CN105951055B - 一种二维锡烯材料的制备方法 - Google Patents

一种二维锡烯材料的制备方法 Download PDF

Info

Publication number
CN105951055B
CN105951055B CN201610436234.XA CN201610436234A CN105951055B CN 105951055 B CN105951055 B CN 105951055B CN 201610436234 A CN201610436234 A CN 201610436234A CN 105951055 B CN105951055 B CN 105951055B
Authority
CN
China
Prior art keywords
preparation
single crystalline
crystalline substrate
layer
crystal films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610436234.XA
Other languages
English (en)
Other versions
CN105951055A (zh
Inventor
宋禹忻
王庶民
张振普
李耀耀
张立瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN201610436234.XA priority Critical patent/CN105951055B/zh
Publication of CN105951055A publication Critical patent/CN105951055A/zh
Application granted granted Critical
Publication of CN105951055B publication Critical patent/CN105951055B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供一种二维锡烯材料的制备方法,包括以下步骤:1)在单晶衬底上外延生长单层或多原子层的α‑Sn晶体薄膜,其中,所述单晶衬底与α‑Sn晶体薄膜通过sp3化学键相连;2)采用原子和/或离子和/或电子进行轰击,在所述单晶衬底与α‑Sn晶体薄膜的界面处形成钝化层或非晶态层以断开所述sp3化学键,所述α‑Sn晶体薄膜的Sn原子之间重构成sp2化学键形成一种二维锡烯材料。根据本发明提供的方法,采用常规的商用单晶衬底以及难度显著降低的常规外延方法即可实现大尺寸二维锡烯材料的制备,总之,本发明相对现有技术提供了一种衬底选择范围扩大的、可行的、易操作、简单的二维锡烯材料的制备方法。

Description

一种二维锡烯材料的制备方法
技术领域
本发明属于半导体电子与光电子材料制备领域,特别涉及一种二维锡烯材料的制备方法。
背景技术
集成电路芯片运算能力的快速提高依靠的是器件尺寸的不断缩小和集成度的提高。目前应用于大规模工业生产的CMOS器件和电路的特征尺寸已进入14nm技术节点,量子效应逐渐显现并占据主导地位。进一步依赖缩小尺寸来提高芯片性能面临诸多挑战,电流隧穿及功耗等问题日益突出。因此,迫切需要开发能够突破硅材料极限、具备更高的速度以及更低的功耗的新型沟道材料及器件。
狄拉克材料是一类具有狄拉克圆锥型能带结构的新型材料,该特殊的能带结构将导致电子的行为类似有效质量为零的相对论粒子从而实现极高的迁移率和极低的电阻率,进而可以大幅提高电子器件的处理速度。狄拉克材料最典型的代表就是当前世界研究热点之一的石墨烯。石墨烯是世界上第一个绝对厚度只有一个原子层的二维材料,其具有优越的电导和热导性能从而被期待广泛应用于高速电子和光电子领域。然而由于石墨烯不具有带隙,限制了其电流控制的开/关比,导致其超高电子迁移率很难应用到高速逻辑器件中。
拓扑绝缘体是最近几年新兴起的一类新的固体状态,其内部具有带隙从而是绝缘体,而边界(表面对于三维,边缘对于二维)则是导体且其传导受到时间反演对称性保护,防止了由非磁性杂质和缺陷导致的散射的发生,从而可实现极高的载流子迁移率和极低的电阻率。然而截至目前,拓扑绝缘体特性仅能在极低温度(低于10K)下观测到从而使其很难具有实际应用。
2013年,美国斯坦福大学张首晟教授领导的理论物理学家团队预言了与碳同处于IV族的锡也可以形成和石墨烯相似的单层蜂窝状晶体结构,且作为一种宽带隙二维拓扑绝缘体,其物理性质在一些方面将优于石墨烯。单原子层锡(锡烯)是一种宽带隙二维拓扑绝缘体,也可称作量子自旋霍尔绝缘体,其内部由于带隙的存在而绝缘,然而其边缘则由于量子自旋霍尔效应可以导电且电流方向与电子自旋方向锁定。如能获得高质量的锡烯材料,利用其特性,用于高性能器件的研究,将有望解决当前微电子产业面临的困境。
2015年8月,一篇名为“上海交大在二维晶体新材料锡烯研究获重大突破”的新闻报道中提到,上海交通大学物理与天文系凝聚态物理研究所低维物理和界面工程实验室博士生朱锋锋在钱冬、贾金锋两位教授指导下,经过近两年的反复实验,终于找到了合适的基底材料和生长条件,利用分子束外延生长技术在国际上首次实现了锡烯二维晶体薄膜。研究团队发现,实验精确确定的原子结构及电子能带结构和第一性原理计算的结果具有非常好的一致性,从而确信无疑地证实了外延生长的薄膜就是二维锡烯。锡烯薄膜的实验实现,为开展其物性研究打来了大门,将对二维拓扑电子学材料的发展起到重要的推动作用。
然而,该篇报道中所使用的生长方法采用Bi2Te3作为衬底,该材料为以5个Te-Bi-Te-Bi-Te原子层为基本单元的层状结构,层内原子通过sp3化学键链接,而层与层之间仅通过微弱的范德华力连接。因此,其表面也没有多余的悬挂键,在其上生长Sn的时候,Sn原子无法与下层Bi2Te3原子形成sp3化学键,而是通过范德华力连接,而其自身的原子间则通过sp2化学键相连,形成二维的锡烯。由于类似Bi2Te3的层状材料较为罕见,通常不是常规半导体领域的常见材料,而且尺寸较小,针对未来锡烯的实际应用会带来很大障碍。在常规的半导体材料的外延生长中,外延层材料都是与衬底直接形成sp3化学键。此外,该方法制备的锡烯尺寸仅在纳米量级。所以,层状衬底上的锡烯生长在衬底的选择上有严苛的限制,生长方法上也与常规外延生长迥异,难度巨大,获得的锡烯材料尺寸很小,无法满足对锡烯材料的进一步研究以及将来的应用需求。
发明内容
本发明的目的是提供一种二维锡烯材料的制备方法,从而解决现有技术中的锡烯材料的制备中衬底材料的选择范围大大受限、不易操作的缺陷。
为了解决上述技术问题,本发明采用以下技术方案:
本发明提供一种二维锡烯材料的制备方法,所述制备方法包括以下步骤:1)在单晶衬底上外延生长单层或多原子层的α-Sn晶体薄膜,其中,所述单晶衬底与α-Sn晶体薄膜的Sn原子之间通过sp3化学键相连;2)采用原子和/或离子和/或电子进行轰击,在所述单晶衬底与α-Sn晶体薄膜的界面处形成钝化层或非晶态层以断开所述sp3化学键,所述α-Sn晶体薄膜的Sn原子之间重构成sp2化学键形成一种二维锡烯材料。
所述单晶衬底是具有任意晶面取向的单晶衬底。
所述单晶衬底的晶格常数小于、等于或大于所述α-Sn材料的晶格常数。换句话说,所述单晶衬底可以是与所述α-Sn晶体薄膜和二维锡烯材料晶格匹配的单晶衬底,也可以是与所述α-Sn晶体和二维锡烯材料晶格失配的单晶衬底,因此本发明所使用的衬底包含了所有衬底的情况,大大拓宽了衬底的选择范围。
所述外延生长通过以下方法中的一种实现:分子束外延技术、金属有机化学气相外延技术、液相外延、热壁外延、液滴外延、迁移增强外延、单原子层外延、溅射法、脉冲激光沉积及其它使用蒸发元素或者离子束的晶体沉积技术,这些外延生长技术均属于常规技术手段。
所述原子和/或离子为VI族元素(O、S、Se、Te、Po)、卤族元素(F、Cl、Br、I、At)和H中的一种或几种。
所述单晶衬底作为举例而非限制地,可选自GaAs、InSb、InP、GaSb、InAs、Si、Ge、CdTe、HgTe、CdS、ZnSe、Al2O3、GaN、AlN或InN。
α-Sn是Sn金属的一个相,为金刚石结构,在分子束外延中实验报导过,但相关研究很少,主要原因是当时缺少研究该材料的动机。α-Sn(111)面的原子为六边形排列,与锡烯相似,且晶格常数相同。如果外延生长单个原子层的α-Sn薄膜,其形貌与锡烯非常相似,主要区别为其与以下衬底材料通过sp3键相连,不是真正的独立(freestanding)的二维材料。本申请创造性地提出可以基于单原子层或几层原子的α-Sn薄膜,通过断裂其与衬底的化学键而构成锡烯的方法。其优点在于,首先可采用常规的商用单晶衬底;其次第一步生长的方式为常规外延,难度比已报导方法显著降低;最后由于常见半导体衬底相对于Bi2Te3等特殊材料面积大,有望可以制备出晶圆级尺寸锡烯材料。
因此,本发明提供了一种二维锡烯材料的制备方法,虽然通过本发明制备而来的二维锡烯材料与现有技术中上海交通大学研究团队制备的二维锡烯材料本身结构相同,但是,本发明提供了一种原理完全不同的制备方法,该方法首先在衬底上通过常规外延技术外延生长具有金刚石结构的α-Sn晶体薄膜,再通过形成钝化层或者非晶态层来断开α-Sn晶体薄膜与衬底层之间的sp3化学键,获得二维锡烯材料,一方面降低了对衬底的要求,适用于各种单晶衬底,另一方面该方法简单,易于操作。总之,本发明相对现有技术提供了一种衬底选择范围扩大的、可行的、易操作、简单的二维锡烯材料的制备方法。
附图说明
图1是根据本发明提供的二维锡烯材料的制备方法的流程示意图;
图2是根据本发明的一个优选实施例的以GaAs为衬底材料制备二维锡烯材料方法的示意图;
图3是根据本发明的另一优选实施例的以InSb(111)为衬底材料制备二维锡烯材料方法的示意图。
具体实施方式
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
如图1所示,本发明提供了一种二维锡烯材料的制备方法,该方法包括以下步骤:
(1)在单晶衬底上通过常规外延技术生长出单层或多原子层的α-Sn晶体薄膜,其中单晶衬底与α-Sn晶体薄膜之间通过sp3化学键相连;
(2)从VIA族元素(O、S、Se、Te、Po),卤族元素(F、Cl、Br、I、At)和H中选取一种或多种元素的原子、离子或电子轰击样品;
(3)原子、离子或电子与单晶衬底的原子成键,钝化衬底表面,或者将衬底表面转化成非晶态化合物,从而断裂α-Sn薄膜与衬底间的sp3键,Sn原子间重构成sp2键形成二维锡烯。
根据本发明提供的上述方法,通过在单晶衬底上外延生长具有金刚石结构的α-Sn晶体薄膜,并通过形成钝化层或者非晶态层来断开锡薄膜与衬底层之间的sp3化学键,获得二维的锡烯材料,方法简单,操作易于控制。
实施例1
本实施例以GaAs为衬底来说明本发明二维锡烯材料的制备方法,但是实际并不仅限于GaAs,该方法可以直接扩展到其他单晶衬底。其中,二维锡烯和α-Sn晶体薄膜都与GaAs衬底晶格失配,以下提到的生长方法包含但不限于分子束外延(MBE)和金属有机化合物化学气相沉淀(MOCVD),具体步骤如下,如图2所示:
1)在GaAs衬底上,在As保护的情况下,通过580℃以上温度脱氧并退火获得较高质量的GaAs表面;
2)在GaAs表面生长GaAs缓冲层,得到高质量的GaAs表面;
3)在GaAs表面生长出单层或多原子层的α-Sn晶体薄膜;
4)在粒子注入设备中选取O原子轰击衬底上外延生长的单层或多层α-Sn晶体薄膜,O原子与衬底上的原子成键,钝化衬底表面,从而断裂α-Sn晶体薄膜与衬底间的sp3键,Sn原子间重构成sp2键形成二维锡烯。
实施例2
本实施例以InSb(111)为衬底材料来说明二维锡烯材料的制备方法,但是实际并不仅限于InSb(111),该方法可以直接扩展到其他单晶衬底。其中,二维锡烯和α-Sn晶体薄膜都与InSb(111)衬底晶格匹配,以下提到的生长方法包含但不限于分子束外延(MBE)和金属有机化合物化学气相沉淀(MOCVD),具体步骤如下,如图3所示:
1)InSb(111)衬底在Sb束流保护下,在高于500℃脱氧,获得较高质量的InSb(111)表面;
2)在InSb(111)表面外延生长InSb缓冲层,获得高质量InSb(111)表面;
3)在InSb(111)晶面上外延生长出单层或多原子层的α-Sn薄膜;
4)在生长设备或者离子注入设备中选取Bi原子轰击衬底上外延生长的单层α-Sn薄膜,Bi原子和In原子可以形成InBi合金在较低温度下融化形成InBi非晶态化合物,从而断裂α-锡晶体薄膜与衬底间的sp3键,锡原子间重构成sp2键形成二维锡烯。
根据本发明提供的上述两个实施例,分别采用了“晶格失配”的单晶衬底以及“晶格匹配”的单晶衬底,一起涵盖了所有衬底的情况,因此,根据本发明提供的上述制备方法,大大拓宽了衬底的选择范围,并且方法简单,操作易于控制。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (6)

1.一种二维锡烯材料的制备方法,其特征在于,所述制备方法包括以下步骤:
1)在单晶衬底上外延生长单层或多原子层的α-Sn晶体薄膜,其中,所述单晶衬底与α-Sn晶体薄膜的Sn原子之间通过sp3化学键相连;
2)采用原子和/或离子和/或电子进行轰击,在所述单晶衬底与α-Sn晶体薄膜的界面处形成钝化层或非晶态层以断开所述sp3化学键,所述α-Sn晶体薄膜的Sn原子之间重构成sp2化学键形成一种二维锡烯材料。
2.根据权利要求1所述的制备方法,其特征在于,所述单晶衬底是具有任意晶面取向的单晶衬底。
3.根据权利要求2所述的制备方法,其特征在于,所述单晶衬底的晶格常数小于、等于或大于所述α-Sn晶体薄膜的晶格常数。
4.根据权利要求1所述的制备方法,其特征在于,所述外延生长通过以下方法中的一种实现:分子束外延技术、金属有机化学气相外延技术、液相外延、热壁外延、液滴外延、迁移增强外延、单原子层外延、溅射法、脉冲激光沉积。
5.根据权利要求1所述的制备方法,其特征在于,所述原子和/或离子为O、S、Se、Te、Po、F、Cl、Br、I、At和H中的一种或几种。
6.根据权利要求1所述的制备方法,其特征在于,所述单晶衬底选自GaAs、InSb、InP、GaSb、InAs、Si、Ge、CdTe、HgTe、CdS、ZnSe、Al2O3、GaN、AlN或InN。
CN201610436234.XA 2016-06-17 2016-06-17 一种二维锡烯材料的制备方法 Expired - Fee Related CN105951055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610436234.XA CN105951055B (zh) 2016-06-17 2016-06-17 一种二维锡烯材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610436234.XA CN105951055B (zh) 2016-06-17 2016-06-17 一种二维锡烯材料的制备方法

Publications (2)

Publication Number Publication Date
CN105951055A CN105951055A (zh) 2016-09-21
CN105951055B true CN105951055B (zh) 2018-07-13

Family

ID=56906179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610436234.XA Expired - Fee Related CN105951055B (zh) 2016-06-17 2016-06-17 一种二维锡烯材料的制备方法

Country Status (1)

Country Link
CN (1) CN105951055B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825591A (zh) * 2017-03-23 2017-06-13 厦门圣之岛金属科技有限公司 一种锡烯粉体的制备方法
CN106987904A (zh) * 2017-03-23 2017-07-28 厦门圣之岛金属科技有限公司 一种锡烯材料及其制备方法
CN107623123B (zh) * 2017-09-21 2019-01-04 超晶科技(北京)有限公司 一种锡烯材料及其制备方法以及使用该锡烯材料的电池
CN107723789B (zh) * 2017-09-27 2020-05-12 南京大学 一种高质量灰锡单晶薄膜的低温外延制备方法
CN112756602B (zh) * 2020-12-23 2022-12-16 苏州大学张家港工业技术研究院 独立单原子厚金属膜及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798706B (zh) * 2009-02-10 2014-04-02 中国科学院物理研究所 在碳化硅(SiC)基底上外延生长石墨烯的方法
CN101602503B (zh) * 2009-07-20 2011-04-27 西安电子科技大学 4H-SiC硅面外延生长石墨烯的方法
EP3114252A1 (en) * 2014-03-06 2017-01-11 True 2 Materials Pte Ltd Method for manufacture of films and foams
CN104818526A (zh) * 2015-01-27 2015-08-05 夏洋 一种气相生长二维材料的方法

Also Published As

Publication number Publication date
CN105951055A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105951055B (zh) 一种二维锡烯材料的制备方法
Bae et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications
Montes et al. Demonstration of mechanically exfoliated β-Ga2O3/GaN pn heterojunction
Wang et al. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays
He et al. Review of 3D topological insulator thin‐film growth by molecular beam epitaxy and potential applications
KR101631043B1 (ko) 고성능 열전 속성을 갖는 나노구조체
CN102995117B (zh) 拓扑绝缘体结构的制备方法
CN103022341B (zh) 拓扑绝缘体结构
Lu et al. Semimetal/semiconductor nanocomposites for thermoelectrics
CN104011883A (zh) 制造半导体微或纳米线的方法、包括所述微或纳米线的半导体结构和制造半导体结构的方法
CN103022344B (zh) 拓扑绝缘体结构
Bahk et al. Thermoelectric figure of merit of (in 0.53 ga 0.47 as) 0.8 (in 0.52 al 0.48 as) 0.2 iii-v semiconductor alloys
Jiang et al. Selective area epitaxy of PbTe-Pb hybrid nanowires on a lattice-matched substrate
CN103681969A (zh) 一种基于SiC衬底光导开关制作方法
Ashery et al. Structural, electrical and magnetic characterizations of Ni/Cu/p-Si Schottky diodes prepared by liquid phase epitaxy
CN108767108A (zh) 霍尔器件制备方法及霍尔器件
Liang et al. Controlled growth of two-dimensional heterostructures: in-plane epitaxy or vertical stack
An et al. Multifunctional 2D CuSe monolayer nanodevice
Johnson et al. Sputtered metal oxide broken gap junctions for tandem solar cells
CN206907738U (zh) 一种基于离子注入的GaN功率器件
Tianyu et al. Study on Band Structure and Spectrum of Mg x Zn1–x O Based on First Principles
CN104409341A (zh) 碳化硅衬底上制备欧姆接触电极的方法
Englhard et al. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth
Shigekawa et al. Heterojunctions fabricated by surface activated bonding–dependence of their nanostructural and electrical characteristics on thermal process
Xiong et al. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180713

CF01 Termination of patent right due to non-payment of annual fee