种核-壳-卫星三维结构的磁性复合sers基底及其制备方法
CN108031475A (zh) 一种金负载氧化铁纳米光催化剂的制备方法
CN103521248A (zh) 一种石墨烯基复合可见光催化材料的制备方法
CN110296973A (zh) 一种SiO2@Ag@ZrO2多层核壳结构纳米材料及其制备方法和应用
CN110292940A (zh) CdS/ZnO复合压电光催化剂及其制备方法和应用
Liu et al. A novel pH-responsive electrochemiluminescence immunosensor for ALV-J detection based on hollow MnO2 encapsulating Ru (bpy) 3Cl2
CN106111210B (zh) 可拆卸式磁微球负载贵金属催化剂的制备方法及其拆卸方法
CN103521247B (zh) 一种自组装磷酸银基复合可见光催化材料的制备方法
Bao et al. A Solid‐State Carrier Transport‐Prompted Z‐Scheme BiVO4 Quantum Dots‐Based Photocatalyst for Boosted Photocatalytic Degradation of Antibiotics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180511

CF01 Termination of patent right due to non-payment of annual fee