CN105949469B - 基于Diels-Alder可逆反应的高分子材料的界面改性方法 - Google Patents

基于Diels-Alder可逆反应的高分子材料的界面改性方法 Download PDF

Info

Publication number
CN105949469B
CN105949469B CN201610466580.2A CN201610466580A CN105949469B CN 105949469 B CN105949469 B CN 105949469B CN 201610466580 A CN201610466580 A CN 201610466580A CN 105949469 B CN105949469 B CN 105949469B
Authority
CN
China
Prior art keywords
polymer
modification
abs
interface modification
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610466580.2A
Other languages
English (en)
Other versions
CN105949469A (zh
Inventor
王市伟
冷瑜婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201610466580.2A priority Critical patent/CN105949469B/zh
Publication of CN105949469A publication Critical patent/CN105949469A/zh
Application granted granted Critical
Publication of CN105949469B publication Critical patent/CN105949469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33317Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/025Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种基于Diels‑Alder可逆反应的高分子材料的界面改性方法,属于高分子材料领域。本发明提供一种高分子材料的界面改性方法,所述改性方法为:将聚合物1和聚合物2通过Diels‑Alde反应得到聚合物1/聚合物2复合材料;其中,聚合物1为含有共轭双烯结构的聚合物,聚合物2为带有吸电子基的含双键或者三键的聚合物。本发明提供一种基于Diels‑Alder可逆反应的高分子材料的界面改性方法,改善了两种高分子材料之间的界面结合性,从而提高了高分子复合材料的力学性能。

Description

基于Diels-Alder可逆反应的高分子材料的界面改性方法
技术领域
本发明涉及一种基于Diels-Alder可逆反应的高分子材料的界面改性方法,属于高分子材料领域。
背景技术
近年来,聚合物(高分子)材料在许多领域越来越多地被使用,随之而来的是,为了满足各种需要求,作为基质的聚合物的性状、以及其表面、界面的特性变得重要。例如,要求聚合物的表面或界面具有粘合性、粘结性、非粘着性、防静电性、生体相容性等特性。
为了对聚合物的表面、界面赋予上述特性,目前已知多种聚合物的表面(界面)改性法主要有官能团功能化、添加界面改性剂等。
但是现有技术中,利用可逆反应调控高分子材料间的界面结合力等,实现界面改性增强粘合作用尚未见到报道。
发明内容
本发明所要解决的技术问题是提供一种基于Diels-Alder(D-A)可逆反应的高分子材料的界面改性方法;本发明方法很好地改善了高分子材料之间的界面性,利用本发明方法制得的复合材料力学性能得到改善。
本发明的技术方案:
本发明要解决的第一个技术问题是提供了一种高分子材料的界面改性方法,具体为:将聚合物1和聚合物2通过Diels-Alde反应得到聚合物1/聚合物2复合材料;其中,聚合物1为含有共轭双烯结构的聚合物,聚合物2为带有吸电子基的含双键或者三键的聚合物。本发明首次提出,含有共轭双烯结构的聚合物与含双键或三键的聚合物通过D-A反应可改善上述两种聚合物之间的界面结合力等。
本发明要解决的第二个技术问题是提供了一种高分子材料的界面改性方法,包括下述步骤:
1)将聚合物3通过改性制成含共轭双烯结构的聚合物1;
2)聚合物1与聚合物2通过Diels-Alde反应得到聚合物1/聚合物2复合材料;其中,聚合物2为带有吸电子基的含双键或者三键的聚合物。
进一步,上述高分子材料的界面改性方法中,所述聚合物3为聚乳酸或聚乙烯醇。
所述聚合物2为ABS、PMMA或聚乙炔、聚氨酯。
进一步,上述高分子材料的界面改性方法中,聚合物3通过改性制成含共轭双烯结构的聚合物1的方法为:聚合物3与改性剂于50~200℃下反应4~24小时;其中,改性剂为呋喃醇、吡咯醇、呋喃羧酸或吡咯羧酸。
优选的,聚合物3与改性剂于100~200℃下反应6~10小时。
进一步,所述聚合物3为聚乳酸,所述聚合物2为ABS,所述改性剂为呋喃醇或吡咯醇。
进一步,所述聚合物3为聚乙二醇,所述聚合物2为ABS,所述改性剂为吡咯羧酸或吡咯羧酸。
进一步,当所述聚合物3为聚乳酸或聚乙二醇,聚合物2为ABS,所述改性剂为呋喃醇或呋喃羧酸时,聚合物3与改性剂的摩尔比为1:1;聚合物2与聚合物1的摩尔比为1:1。
本发明的有益效果:
本发明提供一种基于Diels-Alder可逆反应的高分子材料的界面改性方法,改善了两种高分子材料之间的界面结合性,从而提高了高分子复合材料的力学性能。
具体实施方式
本发明要解决的第二个技术问题是提供了一种高分子材料的界面改性方法,包括下述步骤:
1)将聚合物3通过改性制成含共轭双烯结构的聚合物1;
2)聚合物1与聚合物2通过Diels-Alde反应得到聚合物1/聚合物2复合材料;
其中,聚合物2为带有吸电子基的含双键或者三键的聚合物。
其中,D-A反应过程如下所示:
①D-A反应原料制备:
1、通过呋喃醇或吡咯醇与PLA发生简易酯化反应,反应温度在50~200℃,反应时间4~24小时,常压下生成PLA-呋喃/吡咯型双烯体(A),反应路线如下:其中X表示N、O原子
PLA-呋喃/吡咯型双烯体合成路线
2、通过呋喃羧酸或吡咯羧酸与PEG发生简易酯化反应,反应温度在50~200℃,反应时间4~24小时,常压下生成PEG-呋喃/吡咯型双烯体(B),反应路线如下:其中X表示N、O原子
PEG-呋喃/吡咯型双烯体合成路线
3、通过PEG-吡咯型双烯体与PLA发生简易酰胺化反应,反应温度在50~200℃,反应时间4~24小时,常压下生成PLA-吡咯-PEG型双烯体(C),反应路线如下:
PLA-吡咯-PEG型双烯体合成路线
4、通过氮羟基马来酰亚胺与端羧基PLA发生简易酯化反应,反应温度在50-200℃,反应时间4-24小时,常压下生成PLA-马来酰亚胺亲双烯体(D),反应路线如下:
PLA-马来酰亚胺亲双烯体合成路线图
②D-A反应:
1、物质A与物质D在加热条件下发生D-A反应生成产物E,反应温度在50-200℃,反应时间4-24小时,反应路线如下:(其中X表示N、O原子)
PLA/PLA基D-A反应路线图
2、物质B与物质D在加热条件下发生D-A反应生成产物F,反应温度在50-200℃,反应时间4-24小时,反应路线如下:(其中X表示N、O原子)
PLA/PEG基D-A反应路线图
3、物质C与ABS在加热条件下发生D-A反应生成产物G,反应温度在50-200℃,反应时间4-24小时,反应路线如下:
PLA/PEG/ABS基D-A反应路线图
4、物质A与ABS在加热条件下发生D-A反应生成产物G,反应温度在50-200℃,反应时间4-24小时,反应路线如下:
PLA-呋喃型双烯体-ABS基D-A反应路线图
以下实施例只是几种典型的实施方式,并不能起到限制本发明的作用,本领域的技术人员可以参照实施例对技术方案进行合理的设计,同样能够获得本发明的结果。
实施例1
试样制备:
1)聚乳酸(聚合物3)与呋喃醇在常压下反应得到PLA-呋喃型双烯体(聚合物1);其中,聚乳酸与呋喃醇的摩尔比为1:1,反应温度为100℃,反应时间为10小时;
2)然后将步骤1)所得PLA-呋喃型双烯体与ABS(聚合物2)进行D-A反应得到产物;其中,PLA-呋喃型双烯体与ABS的摩尔比为1:1,反应温度为100℃,反应时间为10小时。
实施例2
试样制备:
1)聚乳酸与呋喃醇在常压下反应得到PLA-呋喃型双烯体(聚合4);其中,聚乳酸与呋喃醇的摩尔比为1:1,反应温度为150℃,反应时间为6小时;
2)然后将步骤1)所得PLA-呋喃型双烯体与ABS(聚合物2)进行D-A反应得到产物;其中,PEG-呋喃型双烯体与ABS的摩尔比为1:1,反应温度为150℃,反应时间为6小时。
实施例3
试样制备:
1)聚乙二醇与吡咯羧酸在常压下反应得到PEG-吡咯型双烯体(聚合4);其中,聚乙二醇与吡咯羧酸的摩尔比为1:1,反应温度为200℃,反应时间为4小时;
2)然后将步骤1)所得PEG-吡咯型双烯体与PMMA(聚合物2)进行D-A反应得到产物;其中,PEG-吡咯型双烯体与ABS的摩尔比为1:1,反应温度为150℃,反应时间为4小时。
对比例1
1)聚乳酸与呋喃醇在常压下反应得到PLA-呋喃型双烯体;其中,聚乳酸与呋喃醇的摩尔比为1:1,反应温度为150℃,反应时间为6小时;
2)然后将步骤1)所得PLA-呋喃型双烯体与未改性PLA进行D-A反应得到产物;其中,PLA-呋喃型双烯体与未改性PLA的摩尔比为1:1,反应温度为150℃,反应时间为6小时。
对比例2
不采用D-A反应设计,PLA和ABS直接按照摩尔比为1:1打印成样条进行拉伸测试。
性能测试
将实施例与对比例所得的材料通过FDM模式3D打印机打印成哑铃型样条,打印温度为150℃,样条尺寸和拉伸测试条件满足ASTM/D638-91要求,获得性能见表1。由表1可知,采用D-A反应设计的实施例1、2、3试样的拉伸性能和断裂伸长率均有所提高,显示出明显的力学性能提高效果,从而说明经过这种设计使得材料体系的界面结合得到改善。PLA自身通过D-A反应同样取得了强度提高的结果,强度达到67MPA,但是断裂伸长率并没有改善,原因是没有ABS,不能提高韧性。不采用D-A反应设计的PLA-ABS复合材料的拉伸强度为43MPa,断裂伸长为25%,低于采用D-A改性的产品。
聚乳酸是目前商品化较多的熔融沉积成型(FDM)材料,广泛应用于生物医药、组织工程等领域。然而由于聚乳酸韧性差、冲击强度低,FDM层间界面结合不足,限制了其在增材制造领域的应用;目前一般通过共混、复合等方式改善聚乳酸材料的结构从而提高力学性能。
丙烯腈-丁二烯-苯乙烯共聚物(ABS)基于其抗冲击性强、易加工等优点,近年来被广泛的应用于非降解材料的增材制造;将聚乳酸和ABS共混合金化,将可能获得刚韧平衡的高性能材料。然而由于聚乳酸和ABS较高的分子量在加工中易发生相分离导致不相容,从而力学性能下降,尤其是经历FDM中温度变化后获得的制品不能维持较好的界面结合。
Diels-Alder反应利用双烯体和亲双烯体的反应构筑碳-碳键,具有温度控制的可逆性。本发明利用Diels-Alder反应调控方法使得材料自身重排和再结合实现界面结合改善,相较于常用的改变界面结合的方法具有效率高、操作简便、制备过程中无需添加额外助剂等优势。表1改性PLA复合材料的力学性能
拉伸强度MPa 断裂伸长率%
实施例1 68 125
实施例2 67 142
实施例3 73 150
对比例1 67 30
对比例2 43 25
ABS 45 100
PLA 60 25

Claims (14)

1.高分子材料的界面改性方法,所述改性方法为:将聚合物1和聚合物2通过Diels-Alde反应得到聚合物1/聚合物2复合材料;其中,聚合物1为含有共轭双烯结构的聚合物,聚合物2为带有吸电子基的含双键或者三键的聚合物。
2.根据权利要求1所述高分子材料的界面改性方法,其特征在于,所述聚合物2为ABS、PMMA或聚乙炔、聚氨酯。
3.高分子材料的界面改性方法,所述改性方法包括下述步骤:
1)将聚合物3通过改性制成含共轭双烯结构的聚合物1;
2)聚合物1与聚合物2通过Diels-Alde反应得到聚合物1/聚合物2复合材料;其中,聚合物2为带有吸电子基的含双键或者三键的聚合物。
4.根据权利要求3所述高分子材料的界面改性方法,其特征在于,所述聚合物3为聚乳酸或聚乙烯醇。
5.根据权利要求3或4所述高分子材料的界面改性方法,其特征在于,所述聚合物2为ABS、PMMA或聚乙炔、聚氨酯。
6.根据权利要求3或4所述高分子材料的界面改性方法,其特征在于,聚合物3通过改性制成含共轭双烯结构的聚合物1的方法为:聚合物3与改性剂于50~200℃下反应4~24小时;其中,改性剂为呋喃醇、吡咯醇、呋喃羧酸或吡咯羧酸。
7.根据权利要求5所述高分子材料的界面改性方法,其特征在于,聚合物3通过改性制成含共轭双烯结构的聚合物1的方法为:聚合物3与改性剂于50~200℃下反应4~24小时;其中,改性剂为呋喃醇、吡咯醇、呋喃羧酸或吡咯羧酸。
8.根据权利要求6所述高分子材料的界面改性方法,其特征在于,聚合物3与改性剂于100~200℃下反应6~10小时。
9.根据权利要求6所述高分子材料的界面改性方法,其特征在于,所述聚合物3为聚乳酸,所述聚合物2为ABS,所述改性剂为呋喃醇或吡咯醇。
10.根据权利要求7所述高分子材料的界面改性方法,其特征在于,所述聚合物3为聚乳酸,所述聚合物2为ABS,所述改性剂为呋喃醇或吡咯醇。
11.根据权利要求6所述高分子材料的界面改性方法,其特征在于,所述聚合物3为聚乙二醇,所述聚合物2为ABS,所述改性剂为吡咯羧酸或吡咯羧酸。
12.根据权利要求7所述高分子材料的界面改性方法,其特征在于,所述聚合物3为聚乙二醇,所述聚合物2为ABS,所述改性剂为吡咯羧酸或吡咯羧酸。
13.根据权利要9或10所述高分子材料的界面改性方法,其特征在于,聚合物3通过改性制成含共轭双烯结构的聚合物1的方法中,聚合物3与改性剂的摩尔比为1:1;聚合物2与聚合物1的摩尔比为1:1。
14.根据权利要11或12所述高分子材料的界面改性方法,其特征在于,聚合物3通过改性制成含共轭双烯结构的聚合物1的方法中,聚合物3与改性剂的摩尔比为1:1;聚合物2与聚合物1的摩尔比为1:1。
CN201610466580.2A 2016-06-23 2016-06-23 基于Diels-Alder可逆反应的高分子材料的界面改性方法 Active CN105949469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610466580.2A CN105949469B (zh) 2016-06-23 2016-06-23 基于Diels-Alder可逆反应的高分子材料的界面改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610466580.2A CN105949469B (zh) 2016-06-23 2016-06-23 基于Diels-Alder可逆反应的高分子材料的界面改性方法

Publications (2)

Publication Number Publication Date
CN105949469A CN105949469A (zh) 2016-09-21
CN105949469B true CN105949469B (zh) 2019-03-01

Family

ID=56904712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610466580.2A Active CN105949469B (zh) 2016-06-23 2016-06-23 基于Diels-Alder可逆反应的高分子材料的界面改性方法

Country Status (1)

Country Link
CN (1) CN105949469B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108129652B (zh) * 2017-12-25 2020-04-07 湖南华腾制药有限公司 一种聚乙二醇赖氨酸马来酰亚胺硫鸟嘌呤结合物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034936A (zh) * 1988-02-01 1989-08-23 欧西丹德化学公司 具紫外线稳定性和耐冲击性及阻燃性的含脂族树脂的丙烯腈—丁二烯—苯乙烯共聚物之组成物
US5310796A (en) * 1993-03-23 1994-05-10 Lord Corporation Adhesive with polyesterurethane, halogenated polyolefin and Diels-Alder adduct
CN1569955A (zh) * 2003-04-05 2005-01-26 罗姆和哈斯电子材料有限责任公司 电子器件的制造
WO2008124682A3 (en) * 2007-04-10 2008-12-24 Valspar Sourcing Inc Oxygen-scavenging materials and articles formed therefrom
CN102949956A (zh) * 2011-10-26 2013-03-06 深圳诺普信农化股份有限公司 松脂基非离子表面活性剂及其制备和应用
CN103080242A (zh) * 2010-09-06 2013-05-01 赢创罗姆有限公司 经由与双腙或共轭双席夫碱的氮杂狄尔斯-阿尔德反应而具有可控粘度或可逆交联的功能材料
CN103649180A (zh) * 2011-07-26 2014-03-19 赢创罗姆有限公司 用于制备三维物体的聚合物粉末
CN103642199A (zh) * 2013-12-06 2014-03-19 南开大学 一种可逆共价交联聚氨酯-环氧树脂复合材料及其制备
CN104628895A (zh) * 2015-01-27 2015-05-20 上海交通大学 一种苯乙烯类热塑性弹性体材料热可逆交联的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034936A (zh) * 1988-02-01 1989-08-23 欧西丹德化学公司 具紫外线稳定性和耐冲击性及阻燃性的含脂族树脂的丙烯腈—丁二烯—苯乙烯共聚物之组成物
US5310796A (en) * 1993-03-23 1994-05-10 Lord Corporation Adhesive with polyesterurethane, halogenated polyolefin and Diels-Alder adduct
CN1569955A (zh) * 2003-04-05 2005-01-26 罗姆和哈斯电子材料有限责任公司 电子器件的制造
WO2008124682A3 (en) * 2007-04-10 2008-12-24 Valspar Sourcing Inc Oxygen-scavenging materials and articles formed therefrom
CN103080242A (zh) * 2010-09-06 2013-05-01 赢创罗姆有限公司 经由与双腙或共轭双席夫碱的氮杂狄尔斯-阿尔德反应而具有可控粘度或可逆交联的功能材料
CN103649180A (zh) * 2011-07-26 2014-03-19 赢创罗姆有限公司 用于制备三维物体的聚合物粉末
CN102949956A (zh) * 2011-10-26 2013-03-06 深圳诺普信农化股份有限公司 松脂基非离子表面活性剂及其制备和应用
CN103642199A (zh) * 2013-12-06 2014-03-19 南开大学 一种可逆共价交联聚氨酯-环氧树脂复合材料及其制备
CN104628895A (zh) * 2015-01-27 2015-05-20 上海交通大学 一种苯乙烯类热塑性弹性体材料热可逆交联的方法

Also Published As

Publication number Publication date
CN105949469A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
Gu et al. Tough, strong, and biodegradable composite film with excellent UV barrier performance comprising soy protein isolate, hyperbranched polyester, and cardanol derivative
Wang et al. Dual-network nanocross-linking strategy to improve bulk mechanical and water-resistant adhesion properties of biobased wood adhesives
Zhang et al. High performance and multifunctional protein-based adhesive produced via phenol-amine chemistry and mineral reinforcement strategy inspired by arthropod cuticles
Liu et al. Toward fully bio-based and supertough PLA blends via in situ formation of cross-linked biopolyamide continuity network
Rahman et al. Designing block copolymer architectures toward tough bioplastics from natural rosin
Zhang et al. Improving bond performance and reducing cross-linker dosage for soy flour adhesives inspired by spider silk
CN103214623B (zh) 一种表面接枝改性纳米纤维素晶体的制备方法
Jin et al. Development of conductive protein-based film reinforced by cellulose nanofibril template-directed hyperbranched copolymer
Das et al. Novel materials from unsaturated polyester resin/styrene/tung oil blends with high impact strengths and enhanced mechanical properties
Qiao et al. Preparation and performance of silica/epoxy group-functionalized biobased elastomer nanocomposite
CN103965598B (zh) 改性聚乳酸及其制备方法
Zhao et al. Recent advances in compatibility and toughness of poly (lactic acid)/poly (butylene succinate) blends
Chen et al. A biomimetic adhesive with high adhesion strength and toughness comprising soybean meal, chitosan, and condensed tannin-functionalized boron nitride nanosheets
Yang et al. Toughening of Poly (L-Lactide) with branched polycaprolactone: Effect of chain length
Ge et al. Preparation of supertough polylactide/polybutylene succinate/epoxidized soybean oil bio-blends by chain extension
CN110105781A (zh) 一种基于聚丙烯酰基多巴胺仿生界面改性增强竹粉/聚乙烯界面相容性技术
Liu et al. Manufacturing of thermally remoldable blends from epoxidized soybean oil and poly (lactic acid) via dynamic cross-linking in a twin-screw extruder
Huang et al. Facile preparation of supertoughened polylactide-based thermoplastic vulcanizates without sacrificing the stiffness based on the selective distribution of silica
Mashouf Roudsari et al. A study of mechanical properties of biobased epoxy network: Effect of addition of epoxidized soybean oil and poly (furfuryl alcohol)
CN108948689B (zh) 一种反应挤出法改性聚乳酸-木质素复合材料及制备方法
Liu et al. Hybrid HNTs-kenaf fiber modified soybean meal-based adhesive with PTGE for synergistic reinforcement of wet bonding strength and toughness
Zhou et al. A novel network-structured compatibilizer for improving the interfacial behavior of PBS/lignin
KR20220025820A (ko) 2개의 중합성 기를 갖는 화합물, 다단 중합체 및 열가소성 중합체를 포함하는 조성물, 그의 제조 방법, 그의 용도 및 이를 포함하는 물품
CN105949469B (zh) 基于Diels-Alder可逆反应的高分子材料的界面改性方法
Zhao et al. Fully biobased elastomer composites with mechanically robust, reprocessable, and biocompatible properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant