CN105963277A - 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用 - Google Patents

一种具有pH和葡萄糖双重响应的纳米球及其制备和应用 Download PDF

Info

Publication number
CN105963277A
CN105963277A CN201610512393.3A CN201610512393A CN105963277A CN 105963277 A CN105963277 A CN 105963277A CN 201610512393 A CN201610512393 A CN 201610512393A CN 105963277 A CN105963277 A CN 105963277A
Authority
CN
China
Prior art keywords
paa
nanosphere
pba
glu
ppgp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610512393.3A
Other languages
English (en)
Inventor
朱春玲
曾胚羡
谢增鸿
林旭聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610512393.3A priority Critical patent/CN105963277A/zh
Publication of CN105963277A publication Critical patent/CN105963277A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1854Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly(meth)acrylate, polyacrylamide, polyvinylpyrrolidone, polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medical Informatics (AREA)
  • Immunology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于纳米材料制备和生物医学领域,具体涉及一种具有pH和葡萄糖双重响应的纳米球及其制备和应用。所述的纳米球是PAA‑PBA‑Glu‑PAA(PPGP)聚合物,其制备过程为:由3‑氨基苯硼酸修饰聚合物分子PAA获得PAA‑PBA,然后由葡萄糖胺修饰PAA制得PAA‑Glu,再将PAA‑PBA和PAA‑Glu通过硼酸酯键进行交联,在水/异丙醇混合液中进行自组装,获得PPGP纳米球。所制得的PPGP纳米球对抗癌药物阿霉素及核磁成像剂Gd3+具有很高的负载率,且针对pH及葡萄糖具有刺激响应释放特性,具有诊断、治疗一体化功能等优点。

Description

一种具有pH和葡萄糖双重响应的纳米球及其制备和应用
技术领域
本发明属于纳米材料制备和生物医学领域,具体涉及一种具有pH和葡萄糖双重响应的纳米球及其制备和应用。
背景技术
钆核磁成像造影剂是一类T1-加权MRI成像造影剂,且钆造影剂是医疗过程中常用的一类造影剂,具有水溶性好、毒性低或没有毒性、体内稳定、能够完全被排出体外、弛豫效能高、具有组织选择性等优点。但是其在体内呈非特异性分布,且静脉注射后迅速漏到血管外并被肾脏清除,因而检查所需剂量高,特别是对于肝、脾等组织病变及肿瘤缺乏特异性,有时为了诊断的目的,不得不加大用药剂量,从而增加了机体出现不良反应的风险。临床上常用的Gd-DTPA造影剂r1值较小(一般3.7 mM-1·s-1 ) ,而根据最近的研究结果表明,如果把钆离子做成纳米颗粒时,其MRI性能会得到提高。所以,发展基于钆离子纳米颗粒制备可降解型多功能药物载体,同时能提高钆造影剂的造影性能,对推动其临床应用具有非常明显的意义。
理想的纳米药物释放系统应具有生物相容性、生物可降解性、较长的血液循环时间、肿瘤靶向性、高载药率、药物刺激响应释放等特性。因此,利用纳米材料作为抗肿瘤药物的载体,构建新型的智能响应体系,实现定时、定量的将药物导入病变部位,提高药物的利用率,在临床治疗中具有潜在的应用前景。聚合物胶束(Polymeric Micelles,PMs)是近20多年来被广泛关注和快速发展的一种新型纳米载体。响应性聚合物胶束可对药物进行靶向可控缓释,在提高药效的同时减少药物的副作用,同时,能在体内降解为小分子化合物,从而被机体代谢、吸收或排泄,对人体无毒副作用,因而已成为药物传递系统研究的热点。
另一方面,低分子量的聚丙烯酸盐(PAA)能在水/异丙醇混合液中自组装成球,这种PAA纳米球因包含大量的羧基基团,所以对亲水性带正电的抗癌药物具有很高的负载率。但是,由于PAA纳米球良好的水溶性,易在水溶液中溶胀破裂,造成药物预泄露很严重,不利于其作为药物载体的后续应用。因此,采用化学手段增强PAA纳米球的交联,达到稳定其结构的目的;同时,又能赋予PAA纳米球新功能(如核磁成像、CT成像等),发展多功能刺激响应型药物释放体系,实现诊治一体化目的,具有极高的研究意义。
发明内容
本发明的目的在于提供一种具有pH和葡萄糖双重响应的纳米球及其制备和应用。本发明所制得PAA-PBA-Glu-PAA(PPGP)聚合物纳米球具有在肿瘤部位受pH及葡萄糖双重响应药物释放特性,同时,PPGP纳米球对抗癌药物阿霉素及核磁成像剂Gd3+具有很高的负载率,可实现诊断、治疗一体化的目的。
为实现上述目的,本发明采用如下技术方案:
一种具有pH和葡萄糖双重刺激响应性的纳米球:其是由3-氨基苯硼酸(PBA)修饰聚丙烯酸钠(PAA)分子制得PAA-PBA;再由葡萄糖胺(Glu)改性聚丙烯酸钠(PAA)获得PAA-Glu,然后将PAA-PBA和PAA-Glu通过硼酸酯键进行交联与自组装,而制得的PAA-PBA-Glu-PAA纳米球。
一种制备如上所述的具有pH和葡萄糖双重刺激响应性的纳米球的方法,包括如下步骤:
a)PAA-PBA聚合物材料的合成:
将一定量的EDC和NHS加入至3-氨基苯硼酸溶液中,然后加入聚丙烯酸钠,在室温条件下反应并对所得产物进行透析、冷冻干燥后,获得PAA-PBA聚合物材料;
b)PAA-Glu聚合物材料的合成:
将一定量的EDC和NHS加入至葡萄糖胺溶液中,加入聚丙烯酸钠,在室温条件下反应并对所得产物进行透析、冷冻干燥后,获得PAA-Glu聚合物材料;
c)PAA-PBA-Glu-PAA纳米球的组装:
将步骤a)制得的PAA-PBA聚合物材料分散于pH=8.0的PBS缓冲液中,加入步骤b)制得的PAA-Glu聚合物材料,室温搅拌12 h,通过硼酸酯键的构建获得PAA-PBA-Glu-PAA聚合物溶液;再往聚合物溶液中逐滴加入一定体积的异丙醇使聚合物分子自组装,然后经甲醇离心、洗涤处理,获得PAA-PBA-Glu-PAA纳米球。
步骤a)中聚丙烯酸钠与3-氨基苯硼酸的反应摩尔比是7:1~2:1;步骤b)中聚丙烯酸钠与葡萄糖胺的反应摩尔比是7:1~2:1。
步骤c)中PAA-Glu聚合物材料与PAA-PBA聚合物材料的质量比是1:1;步骤c)中在PAA-Glu-PBA-PAA的自组装反应体系中水和异丙醇体积比是1:20。
步骤c)制备的PAA-PBA-Glu-PAA纳米球的平均直径为100±10 nm;表面带负电。
一种如上所述的方法制得的具有pH和葡萄糖双重刺激响应性的纳米球的应用:作为核磁成像剂Gd3+和抗癌药物的载体。
在上述应用中,所述的抗癌药物为阿霉素;阿霉素与纳米球复合后,在pH≤6、葡萄糖浓度为1~10 mM的双重刺激条件下释放阿霉素。
在上述应用中,PAA-PBA-Glu-PAA纳米球和核磁成像剂Gd3+复合时的摩尔比为1:0.25~1:2,所制得的PAA-PBA-Glu-PAA-Gd3+纳米聚合物球的平均直径为100±10 nm、表面带正电;更优的,PAA-PBA-Glu-PAA纳米球和核磁成像剂Gd3+复合时的摩尔比为1:1.5,此时,Gd3+的实际固定量达到74.76%。
与其他药物释放体系相比,本发明的显著优点在于:
(1)本发明的聚合物纳米球PPGP制备方法简单,合成颗粒尺寸较为均一,条件温和可控,易于规模化;可负载核磁成像剂Gd3+和抗癌药物,具有pH和葡萄糖双重刺激响应性;
(2)本发明的聚合物纳米球对核磁成像剂Gd3+和抗癌药物的负载率高,对抗癌药物的负载率可达到74.21%,因此可有效降低治疗过程中药物载体的使用量,达到减少副作用的目的;
(3)本发明所述的聚合物纳米球PPGP生物相容性优良,易于在细胞内降解,是可降解型药物载体;
(4)以本发明聚合物纳米球为载体的核磁成像剂PPGP-Gd3+在肿瘤细胞内易受酸性及葡萄糖双重刺激响应,硼酸酯键解离,释放出所负载钆离子,可实现对肿瘤或炎症组织的MRI成像功能。
附图说明
图1为PPGP纳米球的低倍透射电镜图(TEM)(A);PPGP-Gd3+纳米球的低倍透射电镜图(TEM)(B);
图2为PPGP纳米球的红外图谱;横坐标为波数,纵坐标为吸收强度;
图3为PAA纳米球与PPGP纳米球的粒径变化图;横坐标为不同时间组样品(1、甲醇;2、pH=7.4,PBS-0 h;3、pH=7.4,PBS-24 h;4、pH=7.4,PBS-72 h);
图4为PAA-DOX纳米球与PPGP-DOX纳米球的预泄漏实验;横坐标为释放时间,纵坐标为释放百分率;
图5为考察PPGP-Gd3+纳米球的生物相容性测试;横坐标为纳米球浓度,纵坐标为细胞存活率;
图6为考察PPGP-Gd3+纳米球的细胞毒性实验;横坐标为不同样品组,纵坐标为细胞存活率;1、Control 2、PPGP-Gd3+ 3、PPGP-Gd3+-DOX 4、Free DOX;
图7为PPGP-Gd3+纳米球在不同条件下的体外核磁共振成像对比图;横坐标为Gd3+浓度,纵坐标为每秒分之一。
具体实施方式
下面以具体实施示例对本发明的技术方案做进一步说明,但是不能以此限制本发明的范围。
实施例1
一种制备具有pH和葡萄糖双重刺激响应的聚合物纳米球的方法,具体步骤为:
a)PAA-PBA聚合物材料的合成:
取4 mg PAA溶解于2 mL去离子水中,按摩尔比4:1加入2.46 mg 3-氨基苯硼酸,2.73mg EDC与1.634 mg NHS,在室温条件下反应24 h,透析处理24 h,冷冻干燥12 h,获得PAA-PBA聚合物材料;
b)PAA-Glu聚合物材料的合成:
取4 mg PAA溶解于2 mL去离子水中,按摩尔比4:1加入3.06 mg葡萄糖胺,2.73 mg EDC与1.634 mg NHS,在室温条件下反应24 h,透析处理24 h,冷冻干燥12 h,获得PAA-Glu聚合物材料;
c)PPGP聚合物纳米球的组装:
将步骤a)制得的PAA-PBA材料分散于pH=8.0的PBS缓冲液中,按质量比为1:1加入步骤b)制得的PAA-Glu材料,室温搅拌12 h,通过硼酸酯键的构建获得PPGP聚合物材料;之后再加入16 mL异丙醇使其自聚合,进一步形成PPGP聚合物纳米球;
d)PPGP-Gd3+-DOX聚合物纳米球的组装:
将步骤c)制得的PPGP聚合物纳米球分散于甲醇中,按摩尔比为1:1.5加入六水硝酸钆,室温搅拌6 h,离心甲醇清洗处理;再按质量比1:2加入DOX,室温搅拌12 h,进一步离心处理得PPGP-Gd3+-DOX聚合物纳米球。通过ICP-MS 检测确认Gd3+的实际固定量达到74.76%;荧光数据表明DOX的吸附率是74.21%。
步骤c)制备的PPGP纳米球相比PAA纳米球具有更好的热稳定性,有利于药物的缓释性能;Zeta粒度分析仪数据表明:在pH=7.4缓冲液中,在0-72h内,PPGP纳米球的粒径从150 nm增大到367 nm,而PAA纳米球则从367 nm增大到1365 nm。在pH=7.4缓冲液中,PPGP-DOX在48 h内的预泄露率为24.18%,而PAA-DOX的预泄露率为98.7%。上述数据说明PPGP纳米球在水中的稳定性更高,更有利于药物的缓慢释放。
应用实施例1
将实施例1步骤c)制得的PPGP纳米球,取0.5 mg重新分散到0.875 mL甲醇溶液中,加入12.5 uL,0.1 M的六水硝酸钆甲醇溶液,室温反应6 h之后,离心处理得固体,继续用甲醇洗2次,最后获得PPGP-Gd3+纳米聚合物胶束。
体外核磁成像实验结果表明,在pH=5.0缓冲液中PPGP-Gd3+纳米球造影剂的r1值为14.93 mM-1·S-1;在葡萄糖=10 mM,pH=5.0的缓冲液中,PPGP-Gd3+纳米球造影剂的r1值最高可达到34.34 mM-1·S-1,说明PPGP-Gd3+聚合物纳米球可实现针对pH及葡萄糖双重刺激响应触发的T1加权MRI成像。
性能检测:
1、将实施例1制得PPGP纳米球甲醇溶液滴在铜网上,晾干后进行TEM扫描(见图1),结果见图1所示,从图1-A中可以看出PPGP胶束为球形颗粒,尺寸较为均一,分散性较好,平均粒径约为100±10 nm;将应用实施例1制得PPGP-Gd3+纳米球甲醇溶液滴在铜网上,从图1-B中可以看出PPGP-Gd3+纳米聚合物胶束仍为球形结构,尺寸均一,平均粒径约为100±10 nm;
2、将实施例1制得不同产物在60℃干燥成固体,取3 mg与溴化钾均匀混合,之后利用压片机将其压制成透明均匀的小薄片;红外测试结果如图2所示,其中图2为四种聚合物的叠加图,可知聚合物b和d在波数为3000-3700 cm-1左右有较大宽峰,主要由于此二者聚合物含有较多-OH,并且聚合物b、c、d均有氨基吸收峰,说明PAA-Glu、PAA-PBA、以及PPGP均已通过酰胺键成功交联;在聚合物c、d中波数在1350-1310 cm-1处具有硼氧键吸收峰,进一步证明了PAA- PBA与PPGP成功合成;并且由于PPGP上硼氧键受聚合物影响,导致其发生轻微的红移;
3、分别取PAA纳米球和PPGP(纳米球加入至PBS(pH=7.4)缓冲溶液中,配制浓度为1mg/mL,混匀。样品置于25℃恒温箱中,分别于0 h~72 h取样测粒径大小变化。结果如图3所示,PPGP纳米球的粒径从90 nm增大到367 nm,而PAA纳米球则从132 nm增大到1365nm,可知PAA纳米球在水中溶胀明显,而PPGP纳米球相对稳定,说明通过硼酸酯键的交联,能够提高这类纳米球的稳定性;
4、取2 ml 1 mg/ml 实施例1制得的PPGP纳米球加入至4 ml 1 mg/ml的DOX(阿霉素)充分混合,室温避光搅拌12 h,离心,水洗两次收集上清液。用荧光分光光度计(Ex=488 nm),记录波长在500 nm至800 nm间的发射光谱最大吸收值,并根据阿霉素标准曲线计算出每克PPGP纳米球可负载742.1 mg的盐酸阿霉素。考察负载了阿霉素的PPGP纳米球和PAA纳米球在pH=7.4 PBS缓冲溶液中的预泄漏效果,具体的实验步骤如下:将1 mg吸附药物后的PPGP纳米球和PAA纳米球分别分散于3 ml PBS (pH=7.4,10 mM) 溶液中,放入透析袋后将透析袋加入47 ml PBS溶液中透析48 h,每隔0 h,3 h,6 h,12 h,24 h,48 h取3ml溶液测荧光,原溶液再补入3 ml PBS,测试的结果如图4所示。两条曲线分别代表PAA-DOX纳米球和PPGP-DOX纳米球;从图4中可以看出在pH=7.4条件下PAA-DOX所释放出的DOX荧光强度最高,PPGP-DOX在48 h内的预泄露率为24.18%,而PAA-DOX的预泄露率为98.7%。说明PPGP纳米球在水中的稳定性更高,有利于药物的缓慢释放;
5、用HeLa细胞作为目标细胞评价PPGP纳米球的生物相亲性:取已消化成单分散的HeLa细胞悬浊液用培养液稀释,以100μL/孔的密度接种到96孔板,每孔的细胞个数控制约为105个。将96孔板置于37 ℃,5% CO2的培养箱中培养24 h后,移去培养液,加入含有不同浓度的PPGP纳米球培养液,每组设置4个重复孔。继续培养4h后,移去培养液,用PBS缓冲液(pH=7.4)清洗两次,加入100μL培养液继续培养20 h后,每孔分别加入10μL浓度为5 mg/mL的MTT,继续培育4 h,小心移去培养液,加入150μL DMSO,37oC培养25 min,震荡均匀后,在酶标仪上测490 nm处的吸收值,计算细胞存活率,评价PPGP纳米球生物相亲性。图5显示PPGP纳米球浓度在5~100μg/ml区间,细胞存活率均在90%以上,说明PPGP纳米球生物具有优异的生物相亲性,适于当药物载体;
6、取已消化成单分散的HeLa细胞悬浊液用培养液稀释,以100μL/孔的密度接种到96孔板,每孔的细胞个数控制约为105个,每组设置4个复孔作为重复组。将96孔板置于37 ℃,5%CO2的培养箱中培养24 h后,移去孔中培养液,分别加入含有1,Control 2,PPGP-Gd3+(6.7 μg/ml) 3,PPGP-Gd3+-DOX(6.7μg/ml,DOX浓度为5μg/ml) 4,Free DOX(5μg/ml),其中3组中DOX的浓度为5μg/ml,加入细胞培养液,继续培养4 h,移去培养液,用PBS缓冲液清洗两次,加入100μL培养液继续培养20 h后,每孔分别加入10μL浓度为5 mg/mL的MTT,继续培育4 h,小心移去培养液,加入150μL DMSO,37 ℃培养20 min,振荡均匀后,在酶标仪上测490 nm处的吸收值,计算细胞存活率,评价各组治疗效果。从图6可以看出PPGP-Gd3+-DOX对癌细胞在24 h内抑制率达到63.68 %,说明该载药体系能有效地用于肿瘤的治疗;
7、PPGP-Gd3+纳米聚合物胶束溶液的体外核磁共振成像:
(1)先取1 ml 0.5mg/mL PPGP-Gd3+纳米聚合物胶束加入透析袋中,放入49 ml 2wt%硝酸进行解离24 h,使其完全解离,再取一定量按需要稀释测ICP-MS,根据ICP-MS测试结果计算出1 mL PPGP-Gd3+纳米聚合物胶束溶液中含有Gd3+为0.942 mM;
(2)取0.212 mL PPGP-Gd3+制备液,分别加入到1ml pH=7.4、pH=5.0、pH=5.0+10 mM葡萄糖的PBS溶液中(相当于所含Gd3+浓度为0.2 mM),浸泡24h,离心后,取一定量上清液配成5个不同浓度,取出1 mL去测MRI。从图7可以看出:在pH=5.0和pH=5.0+10 mM葡萄糖条件下,随着解离出来钆离子的浓度增加,成像的亮度也逐渐变亮;而在pH=7.4条件下,成像的亮度基本没有变化,说明在pH=7.4缓冲液中PPGP-Gd3+纳米球比较稳定,钆离子解离的量较少。由图7可知:在pH=5.0和pH=5.0+10 mM葡萄糖条件下的r1=14.93 mM-1·S-1和r1=34.34 mM-1·S-1均大于pH=7.4条件下的r1=2.54 mM-1·S-1,这说明在酸性以及葡萄糖存在条件下,PPGP-Gd3+纳米球发生解构,释放出较多的Gd3+,即造影剂增多,进而MRI成像效果增强。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (9)

1.一种具有pH和葡萄糖双重刺激响应性的纳米球,其特征在于:其是由3-氨基苯硼酸修饰聚丙烯酸钠分子制得PAA-PBA;再由葡萄糖胺改性聚丙烯酸钠获得PAA-Glu,然后将PAA-PBA和PAA-Glu通过硼酸酯键进行交联与自组装,而制得的PAA-PBA-Glu-PAA纳米球。
2.一种制备如权利要求1所述的具有pH和葡萄糖双重刺激响应性的纳米球的方法,其特征在于:包括如下步骤:
a)PAA-PBA聚合物材料的合成:
将一定量的EDC和NHS加入至3-氨基苯硼酸溶液中,然后加入聚丙烯酸钠,在室温条件下反应并对所得产物进行透析、冷冻干燥后,获得PAA-PBA聚合物材料;
b)PAA-Glu聚合物材料的合成:
将一定量的EDC和NHS加入至葡萄糖胺溶液中,加入聚丙烯酸钠,在室温条件下反应并对所得产物进行透析、冷冻干燥后,获得PAA-Glu聚合物材料;
c)PAA-PBA-Glu-PAA纳米球的组装:
将步骤a)制得的PAA-PBA聚合物材料分散于pH=8.0的PBS缓冲液中,加入步骤b)制得的PAA-Glu聚合物材料,室温搅拌12 h,通过硼酸酯键的构建获得PAA-PBA-Glu-PAA聚合物溶液;再往聚合物溶液中逐滴加入一定体积的异丙醇使聚合物分子自组装,然后经甲醇离心、洗涤处理,获得PAA-PBA-Glu-PAA纳米球。
3.根据权利要求2所述的制备具有pH和葡萄糖双重刺激响应性的纳米球的方法,其特征在于:步骤a)中聚丙烯酸钠与3-氨基苯硼酸的反应摩尔比是7:1~2:1;步骤b)中聚丙烯酸钠与葡萄糖胺的反应摩尔比是7:1~2:1。
4.根据权利要求2所述的制备具有pH和葡萄糖双重刺激响应性的纳米球的方法,其特征在于:步骤c)中PAA-Glu聚合物材料与PAA-PBA聚合物材料的质量比是1:1;步骤c)中在PAA-Glu-PBA-PAA的自组装反应体系中水和异丙醇体积比是1:20。
5.根据权利要求2所述的制备具有pH和葡萄糖双重刺激响应性的纳米球的方法,其特征在于:步骤c)制备的PAA-PBA-Glu-PAA纳米球的平均直径为100±10 nm;表面带负电。
6.一种如权利要求2-5任一项所述的方法制得的具有pH和葡萄糖双重刺激响应性的纳米球的应用,其特征在于:作为核磁成像剂Gd3+和抗癌药物的载体。
7.根据权利要求6所述的应用,其特征在于:所述的抗癌药物为阿霉素;阿霉素与纳米球复合后,在pH≤6、葡萄糖浓度为1~10 mM的条件下释放阿霉素。
8.根据权利要求6所述的应用,其特征在于:PAA-PBA-Glu-PAA纳米球和核磁成像剂Gd3+复合时的摩尔比为1:0.25~1:2,所制得的PAA-PBA-Glu-PAA-Gd3+纳米聚合物球的平均直径为100±10 nm、表面带正电。
9.根据权利要求8所述的应用,其特征在于:PAA-PBA-Glu-PAA纳米球和核磁成像剂Gd3+复合时的摩尔比为1:1.5。
CN201610512393.3A 2016-07-04 2016-07-04 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用 Pending CN105963277A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610512393.3A CN105963277A (zh) 2016-07-04 2016-07-04 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610512393.3A CN105963277A (zh) 2016-07-04 2016-07-04 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用

Publications (1)

Publication Number Publication Date
CN105963277A true CN105963277A (zh) 2016-09-28

Family

ID=56953502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610512393.3A Pending CN105963277A (zh) 2016-07-04 2016-07-04 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用

Country Status (1)

Country Link
CN (1) CN105963277A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107189011A (zh) * 2016-12-21 2017-09-22 哈尔滨师范大学 中空分子印迹聚合物、固相萃取柱及其制备方法和应用
CN107715115A (zh) * 2017-09-18 2018-02-23 山东炳坤腾泰陶瓷科技股份有限公司 葡萄糖分子诱导的Au‑MTX的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HAO YANG等: "Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions", 《SOFT MATTER》 *
RUJIANG MA等: "Phenylboronic Acid-Based Complex Micelles with Enhanced Glucose-Responsiveness at Physiological pH by Complexation with Glycopolymer", 《BIOMACROMOLECULES》 *
RUJIANG MA等: "Phenylboronic Acid-based Glucose-responsive Polymeric Nanoparticles: Synthesis and Applications in Drug Delivery", 《POLYMER CHEMISTRY》 *
YANXIA WANG等: "pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin", 《CARBOHYDRATE POLYMERS》 *
吴正红 等: "《纳米药剂学》", 31 July 2011, 江苏美术出版社 *
孟胜男 的等: "《药剂学》", 31 January 2016, 中国医药科技出版社 *
李忠: "葡萄糖敏感性增强的苯硼酸—糖聚物复合胶束体系", 《万方-南开大学硕士学位论文》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107189011A (zh) * 2016-12-21 2017-09-22 哈尔滨师范大学 中空分子印迹聚合物、固相萃取柱及其制备方法和应用
CN107189011B (zh) * 2016-12-21 2019-08-09 哈尔滨师范大学 中空分子印迹聚合物、固相萃取柱及其制备方法和应用
CN107715115A (zh) * 2017-09-18 2018-02-23 山东炳坤腾泰陶瓷科技股份有限公司 葡萄糖分子诱导的Au‑MTX的制备方法

Similar Documents

Publication Publication Date Title
Yang et al. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes
Kim et al. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy
Chen et al. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent
CN108559091A (zh) 具有聚集诱导发光及双重敏感性的聚合物药物载体、载药胶束及其制备方法
Nazari et al. Current status and future prospects of nanoscale metal–organic frameworks in bioimaging
CN112121029A (zh) 一种仿生多巴胺聚合载药纳米递释系统及其制备方法
CN104436220B (zh) 一种壳聚糖磁性纳米微球的制备方法及其用途
CN106749951A (zh) 具有还原响应抗肿瘤活性的两性离子聚合物及其合成和作为药物载体的应用
Liang et al. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biocompatible PLGA-PEG nanocarriers for early detection and treatment of tumours
Zhuang et al. Two-photon AIE luminogen labeled multifunctional polymeric micelles for theranostics
CN107007835A (zh) 载普鲁士蓝靶向纳米复合物及其制备方法
CN104274842B (zh) 一种聚乙烯亚胺介导的多功能四氧化三锰纳米颗粒核磁共振造影剂的制备方法
CN110354282A (zh) 一种负载二氧化锰和阿霉素的纳米水凝胶及其制备和应用
CN102861334B (zh) 肿瘤信号响应的主动治疗纳米光动力药物载体及制法
Wang et al. Polyphenol-based nanoplatform for MRI/PET dual-modality imaging guided effective combination chemotherapy
Patra et al. Iron (III) coordinated polymeric nanomaterial: a next-generation theranostic agent for high-resolution T1-weighted magnetic resonance imaging and anticancer drug delivery
Gowtham et al. Impact of nanovectors in multimodal medical imaging.
Yang et al. Theranostic nanoparticles with aggregation-induced emission and MRI contrast enhancement characteristics as a dual-modal imaging platform for image-guided tumor photodynamic therapy
CN105307638A (zh) 光感粒子及其应用于光动力疗法及显影的用途
CN105963277A (zh) 一种具有pH和葡萄糖双重响应的纳米球及其制备和应用
CN109125723A (zh) 复合声敏剂、其制备方法、应用、使用方法、用途及药物组合物
CN105797175B (zh) PAAs@MnO(OH)-RGD药物释放载体的制备方法及应用
CN107320738A (zh) 一种四氧化三锰‑乳白蛋白纳米球及其制备与应用
CN107961383A (zh) 一种探针系统及其制备方法与用途
CN109568608B (zh) 一种多聚糖基纳米粒子造影剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928