CN105921114B - 一种百草枯磁性吸附剂及其制备方法 - Google Patents

一种百草枯磁性吸附剂及其制备方法 Download PDF

Info

Publication number
CN105921114B
CN105921114B CN201610266521.0A CN201610266521A CN105921114B CN 105921114 B CN105921114 B CN 105921114B CN 201610266521 A CN201610266521 A CN 201610266521A CN 105921114 B CN105921114 B CN 105921114B
Authority
CN
China
Prior art keywords
particle
magnetic
paraquat
dopamine
magnetic nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610266521.0A
Other languages
English (en)
Other versions
CN105921114A (zh
Inventor
张怀红
孙柏旺
孙玉
仓辉
蔡照胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hai Pu functional materials company limited
Original Assignee
Yangcheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangcheng Institute of Technology filed Critical Yangcheng Institute of Technology
Priority to CN201610266521.0A priority Critical patent/CN105921114B/zh
Publication of CN105921114A publication Critical patent/CN105921114A/zh
Application granted granted Critical
Publication of CN105921114B publication Critical patent/CN105921114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开一种百草枯磁性吸附剂及其制备方法,该磁性吸附剂由羧甲基柱[6]芳烃和多巴胺包覆的磁性纳米粒子制得,多巴胺包覆的磁性纳米粒子由多巴胺和Fe3O4磁性纳米粒子制得。该磁性吸附剂的制备方法包括:制备Fe3O4磁性纳米粒子;将Fe3O4磁性纳米粒子和多巴胺以1︰0.5~5的质量比混合,得到多巴胺包覆的磁性纳米粒子;将羧甲基柱[6]芳烃与多巴胺包覆的磁性纳米粒子以1~10︰1的质量比混合,通过酰胺化反应将羧甲基柱芳烃固定到Fe3O4磁性纳米粒子表面;碱化,得到百草枯磁性吸附剂。本发明首次将易分离的磁性纳米材料与大环主体柱[6]芳烃结合,制得的百草枯磁性吸附剂吸附效果好,操作简单,且其回收及再生率高,循环吸收多次后仍能保持很好的吸附性能。

Description

一种百草枯磁性吸附剂及其制备方法
技术领域
本发明涉及一种吸附剂及其制备方法,具体涉及一种百草枯磁性吸附剂及其制备方法。
背景技术
农药是农业生产必不可少的生产资料,但目前其利用率较低,据美国康奈尔大学介绍,全世界每年使用的400多万吨农药,发挥效能的仅占1%,其余的99%都散逸于土壤、空气及水体之中。农药进入水体后会严重影响地表水和地下水的质量、不利于水生生物的生存,甚至会破坏水生生态系统的平衡,造成极其严重的后果。百草枯(Paraquat,l,l-二甲基-4,4-二氯二吡啶)是一种阳离子、水溶性除草剂,作为世界销量第二的农药产品,被130多个国家应用在100多种作物上,其具有很强的毒性,经皮肤、呼吸道及消化道吸收进入人体后会引起中毒症状,死亡率高达40-50%。百草枯具有很好的水溶性,能在环境中蓄积而导致严重的水污染,给生态系统和人类健康带来极大威胁。现在,许多国家严格限制使用百草枯,例如美国,新西兰和欧洲。百草枯污染的水体可生化性差,无法直接利用传统的生物法进行处理。目前,对水中百草枯污染物的处理技术主要是物理吸附,该技术的关键是吸附剂的选择,一些传统吸附剂有粘土、谷物皮、沸石及活性炭等。在实际应用中往往会面临如何分离吸附剂的困难,特别是当吸附剂微粒为纳米级的时候,如何将吸附剂从水溶液中分离出来,是水处理剂在实际应用中的关键所在。
最近,中科院福州物质结构研究所林璋采用茶叶包方式将石墨烯凝胶封装在网状茶包内用于百草枯吸附,这种方式在大规模使用时比较困难,且容易造成滤孔堵塞。近来,磁分离技术被应用到废水处理,它是借助磁场力的作用,对不同磁性的物质进行分离的一种技术。由于磁性物质在磁场中受到的磁场力比重力要大很多倍,因此该技术具有处理量大、固液分离效率高、占地面积小等优点。最近Chan等通过化学交联法合成了磁性纳米粒子-氧化石墨烯复合材料,并初步研究了其在去除污水中污染物方面的应用。
柱芳烃作为新型的大环主体分子在吸附分离领域引起人们的极大兴趣,由于具有富电性的空腔及刚性结构,可以对中性和缺电性客体分子进行识别包结。其中,羧基柱[6]芳烃与百草枯具有很强的亲和势,结合常数达1.02×108M-1,且具有pH敏感性,当溶液的pH调至6.0时,柱[6]芳烃不溶于水,百草枯会脱离它空腔,而当pH=7.4时,又会形成包结络合物。将柱[6]芳烃固定到磁性纳米粒子表面,作为百草枯吸附剂,国内外尚未见报道。
发明内容
发明目的:本发明的第一目的是提供一种百草枯磁性吸附剂,本发明的第二目的是提供该磁性吸附剂的制备方法。
技术方案:本发明所述的一种百草枯磁性吸附剂,由羧甲基柱[6]芳烃和多巴胺包覆的磁性纳米粒子制得,多巴胺包覆的磁性纳米粒子由多巴胺和Fe3O4磁性纳米粒子制得。
具体的,羧甲基柱[6]芳烃和多巴胺包覆的磁性纳米粒子的质量比为1~10︰1,Fe3O4磁性纳米粒子和多巴胺的质量比为1︰0.5~5。
其中,Fe3O4磁性纳米粒子的粒径为10~100nm。
羧甲基柱[6]芳烃的结构式为
本发明所述的一种百草枯磁性吸附剂的制备方法,包括如下步骤:
(1)制备Fe3O4磁性纳米粒子;
(2)将Fe3O4磁性纳米粒子和多巴胺以1︰0.5~5的质量比混合,得到多巴胺包覆的磁性纳米粒子;
(3)将羧甲基柱[6]芳烃与多巴胺包覆的磁性纳米粒子以1~10︰1的质量比混合,通过酰胺化反应将羧甲基柱芳烃固定到Fe3O4磁性纳米粒子表面;
(4)将步骤(3)所得产物碱化,得到百草枯磁性吸附剂。
上述步骤(1)中,Fe3O4磁性纳米粒子的制备方法包括:将摩尔比为2︰1的Fe3+和Fe2+溶解得到的Fe3+和Fe2+的混合溶液,通氮保护,在40~60℃的水浴中超声振荡1~10min,调节混合溶液的pH至9~11,继续在60~90℃的水浴中超声振荡0.5~3h后冷却至室温,分离沉淀物、洗涤至中性、真空干燥。
具体的,Fe2+为硫酸亚铁或氯化亚铁,Fe3+为三氯化铁或硫酸铁。
上述步骤(2)中,多巴胺包覆的磁性纳米粒子由以下步骤得到:将步骤(1)制得的Fe3O4磁性纳米粒子溶解、超声振荡5~60min,然后加入溶有多巴胺的碱性溶液,继续超声0.5~2h,磁铁吸附收集、洗涤、真空干燥。
上述步骤(3)中,在羧甲基柱[6]芳烃溶液中加入步骤(2)制得的多巴胺包覆的磁性纳米粒子,搅拌反应2~12h,磁铁吸附收集、洗涤、真空干燥。
上述步骤(4)中,将步骤(3)所得产物溶解,加入碱溶液,调节溶液的pH至8~12,磁铁吸附收集、洗涤、真空干燥。
有益效果:与现有技术相比,本发明的优点在于:本发明首次将易分离的磁性纳米材料与大环主体柱[6]芳烃结合,制得的百草枯磁性吸附剂可在常温常压下对水中的百草枯进行吸附,操作成本低,使用方便,吸附效果理想;吸附完成后,在外加磁场作用下,吸附剂能够与水体实现固液分离,避免二次污染;同时,根据柱[6]芳烃对pH的敏感性,可将从水体中分离出的吸附剂与百草枯解吸,实现吸附剂的循环利用;整个分离回收过程操作简便,吸附剂的回收及再生率高,且循环吸收多次后仍能保持很好的吸附性能,克服了传统吸附剂在液相吸附反应中分离步骤较多,回收过程存在质量损失的缺点,极大地方便了液相吸附反应的吸附剂回收。
附图说明
图1为实施例1制得的Fe3O4磁性纳米粒子和磁性吸附剂的透射电镜图;
图2为实施例1制得的磁性吸附剂对百草枯的吸附量随时间变化图;
图3为本发明的磁性吸附剂的吸附量与百草枯初始浓度的关系;
图4为本发明的磁性吸附剂在不同pH条件下的吸附量变化;
图5为本发明的磁性吸附剂的循环使用次数与吸附量的关系。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
本发明的百草枯磁性吸附剂,以Fe3O4磁性纳米粒子为载体,以柱[6]芳烃为百草枯捕集剂,同时以多巴胺为磁性纳米粒子(Fe3O4)功能化改性基团,通过多巴胺与羧甲基柱[6]芳烃的酰胺化学反应将捕集剂柱[6]芳烃固定到Fe3O4磁纳米粒子载体的表面上,制得的百草枯磁性吸附剂可在常温常压下对水中的百草枯进行吸附,操作成本低,吸附效果理想,而且可循环利用,在去除水中农药百草枯残留领域具有很好的应用前景。
实施例1
(1)FeCl3·6H2O(1.351g)和FeSO4·7H2O(0.695g)一起溶解在60mL脱气的超纯水中,在通氮保护下水浴加热至50℃,超声振荡2h,迅速加入25%的氨水溶液,调节pH=10,溶液的颜色由黄色变为黑色并产生黑色沉淀。然后升温到80℃继续超声振荡2h,将反应混合物冷却至室温并用超纯水洗涤直至中性,在外磁场下收集、60℃真空干燥。所得Fe3O4磁性纳米粒子的粒径为10nm。
(2)在20mL超纯水中放入10mg磁性纳米粒子Fe3O4超声30min,加入1.0mL多巴胺Tris-HCl溶液(2×10-1mol/L,pH=8.5),继续超声75min,用磁铁吸附分离,用乙腈和超纯水反复洗涤、真空干燥。
(3)取22.0mg羧甲基柱[6]芳烃溶于25mL四氢呋喃(THF)中,加入2.5mg N-羟基琥珀酰亚胺(NHS)和4.0mg 1-乙基-(3-二甲氨基丙基)碳二亚胺(EDC),它们的摩尔比为1:1:1,然后加入5.5mg步骤(2)所得的多巴胺包覆的磁性纳米粒子,搅拌反应7h,磁铁吸附收集,用超纯水和二氯甲烷(DCM)反复洗涤、真空干燥。
(4)取20mg步骤(3)所得产物溶于25mL无水乙醇中,加入40%氢氧化钠溶液,调节pH=10,磁铁收集,超纯水和无水甲醇反复洗涤、真空干燥。
如图1,其中,(a)为Fe3O4磁性纳米粒子的TEM图,(b)为制得的磁性吸附剂的TEM图,可以看出,(a)图所制备的Fe3O4磁性纳米粒子基本为粒径在50nm左右的球形,而在(b)图中可以清楚地看出,磁性Fe3O4与多巴胺反应形成的是以Fe3O4为核,多巴胺为壳的核-壳结构,多巴胺壳层的厚度约为10nm。
实施例2
(1)FeCl3·6H2O(5.4g)和FeCl2·4H2O(1.99g)一起溶解在60mL脱气的超纯水中,在通氮保护下水浴加热至40℃,超声振荡30min,迅速加入25%的氨水溶液,调节pH=9,溶液的颜色由黄色变为黑色并产生黑色沉淀。然后升温到60℃继续超声振荡30min,将反应混合物冷却至室温并用超纯水洗涤直至中性,在外磁场下收集、60℃真空干燥。所得Fe3O4磁性纳米粒子的粒径为50nm。
(2)在20mL超纯水中放入60mg磁性纳米粒子Fe3O4超声5min,加入1.0mL多巴胺Tris-HCl溶液(2×10-1mol/L,pH=8.5),继续超声30min,用磁铁吸附分离,用乙腈和超纯水反复洗涤、真空干燥。
(3)取22.0mg羧甲基柱[6]芳烃溶于25mL四氢呋喃(THF)中,加入2.5mg N-羟基琥珀酰亚胺(NHS)和4.0mg 1-乙基-(3-二甲氨基丙基)碳二亚胺(EDC),它们的摩尔比为1:1:1,然后加入22.0mg步骤(2)所得的多巴胺包覆的磁性纳米粒子,搅拌反应2h,磁铁吸附收集,用超纯水和二氯甲烷(DCM)反复洗涤、真空干燥。
(4)取20mg步骤(3)所得产物溶于25mL无水乙醇中,加入40%氢氧化钠溶液,调节pH=8,磁铁收集,超纯水和无水甲醇反复洗涤、真空干燥。
实施例3
(1)Fe2(SO4)3·4H2O(4.72g)和FeSO4·7H2O(1.39g)一起溶解在60mL脱气的超纯水中,在通氮保护下水浴加热至60℃,超声振荡3h,迅速加入25%的氨水溶液,调节pH=11,溶液的颜色由黄色变为黑色并产生黑色沉淀。然后升温至90℃继续超声振荡3h,将反应混合物冷却至室温并用超纯水洗涤直至中性,在外磁场下收集、60℃真空干燥。所得Fe3O4磁性纳米粒子的粒径为100nm。
(2)在20mL超纯水中放入30mg磁性纳米粒子Fe3O4超声60min,加入5.0mL多巴胺Tris-HCl溶液(2×10-1mol/L,pH=8.5),继续超声2h,用磁铁吸附分离,用乙腈和超纯水反复洗涤、真空干燥。
(3)取22.0mg羧甲基柱[6]芳烃溶于25mL四氢呋喃(THF)中,加入2.5mg N-羟基琥珀酰亚胺(NHS)和4.0mg 1-乙基-(3-二甲氨基丙基)碳二亚胺(EDC),它们的摩尔比为1:1:1,然后加入2.2mg步骤(2)所得的多巴胺包覆的磁性纳米粒子,搅拌反应12h,磁铁吸附收集,用超纯水和二氯甲烷(DCM)反复洗涤、真空干燥。
(4)取20mg步骤(3)所得产物溶于25mL无水乙醇中,加入40%氢氧化钠溶液,调节pH=12,磁铁收集,超纯水和无水甲醇反复洗涤、真空干燥。
实施例4吸附时间与吸附量的关系
取实施例1~3制得的磁性吸附剂各10mg,放入3支具塞比色管中,分别加入25mg/L百草枯溶液10mL,20℃恒温振荡,然后每隔一段时间用注射器分别从3支比色管中取2mL溶液,用紫外可见分光光度计对溶液中的百草枯的浓度进行测量,测得的磁性吸附剂对百草枯的吸附量随时间变化如下表1。
表1不同时间内磁性吸附剂对百草枯溶液的吸附量
从表1可知,本发明制得的磁性吸附剂对百草枯的吸附性较强,且吸附速度很快,30min左右即可到达吸附平衡,吸附量可达112mg/g。
图2是实施例1制得的磁性吸附剂对百草枯溶液的吸附量随时间变化图。从图2也可以得出,该磁性吸附剂对百草枯的吸附能力强,可达110mg/g;而且,其吸附速度很快,30min即可达到吸附平衡。
下面以实施例1制得的磁性吸附剂为例,通过实施例5和实施例6分别测试百草枯浓度对吸附量的影响以及不同pH值对磁性吸附剂的吸附量影响。
实施例5百草枯浓度对吸附量的影响
取磁性吸附剂10mg放入具塞比色管中,加入不同浓度的百草枯溶液10mL,20℃恒温振荡60分钟后静置30分钟,取上清液,采用紫外可见分光光度计在波长257nm处测定吸附前后百草枯溶液的浓度,计算吸附剂对百草枯的吸附量(Q)。在测定过程中,吸附前后溶液的pH值保持不变。
图3为磁性吸附剂吸附量与百草枯初始浓度的关系图,选择百草枯的浓度范围为0.01~0.3mmol/L。由图3可知,随着百草枯初始浓度的增大,磁性吸附剂的吸附量逐渐增加,说明本发明制得的磁性吸附剂能够适用于多种浓度范围的百草枯溶液的吸附,对百草枯污水处理具有普适性。
实施例6不同pH值对磁性吸附剂的吸附量影响
取磁性吸附剂10mg于具塞比色管中,加入不同pH值的百草枯溶液10mL,20℃恒温振荡60分钟后静置30分钟,取上清液,采用紫外可见分光光度计在波长257nm处测定吸附前后百草枯溶液的浓度,计算吸附剂对百草枯的吸附量(Q)。其中,百草枯初始浓度为0.2mmol/L,选择pH范围为1~12,在测定过程中,吸附前后溶液的pH值保持不变。
图4显示了不同pH条件下磁性吸附剂对百草枯的吸附量,明显可以看出,随着pH的增大,磁性吸附剂的吸附量增加;当pH为12时吸附量可达146mg/g,表明碱性条件有利于磁性吸附剂对百草枯的吸附。
实施例7循环使用次数对吸附量的影响
参照实施例4的方法,取实施例1制得的磁性吸附剂吸附百草枯溶液直至吸附饱和,然后将吸附饱和后的磁性吸附剂在氮气氛围下放入4mol/L的HCl溶液中超声清洗45min,再用超纯水超声清洗1h,解吸得到再生的磁性吸附剂。以再生的磁性吸附剂吸附百草枯溶液,测量再生磁性吸附剂对百草枯的吸附量。重复吸附-解吸过程,测量每次解析后得到的再生磁性吸附剂对百草枯的吸附量。
由图5可知,在吸附-解吸附循环5次之后,再生的磁性吸附剂对百草枯的吸附量仍然保持在90%以上,说明本发明制得的磁性吸附剂具有较高的回收率和再生率。

Claims (8)

1.一种百草枯磁性吸附剂,其特征在于,该磁性吸附剂由羧甲基柱[6]芳烃和多巴胺包覆的磁性纳米粒子制得,所述多巴胺包覆的磁性纳米粒子由多巴胺和Fe3O4磁性纳米粒子制得;所述羧甲基柱[6]芳烃的结构式为
该百草枯磁性吸附剂的制备方法具体包括如下步骤:
(1)制备Fe3O4磁性纳米粒子;
(2)将Fe3O4磁性纳米粒子和多巴胺以1︰0.5~5的质量比混合,得到多巴胺包覆的磁性纳米粒子;
(3)将羧甲基柱[6]芳烃与多巴胺包覆的磁性纳米粒子以1~10︰1的质量比混合,在N-羟基琥珀酰亚胺和1-乙基-(3-二甲氨基丙基)碳二亚胺催化下通过酰胺化反应将羧甲基柱芳烃固定到Fe3O4磁性纳米粒子表面;(4)将步骤(3)所得产物碱化,得到百草枯磁性吸附剂。
2.根据权利要求1所述的百草枯磁性吸附剂,其特征在于,所述羧甲基柱[6]芳烃和多巴胺包覆的磁性纳米粒子的质量比为1~10︰1,所述Fe3O4磁性纳米粒子和多巴胺的质量比为1︰0.5~5。
3.根据权利要求1或2所述的百草枯磁性吸附剂,其特征在于,所述Fe3O4磁性纳米粒子的粒径为10~100nm。
4.根据权利要求1所述的百草枯磁性吸附剂,其特征在于,步骤(1)中,所述Fe3O4磁性纳米粒子的制备方法包括:将摩尔比为2︰1的Fe3+和Fe2+溶解得到Fe3+和Fe2+的混合溶液,通氮保护,在40~60℃的水浴中超声振荡1~10min,调节混合溶液的pH至9~11,继续在60~90℃的水浴中超声振荡0.5~3h后冷却至室温,分离沉淀物、洗涤至中性、真空干燥。
5.根据权利要求4所述的百草枯磁性吸附剂,其特征在于,所述Fe2+为硫酸亚铁或氯化亚铁,所述Fe3+为三氯化铁或硫酸铁。
6.根据权利要求1所述的百草枯磁性吸附剂,其特征在于,步骤(2)中,所述多巴胺包覆的磁性纳米粒子由以下步骤得到:将步骤(1)制得的Fe3O4磁性纳米粒子溶解、超声振荡5~60min,然后加入溶有多巴胺的碱性溶液,继续超声0.5~2h,磁铁吸附收集、洗涤、真空干燥。
7.根据权利要求1所述的百草枯磁性吸附剂,其特征在于,步骤(3)中,在羧甲基柱[6]芳烃溶液中加入多巴胺包覆的磁性纳米粒子,搅拌反应2~12h,磁铁吸附收集、洗涤、真空干燥。
8.根据权利要求1所述的百草枯磁性吸附剂,其特征在于,步骤(4)中,将步骤(3)所得产物溶解,加入碱溶液,调节溶液的pH至8~12,磁铁吸附收集、洗涤、真空干燥。
CN201610266521.0A 2016-04-26 2016-04-26 一种百草枯磁性吸附剂及其制备方法 Active CN105921114B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610266521.0A CN105921114B (zh) 2016-04-26 2016-04-26 一种百草枯磁性吸附剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610266521.0A CN105921114B (zh) 2016-04-26 2016-04-26 一种百草枯磁性吸附剂及其制备方法

Publications (2)

Publication Number Publication Date
CN105921114A CN105921114A (zh) 2016-09-07
CN105921114B true CN105921114B (zh) 2019-04-23

Family

ID=56837240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610266521.0A Active CN105921114B (zh) 2016-04-26 2016-04-26 一种百草枯磁性吸附剂及其制备方法

Country Status (1)

Country Link
CN (1) CN105921114B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107894484B (zh) * 2017-10-30 2020-06-16 上海谱实生态环境科技有限公司 一种蓝莓中多种农药残留的快速检测方法
CN109351336B (zh) * 2018-11-22 2021-08-10 江苏科技大学 一种磁性富集材料及其制备方法和应用
CN110508255A (zh) * 2019-08-12 2019-11-29 盐城工学院 一种多孔二氧化碳捕集剂的制备方法
CN110590648B (zh) * 2019-09-27 2022-05-03 西北师范大学 三足柱[5]芳烃的合成及其检测和吸附甲基紫精的应用
CN110841600B (zh) * 2019-11-27 2021-06-25 江南大学 一种大环化合物功能化磁性纳米粒子的制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721688A (zh) * 2014-01-03 2014-04-16 南京理工大学 磁性纳米复合材料γ-Fe2O3/PDA-GA的制备及应用
CN104575908A (zh) * 2015-01-30 2015-04-29 中山大学 一种多巴胺改性磁性纳米粒子及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195105A (zh) * 2015-09-10 2015-12-30 哈尔滨工业大学宜兴环保研究院 一种磁性纳米吸附剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721688A (zh) * 2014-01-03 2014-04-16 南京理工大学 磁性纳米复合材料γ-Fe2O3/PDA-GA的制备及应用
CN104575908A (zh) * 2015-01-30 2015-04-29 中山大学 一种多巴胺改性磁性纳米粒子及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pillar[5,6]arene-Functionalized Silicon Dioxide: Synthesis, Characterization, and Adsorption of Herbicide;Ting Zhou et al.;《Langmuir》;20150105;第31卷;1454-1461

Also Published As

Publication number Publication date
CN105921114A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105921114B (zh) 一种百草枯磁性吸附剂及其制备方法
Zhou et al. Fabricating magnetic hydrophilic molecularly imprinted resin with enhanced adsorption and recognition performance for targeted detecting chlorophenols in environmental water
Wen et al. Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones
Nkinahamira et al. Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers
Huang et al. Chitosan/thiol functionalized metal–organic framework composite for the simultaneous determination of lead and cadmium ions in food samples
Lyu et al. Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr (VI) and immobilization of Cr (III)
Wang et al. Preparation of thermo-sensitive surface ion-imprinted polymers based on multi-walled carbon nanotube composites for selective adsorption of lead (II) ion
Wei et al. Poly (deep eutectic solvent)-functionalized magnetic metal-organic framework composites coupled with solid-phase extraction for the selective separation of cationic dyes
Tian et al. Magnetic-graphene oxide based molecularly imprinted polymers for selective extraction of microsystin-LR prior to the determination by HPLC
Huang et al. Versatile magnetic gel from peach gum polysaccharide for efficient adsorption of Pb2+ and Cd2+ ions and catalysis
Hao et al. Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample
Sheng et al. Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2, 4-dichlorophenoxyacetic acid in real samples
Yamini et al. Magnetic Zink-based metal organic framework as advance and recyclable adsorbent for the extraction of trace pyrethroids
Zhao et al. Magnetic graphene oxide surface lithium ion-imprinted material towards lithium extraction from salt lake
CN109666110B (zh) 四环素磁性分子印迹纳米粒子的制备方法及应用
Niu et al. Hybridization of Metal-Organic Frameworks with attapulgite for magnetic solid phase extraction and determination of benzoylurea insecticides in environmental water samples
Wang et al. Determination of trace bisphenols in milk based on Fe3O4@ NH2-MIL-88 (Fe)@ TpPa magnetic solid-phase extraction coupled with HPLC
Hao et al. Novel porous Fe3O4@ C nanocomposite from magnetic metal-phenolic networks for the extraction of chlorophenols from environmental samples
Jing et al. Porous boron nitride micro-nanotubes efficiently anchor CoFe2O4 as a magnetic recyclable catalyst for peroxymonosulfate activation and oxytetracycline rapid degradation
AU2020102425A4 (en) Method for simultaneous enrichment and purification of aflatoxin b1 and capsaicin
CN105688818A (zh) 一种聚乙二醇功能化磁性碳纳米管的制备和应用
CN104525091A (zh) 一种羧基化Fe3O4磁性纳米材料的制备方法及其应用
Lu et al. Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate
CN108854938A (zh) 氨基改性磁性CoFe2O4复合材料的制备方法及应用
Dramou et al. Synthesis and characterization of superparamagnetic graphene oxide assembled halloysite composites for extraction of rutin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191121

Address after: 215000 No.150 Renai Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province B505

Patentee after: Cai Jianguo

Address before: 224051 No. 9 Yingbin Road, Jiangsu, Yancheng City

Patentee before: Yangcheng Institute of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200122

Address after: 215000 B502-1, 505-2 room, second teaching building, 150 benevolence Road, Suzhou Industrial Park, Jiangsu, Suzhou

Patentee after: Jiangsu Hai Pu functional materials company limited

Address before: 215000 No.150 Renai Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province B505

Patentee before: Cai Jianguo