CN109351336B - 一种磁性富集材料及其制备方法和应用 - Google Patents

一种磁性富集材料及其制备方法和应用 Download PDF

Info

Publication number
CN109351336B
CN109351336B CN201811396513.3A CN201811396513A CN109351336B CN 109351336 B CN109351336 B CN 109351336B CN 201811396513 A CN201811396513 A CN 201811396513A CN 109351336 B CN109351336 B CN 109351336B
Authority
CN
China
Prior art keywords
pda
nanosphere
magnetic
nanospheres
wrapping layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811396513.3A
Other languages
English (en)
Other versions
CN109351336A (zh
Inventor
盛建国
张洁
刘科汲
张惠琴
杨安乐
倪源皓
马瑜鸿
李超
马蕾
孔德昭
李奕璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201811396513.3A priority Critical patent/CN109351336B/zh
Publication of CN109351336A publication Critical patent/CN109351336A/zh
Application granted granted Critical
Publication of CN109351336B publication Critical patent/CN109351336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Soft Magnetic Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种磁性富集材料及其制备方法。所述材料由内层磁性纳米球内核,中间包裹层和外包裹层组成粒径为40~80nm,组分成分依顺序为Fe3O4@PDA@EDC的纳米球。所述方法为:将FeCl3·6H2O、NH4Ac和柠檬酸钠溶解在乙二醇中,油浴后反应釜中反应,冷却后收集磁性产物,清洗后避光干燥,分散于乙醇中获得Fe3O4纳米球分散液;将盐酸多巴胺溶解到Tris‑HCl中,加入Fe3O4纳米球分散液,反应后收集磁性产物,清洗后避光干燥,分散于乙醇中得到Fe3O4@PDA纳米球分散液;将1‑乙基‑(3‑二甲基氨基丙基)碳二亚胺盐酸盐溶解到HCl稀溶液中,加入Fe3O4@PDA纳米球分散液,反应后收集磁性产物,清洗后真空干燥,得到Fe3O4@PDA@EDC纳米球。本发明的磁性富集材料工艺简单、稳定性好且容易修饰。

Description

一种磁性富集材料及其制备方法和应用
技术领域
本发明属于纳米复合材料技术领域,特别是涉及一种磁性富集材料及其制备方法和应用。
背景技术
农产品在生长、收割、贮运及加工过程中都易滋生或接触到黄曲霉真菌,从而导致黄曲霉素进入食物链。黄曲霉素已被世界卫生组织的癌症研究机构划定为Ⅰ类致癌物,是一种毒性极强的剧毒物质,其毒性远高于氰化物、砷化物(俗称砒霜)和有机农药的毒性。黄曲霉毒素的危害性在于对人及动物肝脏组织有破坏作用,严重时可导致肝癌甚至死亡。与被细菌毒素污染的食物颜色会变深或散发出难闻的气味不同,被黄曲霉素污染的农产品,在外观及气味上往往没有明显异样,不易被察觉;同时,黄曲霉素是小分子物质,极耐热,毒性不因通常的加热而被破坏,因此可以通过每餐的进食在人体内不断累积而产生慢性中毒。因此,研制对黄曲霉素具有靶向识别作用的多功能探针,并探索其在复杂实际样品高灵敏靶向富集检测中的优势,在食品安全与食品质量监测等方面具有十分重要的意义。
纳米磁性富集材料具有磁控富集功能,与相应的适配体结合可有效地识别并连接黄曲霉素,制成磁性纳米探针即可用于食品黄曲霉素检测。
目前已报道的纳米磁性富集材料,大多存在工艺复杂、稳定性差、不易于修饰等问题。
发明内容
本发明的目的是为了克服上述现有技术存在的问题和不足,提供一种磁性富集材料及其制备方法。
为达到上述目的,本发明通过以下技术方案予以实现:
一种磁性富集材料,由内层磁性纳米球内核A,中间包裹层B和外包裹层C组成粒径为40~80nm,组分成分依顺序为Fe3O4@PDA@EDC的纳米球。
进一步,上述所述内层磁性纳米球内核A的直径为20~40nm,所述中间包裹层B的厚度为10~20nm,所述外包裹层C的厚度为10~20nm。
本发明的一种磁性富集材料的制备方法,包括如下步骤:
(1)Fe3O4纳米球分散液的制备
将FeCl3·6H2O、NH4Ac和柠檬酸钠溶解在乙二醇中,常温搅拌5-60min,使反应物完全溶解;将该混合溶液在150-170℃油浴锅中加热0.5-2h,然后将其放入配有聚四氟乙烯衬里的不锈钢高压反应釜中,将反应釜密封,在180-200℃下反应8-16h,自然冷却至室温;用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,避光低温自然干燥,获得Fe3O4纳米球;将Fe3O4纳米球在超声作用下分散于无水乙醇中,获得Fe3O4纳米球分散液;
(2)Fe3O4@PDA纳米球分散液的制备
先将盐酸多巴胺溶解到pH=8.0-8.5的Tris-HCl缓冲液中,取步骤(1)制备的Fe3O4纳米球分散液加入上述溶液中,室温下机械搅拌18-24h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,避光低温自然干燥,获得Fe3O4@PDA纳米球;将Fe3O4@PDA纳米球在超声作用下分散于无水乙醇中,即可得到Fe3O4@PDA纳米球分散液;
(3)Fe3O4@PDA@EDC纳米球的制备
将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐溶解到5-10wt%的HCl稀溶液中,取步骤(2)制备的Fe3O4@PDA纳米球分散液加入上述溶液中,在室温条件下机械搅拌18-24h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,最后在50-70℃真空干燥箱中干燥20-24h,得到纯净的核-壳结构的磁性Fe3O4@PDA@EDC纳米球,即所述磁性富集材料。
优选地,步骤(1)和步骤(2)所述避光低温自然干燥的温度为2-5℃。
优选地,步骤(1)所述Fe3O4纳米球分散液的浓度为15-25mg/mL。
优选地,步骤(1)所述FeCl3·6H2O、NH4Ac与柠檬酸钠的摩尔比为1:8~11:0.2~0.5;所述FeCl3·6H2O、NH4Ac与柠檬酸钠的质量总和与乙二醇的质量体积比为1g:11~14mL。
优选地,步骤(2)所述Fe3O4纳米球、盐酸多巴胺与Tris-HCl缓冲液的质量体积比为1~4mg:0.5~2mg:1mL。
优选地,步骤(2)所述Fe3O4@PDA纳米球分散液的浓度为25-35mg/mL。
优选地,步骤(2)所述Fe3O4@PDA纳米球、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐与HCl稀溶液的质量体积比为:1.5~6mg:0.5~2mg:1mL。
上述磁性富集材料用于黄曲霉素靶向识别。
优选地,上述磁性富集材料用于食品的黄曲霉素靶向识别。
本发明具有以下有益效果:
发明人经过大量创造性的实验,得到本发明所述磁性富集材料。本发明的磁性富集材料可以为黄曲霉素的靶向识别检测提供一种富集性好、工艺简单、稳定性好且容易修饰的纳米磁性富集复合材料。
附图说明
图1为本发明核-壳结构的磁性Fe3O4@PDA@ED纳米球示意图,其中(A)为Fe3O4磁性纳米球内核,(B)为PDA包裹层,(C)为EDC包裹层。
图2为本发明实施例1所制备材料的透射电镜图,其中(A)为Fe3O4磁性纳米球的透射电镜图,(B)为Fe3O4@PDA@EDC磁性纳米球的透射电镜图。
图3为本发明实施例2制备的材料的磁性强度图,其中(A)为Fe3O4磁性强度图,(B)为Fe3O4@PDA@EDC磁性强度图。
图4为本发明实施例3制备材料的红外光谱图,其中(A)为Fe3O4红外光谱图,(B)为Fe3O4@PDA@EDC红外光谱图。
具体实施方式
下面结合实施例对本发明作进一步详细描述,但本发明的实施方式不限于此。
实施例1
(1)Fe3O4纳米球分散液的制备
将1.350g FeCl3·6H2O、3.854g NH4Ac和0.4g柠檬酸钠溶解在70mL乙二醇中,常温搅拌10min,使反应物完全溶解;将该混合溶液在170℃油浴锅中加热1h,然后将其放入配有聚四氟乙烯衬里的不锈钢高压反应釜中,将反应釜密封,在200℃下反应12h,自然冷却至室温;用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗3次,4℃避光自然干燥,获得Fe3O4纳米球;将Fe3O4纳米球在超声作用下分散于无水乙醇中,获得浓度约为20mg/mL的磁性Fe3O4纳米球分散液;
(2)Fe3O4@PDA纳米球分散液的制备
将0.05g盐酸多巴胺溶解到50mLTris-HCl(pH=8.5)缓冲液中,取步骤(1)制备的5mL Fe3O4纳米球分散液加入上述溶液中,室温下机械搅拌24h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,4℃避光自然干燥,获得Fe3O4@PDA纳米球;将Fe3O4@PDA纳米球在超声作用下分散于无水乙醇中,即可得到浓度约为30mg/mL的Fe3O4@PDA纳米球分散液;
(3)Fe3O4@PDA@EDC纳米球的制备
先将0.05g1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐溶解到50mL HCl稀溶液(5wt%)中,取5mL步骤(2)制备的Fe3O4@PDA纳米球分散液加入上述溶液中,在室温条件下机械搅拌24h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗3次,最后在60℃真空干燥箱中干燥24h,得到纯净的核-壳结构的磁性Fe3O4@PDA@EDC纳米球(结构如图1所示),即所述磁性富集材料。从图2中可以看出,Fe3O4磁性纳米球、Fe3O4@PDA@EDC磁性纳米球的粒径分别约为20nm、40nm。相比于Fe3O4磁性纳米球,Fe3O4@PDA@EDC纳米球磁性变小,说明PDA@EDC包覆影响了Fe3O4的磁性。
实施例2
(1)Fe3O4纳米球分散液的制备
将1.350g FeCl3·6H2O、3.854g NH4Ac和0.4g柠檬酸钠溶解在70mL乙二醇中,常温搅拌10min,使反应物完全溶解;将该混合溶液在150℃油浴锅中加热1h,然后将其放入配有聚四氟乙烯衬里的不锈钢高压反应釜中,将反应釜密封,在200℃下反应8h,自然冷却至室温;用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗4次,4℃避光自然干燥,获得Fe3O4纳米球;将Fe3O4纳米球在超声作用下分散于无水乙醇中,获得浓度约为20mg/mL的磁性Fe3O4纳米球分散液;
(2)Fe3O4@PDA纳米球分散液的制备
将0.05g盐酸多巴胺溶解到50mLTris-HCl(pH=8.5)缓冲液中,取步骤(1)制备的5mL Fe3O4纳米球分散液加入上述溶液中,室温下机械搅拌20h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,4℃避光自然干燥,获得Fe3O4@PDA纳米球;将Fe3O4@PDA纳米球在超声作用下分散于无水乙醇中,即可得到浓度约为30mg/mL的Fe3O4@PDA纳米球分散液;
(3)Fe3O4@PDA@EDC纳米球的制备
先将0.05g1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐溶解到50mL HCl稀溶液(5wt%)中,取5mL步骤(2)制备的Fe3O4@PDA纳米球分散液加入上述溶液中,在室温条件下机械搅拌20h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗4次,最后在60℃真空干燥箱中干燥24h,得到纯净的核-壳结构的磁性Fe3O4@PDA@EDC纳米球,即所述磁性富集材料。从图3中可以看出,Fe3O4纳米球和Fe3O4@PDA@EDC纳米球的磁滞回线都呈S型,呈现出超顺磁性;而Fe3O4@PDA@EDC纳米球的饱和磁化强度比Fe3O4纳米球的饱和磁化强度稍低。
实施例3
(1)Fe3O4纳米球分散液的制备
将1.350g FeCl3·6H2O、3.854g NH4Ac和0.4g柠檬酸钠溶解在70mL乙二醇中,常温搅拌10min,使反应物完全溶解;将该混合溶液在160℃油浴锅中加热1h,然后将其放入配有聚四氟乙烯衬里的不锈钢高压反应釜中,将反应釜密封,在200℃下反应10h,自然冷却至室温;用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗4次,4℃避光自然干燥,获得Fe3O4纳米球;将Fe3O4纳米球在超声作用下分散于无水乙醇中,获得浓度约为20mg/mL的磁性Fe3O4纳米球分散液;
(2)Fe3O4@PDA纳米球分散液的制备
将0.05g盐酸多巴胺溶解到50mLTris-HCl(pH=8.5)缓冲液中,取步骤(1)制备的5mL Fe3O4纳米球分散液加入上述溶液中,室温下机械搅拌18h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,4℃避光自然干燥,获得Fe3O4@PDA纳米球;将Fe3O4@PDA纳米球在超声作用下分散于无水乙醇中,即可得到浓度约为30mg/mL的Fe3O4@PDA纳米球分散液;
(3)Fe3O4@PDA@EDC纳米球的制备
先将0.05g1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐溶解到50mL HCl稀溶液(10wt%)中,取5mL步骤(2)制备的Fe3O4@PDA纳米球分散液加入上述溶液中,在室温条件下机械搅拌18h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗4次,最后在60℃真空干燥箱中干燥20h,得到纯净的核-壳结构的磁性Fe3O4@PDA@EDC纳米球,即所述磁性富集材料。从图4中可以看出,Fe3O4磁性纳米球、Fe3O4@PDA@EDC磁性纳米球的红外光谱有很大的不同,相比于Fe3O4磁性纳米球,Fe3O4@PDA@EDC纳米球在3300和1000cm-1,存在胺基的振动吸收峰,证明PDA和EDC已成功包覆在Fe3O4表面。
实施例4
(1)Fe3O4纳米球分散液的制备
将1.350g FeCl3·6H2O、3.854g NH4Ac和0.5g柠檬酸钠溶解在70mL乙二醇中,常温搅拌10min,使反应物完全溶解;将该混合溶液在170℃油浴锅中加热1h,然后将其放入配有聚四氟乙烯衬里的不锈钢高压反应釜中,将反应釜密封,在180℃下反应16h,自然冷却至室温;用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗3次,4℃避光自然干燥,获得Fe3O4纳米球;将Fe3O4纳米球在超声作用下分散于无水乙醇中,获得浓度约为20mg/mL的磁性Fe3O4纳米球分散液;
(2)Fe3O4@PDA纳米球分散液的制备
将0.05g盐酸多巴胺溶解到50mLTris-HCl(pH=8.0)缓冲液中,取步骤(1)制备的5mL Fe3O4纳米球分散液加入上述溶液中,室温下机械搅拌20h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,4℃避光自然干燥,获得Fe3O4@PDA纳米球;将Fe3O4@PDA纳米球在超声作用下分散于无水乙醇中,即可得到浓度约为30mg/mL的Fe3O4@PDA纳米球分散液;
(3)Fe3O4@PDA@EDC纳米球的制备
先将0.05g1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐溶解到50mL HCl稀溶液(8wt%)中,取5mL步骤(2)制备的Fe3O4@PDA纳米球分散液加入上述溶液中,在室温条件下机械搅拌20h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗3次,最后在60℃真空干燥箱中干燥24h,得到纯净的核-壳结构的磁性Fe3O4@PDA@EDC纳米球,即所述磁性富集材料。
磁性富集材料对黄曲霉毒素AFB1富集方法及富集率计算方法:
取含有一定浓度的黄曲霉毒素AFB1的10mL样品溶液于离心管中,加入0.01g活化后Fe3O4@PDA@EDC纳米球,振荡60min,促进AFB1在磁性吸附剂表面的吸附。然后,把混合物放在超级磁铁上,进行磁分离,去除上清液,加入2mL的丙酮/乙腈/二氯甲烷(1:1:2,v/v),超声30min。解吸后,磁分离洗脱液,在室温下,氮吹至干燥,用2mL含有0.5mM的TritonX-100的15%(v/v)乙腈/水溶胶溶解,振荡5min,最终溶液在氮气流下蒸发至200uL,用提取液稀释至25mL,用于浓度测定。
三种不同浓度的AFB1分别重复测5次,确定其富集率EF。
Figure BDA0001875318330000061
实施例1 实施例2 实施例3 实施例4
EF(%) 142 151 135 148
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质和原理下所作的改变、修饰、替代、组合、简化等,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种磁性富集材料,其特征在于,由内层磁性纳米球内核(A),中间包裹层(B)和外包裹层(C)组成粒径为40~80nm,组分成分依顺序为Fe3O4@PDA@EDC的纳米球;其中,所述内层磁性纳米球内核(A)的直径为20~40nm,所述中间包裹层(B)的厚度为10~20nm,所述外包裹层(C)的厚度为10~20nm。
2.一种根据权利要求1所述的磁性富集材料的制备方法,其特征在于,包括如下步骤:
(1)Fe3O4纳米球分散液的制备
将FeCl3·6H2O、NH4Ac和柠檬酸钠溶解在乙二醇中,常温搅拌5-60min,使反应物完全溶解;将混合溶液在150-170℃油浴锅中加热0.5-2h,然后将其放入配有聚四氟乙烯衬里的不锈钢高压反应釜中,将反应釜密封,在180-200℃下反应8-16h,自然冷却至室温;
用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,避光低温自然干燥,获得Fe3O4纳米球;将Fe3O4纳米球在超声作用下分散于无水乙醇中,获得Fe3O4纳米球分散液;
(2)Fe3O4@PDA纳米球分散液的制备
先将盐酸多巴胺溶解到pH=8.0-8.5的Tris-HCl缓冲液中,取步骤(1)制备的Fe3O4纳米球分散液加入上述溶液中,室温下机械搅拌18-24h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,避光低温自然干燥,获得Fe3O4@PDA纳米球;将Fe3O4@PDA纳米球在超声作用下分散于无水乙醇中,即可得到Fe3O4@PDA纳米球分散液;
(3)Fe3O4@PDA@EDC纳米球的制备
将1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐溶解到5-10wt%的HCl稀溶液中,取步骤(2)制备的Fe3O4@PDA纳米球分散液加入上述溶液中,在室温条件下机械搅拌18-24h后用磁铁分离收集磁性产物,用无水乙醇和去离子水交替离心清洗2-5次,最后在50-70℃真空干燥箱中干燥20-24h,得到纯净的核-壳结构的磁性Fe3O4@PDA@EDC纳米球,即所述磁性富集材料。
3.根据权利要求2所述的一种磁性富集材料的制备方法,其特征在于,步骤(1)和步骤(2)所述避光低温自然干燥的温度为2-5℃。
4.根据权利要求2所述的一种磁性富集材料的制备方法,其特征在于,步骤(1)所述Fe3O4纳米球分散液的浓度为15-25mg/mL。
5.根据权利要求2所述的一种磁性富集材料的制备方法,其特征在于,步骤(1)所述FeCl3·6H2O、NH4Ac与柠檬酸钠的摩尔比为1:8~11:0.2~0.5;所述FeCl3·6H2O、NH4Ac与柠檬酸钠的质量总和与乙二醇的质量体积比为1g:11~14mL。
6.根据权利要求2所述的一种磁性富集材料的制备方法,其特征在于,步骤(2)所述Fe3O4纳米球、盐酸多巴胺与Tris-HCl缓冲液的质量体积比为1~4mg:0.5~2mg:1mL。
7.根据权利要求2所述的一种磁性富集材料的制备方法,其特征在于,步骤(2)所述Fe3O4@PDA纳米球分散液的浓度为25-35mg/mL。
8.根据权利要求2所述的一种磁性富集材料的制备方法,其特征在于,步骤(3)所述Fe3O4@PDA纳米球、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐与HCl稀溶液的质量体积比为:1.5~6mg:0.5~2mg:1mL。
9.如权利要求1所述的磁性富集材料在黄曲霉素靶向识别中的应用。
CN201811396513.3A 2018-11-22 2018-11-22 一种磁性富集材料及其制备方法和应用 Active CN109351336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811396513.3A CN109351336B (zh) 2018-11-22 2018-11-22 一种磁性富集材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811396513.3A CN109351336B (zh) 2018-11-22 2018-11-22 一种磁性富集材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109351336A CN109351336A (zh) 2019-02-19
CN109351336B true CN109351336B (zh) 2021-08-10

Family

ID=65338362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811396513.3A Active CN109351336B (zh) 2018-11-22 2018-11-22 一种磁性富集材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109351336B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498791A (zh) * 2021-07-08 2021-10-15 广西柳州中和高新技术有限公司 Ag@Fe3O4@SiC/TiO2纳米材料的合成方法及其用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350466B1 (en) * 1994-08-05 2002-02-26 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
CN105413659A (zh) * 2015-12-14 2016-03-23 清华大学 一种磁性仿生吸附剂及其在处理酸性含铀废水中的应用
CN105921114A (zh) * 2016-04-26 2016-09-07 盐城工学院 一种百草枯磁性吸附剂及其制备方法
CN106729773A (zh) * 2017-01-15 2017-05-31 吉林大学 靶向修饰的负载阿霉素的磁性纳米颗粒及制备方法及应用
CN107988198A (zh) * 2018-01-14 2018-05-04 浙江工商大学 磁柔性载体Fe3O4-PDA-DAS的制备方法及其应用
CN108578716A (zh) * 2018-04-19 2018-09-28 东华大学 一种聚多巴胺包裹的磁性介孔二氧化硅纳米材料及其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350466B1 (en) * 1994-08-05 2002-02-26 Targesome, Inc. Targeted polymerized liposome diagnostic and treatment agents
CN105413659A (zh) * 2015-12-14 2016-03-23 清华大学 一种磁性仿生吸附剂及其在处理酸性含铀废水中的应用
CN105921114A (zh) * 2016-04-26 2016-09-07 盐城工学院 一种百草枯磁性吸附剂及其制备方法
CN106729773A (zh) * 2017-01-15 2017-05-31 吉林大学 靶向修饰的负载阿霉素的磁性纳米颗粒及制备方法及应用
CN107988198A (zh) * 2018-01-14 2018-05-04 浙江工商大学 磁柔性载体Fe3O4-PDA-DAS的制备方法及其应用
CN108578716A (zh) * 2018-04-19 2018-09-28 东华大学 一种聚多巴胺包裹的磁性介孔二氧化硅纳米材料及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imagingguided photothermal therapy;Li-Sen Lin et al.;《ACS Nano.》;20140321;第8卷(第4期);第3876-3883页 *

Also Published As

Publication number Publication date
CN109351336A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
Mohd Yusof et al. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review
Noruzi et al. A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature
Chen et al. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe (III) ions detection and cell imaging
Su et al. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles
Hu et al. Biogenic Trichoderma harzianum-derived selenium nanoparticles with control functionalities originating from diverse recognition metabolites against phytopathogens and mycotoxins
Sun et al. Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods
Mashhadizadeh et al. Solid phase extraction of trace amounts of Ag, Cd, Cu, and Zn in environmental samples using magnetic nanoparticles coated by 3-(trimethoxysilyl)-1-propantiol and modified with 2-amino-5-mercapto-1, 3, 4-thiadiazole and their determination by ICP-OES
WO2020087835A1 (zh) 基于双发射量子点/银纳米粒复合物的霜脲氰比率荧光探针的制备方法
Ma et al. N-doped carbon dots derived from leaves with low toxicity via damaging cytomembrane for broad-spectrum antibacterial activity
Campos et al. Fluorescent chemosensor for pyridine based on N-doped carbon dots
CN105424777B (zh) 一种通过磁控电化学适配体传感器同时检测两种霉菌毒素的方法
CN105860957A (zh) 一种用于药物载体的氧化石墨烯复合材料的制备方法
CN108273479B (zh) 一种磁性纳米复合材料
CN109351336B (zh) 一种磁性富集材料及其制备方法和应用
CN109400889B (zh) 一种磁性修饰的金属有机多孔材料及其制备和应用
Tang et al. Gold nanoclusters for bacterial detection and infection therapy
Shan et al. A novel magnetic solid-phase extraction method for detection of 14 heterocyclic aromatic amines by UPLC-MS/MS in meat products
Xiao-Yue et al. Application progress of fluorescent carbon quantum dots in food analysis
Yang et al. Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal
Bytesnikova et al. Graphene oxide as a novel tool for mycotoxin removal
Yu et al. Polyethylene glycol modified magnetic carbon nanotubes as nanosorbents for the determination of methylprednisolone in rat plasma by high performance liquid chromatography
CN113105572A (zh) 一种黄曲霉毒素磁性分子印迹聚合物及其制备方法和应用
Braeuer et al. Is arsenic responsible for the toxicity of the hyperaccumulating mushroom Sarcosphaera coronaria?
Samadifar et al. Magnetically solid-phase extraction of diazinon and chlorpyrifos pesticides in vegetables using covalent triazine-based framework incorporated chitosan nanocomposite
CN105842229B (zh) 一种核壳sers探针、制备方法及其在痕量砷酸根离子检测方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant