CN105903462A - 一种合成二氧化钛/石墨烯纳米复合材料的方法 - Google Patents

一种合成二氧化钛/石墨烯纳米复合材料的方法 Download PDF

Info

Publication number
CN105903462A
CN105903462A CN201610341955.2A CN201610341955A CN105903462A CN 105903462 A CN105903462 A CN 105903462A CN 201610341955 A CN201610341955 A CN 201610341955A CN 105903462 A CN105903462 A CN 105903462A
Authority
CN
China
Prior art keywords
tio
graphene
titanium dioxide
composite material
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610341955.2A
Other languages
English (en)
Inventor
付明来
陈建炜
杨佳诚
苑宝玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201610341955.2A priority Critical patent/CN105903462A/zh
Publication of CN105903462A publication Critical patent/CN105903462A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种合成二氧化钛/石墨烯纳米复合材料的方法。该方法包括:(1)确定二氧化钛(TiO2)表面电性;(2)根据TiO2表面电性确定TiO2或者石墨烯氧化物改性程序;(3)TiO2、石墨烯氧化物通过静电自组装形成TiO2/石墨烯氧化物纳米复合材料;(4)将TiO2/石墨烯氧化物溶液在搅拌、N2曝气条件下进行紫外光照射;(5)将经过紫外光照射后的样品洗涤干净后冻干;(6)对冻干后的样品进行微波照射得到TiO2/石墨烯纳米复合材料。该方法制备的TiO2/石墨烯纳米复合材料可以较好地保持材料原本的形貌、分散性较好、石墨烯氧化物也在很大程度上得到还原,因此纳米复合材料的性能得到改善。本发明方法具有非常广的通用性,制备的材料具有广阔的应用前景。

Description

一种合成二氧化钛 / 石墨烯纳米复合材料的方法
技术领域
本发明属于一种纳米复合材料的制备方法,具体地说是一种二氧化钛与石墨烯两种纳米材料复合的方法,该纳米复合材料在环境和能源等领域具有广阔的应用前景。
背景技术
纳米材料相比于常规材料,具有表面与界面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等特性,导致纳米材料显示出奇特的物理和化学性能。通过物理或化学方法使两种具有不同性能的纳米材料复合制备具有新性能的纳米复合材料成为当今的一个研究热点,因纳米复合材料取各材料之长或互相补短甚至是产生协同效应,使纳米复合材料的综合性能优于原组成纳米材料而满足不同的需求,在很多领域具有广阔的应用前景。
纳米二氧化钛(TiO2)因其比表面积大、表面活性中心多、性能优异,使其在环境保护和新能源领域的应用而备受关注,在光电转换、磁光效应、高介电常数器件、湿敏传感器、自清洁、光催化等领域极具应用前景。TiO2以其环境友好、高稳定性、低成本等优势,成为人们竞相研究的热点。
石墨烯(Graphene, GR)是近年来发现的新型二维碳纳米材料,由碳原子以sp2杂化连接的单原子层构成,其基本结构单元为有机材料中最稳定的苯六元环,单层厚度仅为0.35 nm,是构建众多碳材料包括石墨、碳纳米管、类富勒烯材料的基本单元。石墨烯的这种特殊结构蕴含了许多优异的物理化学性质,如高强度、高载流子迁移速率、高热导率、量子霍尔效应及室温铁磁性等特殊性质。
近几年,半导体/石墨烯纳米复合材料在物理、化学、材料等领域取得了大量研究成果,特别是二氧化钛/石墨烯纳米复合材料的制备及应用得到了学者们的高强度研究(Q.J. Xiang, J.G. Yu and M. Jaroniec, Chem. Soc. Rev., 2012, 417, 782)。二氧化钛与石墨烯复合后能够很好地继承石墨烯的优异特性,使得二氧化钛/石墨烯纳米复合材料拥有更优的性能或更广的应用,如环境净化(催化降解、杀菌等)、能源储备(光解水制氢、还原CO2制有机燃料等)、导电电池、电容器材料等。
目前,二氧化钛/石墨烯纳米复合材料的制备方法有水热/溶剂热法、溶液混合法、原位生长法、电化学沉积法、原子层沉积法等,这些方法都可以得到二氧化钛/石墨烯纳米复合材料,然而这些方法要么设备要求高,要么制备工艺复杂,要么时耗长,甚至制备的复合材料质量不佳,如均匀性差、分散性差或者石墨烯的还原程度不高导致复合材料性能提高不明显。因此急需一种对设备要求低、制备工艺简单可行、耗时短的方法制备二氧化钛/石墨烯纳米复合材料,并且所合成的纳米复合材料具有好的均匀性与分散性,同时石墨烯氧化物的还原程度也较高,复合材料比各原组成成分都具有较好的性能。
发明内容
本发明的目的在于提供一种合成金属氧化物/石墨烯纳米复合材料的方法。该方法从金属氧化物表面电性出发,通过表面电性的测定确定电荷改性程序,经过改性的金属氧化物可以通过静电吸引、自组装形成金属氧化物/石墨烯氧化物纳米复合材料,所形成复合材料溶液在缺氧条件下进行紫外光照并洗涤、冻干后再继续使用微波辐射加强石墨烯氧化物的还原,得到均匀性、分散性好的金属氧化物/石墨烯纳米复合材料,并且复合材料较单一组分在性能上有所提高。本发明的目的通过以下技术路线实现。
1. 通过Zeta电位确定二氧化钛表面电性。
2. 如果二氧化钛表面呈负电性,表面电荷改性程序:将二氧化钛与石墨烯氧化物搅拌、混匀后加入阳离子聚电解质;如果二氧化钛表面呈电中性,表面电荷改性程序:先用阳离子聚电解质对二氧化钛表面进行表面电荷改性后再与石墨烯氧化物混合;如果二氧化钛表面呈正电性,表面电荷改性程序:直接把二氧化钛与石墨烯氧化物混合或者对二氧化钛表面进一步正电荷改性后再与石墨烯氧化物混合。
3. 表面电荷改性后的二氧化钛与石墨烯氧化物通过静电吸引、自组装形成二氧化钛/石墨烯氧化物纳米复合材料。
4. 对二氧化钛/石墨烯氧化物溶液在搅拌、N2曝气条件下进行紫外光照射。
5. 将经过紫外光照射后的样品洗涤干净后冻干。
6. 对冻干后的样品进行微波辐射得到二氧化钛/石墨烯纳米复合材料。
本发明与现有技术相比具有以下优点。
(1)该技术可广泛用于金属氧化物/石墨烯纳米复合材料的合成,具有普适性。
(2)合成工艺简单可行。整个合成过程只包括简单的改性、紫外照射、微波辐射。
(3)对设备要求低。只需常规设备即可完成复合材料的合成。
(4)耗时短。整个制备过程在1-2天内即可完成。
合成的金属氧化物/石墨烯纳米复合材料具有好的均匀性、分散性以及保持材料原本的形貌,同时石墨烯氧化物的还原程度也较高,因此复合材料较原纳米材料单组分具有较好的性能。
附图说明
图1为P25/石墨烯纳米复合材料的高分辨透射电镜照片(HRTEM)。
图2为本发明制备的P25/石墨烯纳米复合材料在模拟太阳光下降解去除亚甲基蓝曲线示意图(与原P25进行了对比)。
具体实施方式
下面结合实施例和附图对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。
实施例 1 按照本发明提出的合成方法制备二氧化钛/石墨烯纳米复合材料。
(1)以改进的Hummer法合成石墨烯氧化物,以Degussa公司生产的二氧化钛P25作为复合材料组分。通过P25水溶液Zeta电位的测试确定P25表面呈电负性。在剧烈搅拌的经超声处理的石墨烯氧化物水溶液中加入一定量的P25粉末(此实施例中P25与石墨烯氧化物的质量比为100),持续搅拌15 min后超声处理15 min,将混合液重新转移到搅拌器上并继续剧烈搅拌,往混合液中逐滴加入阳离子聚电解质聚乙烯亚氨(此实施例中聚乙烯亚氨浓度为1 mg/mL),在静电引力作用下,P25与石墨烯氧化物互相吸引、靠近、组装复合在一起,保持反应作用1 h后,P25/石墨烯氧化物纳米复合材料会絮凝、沉淀,通过注入、倾倒去离子水洗涤絮凝物若干次以去除多余的聚电解质。将洗涤干净的P25/石墨烯氧化物纳米复合材料重新分散在去离子水中形成悬浮液并置于紫外光照射下3 h,把光催化还原过的P25/石墨烯氧化物纳米复合材料用去离子水洗涤6次后冻干、过夜。次日,对冻干样品进行微波照射10 min以去除残余的聚电解质并进一步还原石墨烯氧化物后即得到P25/石墨烯纳米复合材料。
(2)对本实施例合成的P25/石墨烯纳米复合材料进行形貌观察(见图1),结果表明:尺寸为20-25 nm的P25纳米颗粒均匀地分散在似薄纱的石墨烯纳米页上。
(3)对本实施例合成的P25/石墨烯纳米复合材料进行模拟太阳光下降解浓度为20 ppm的亚甲基蓝溶液(见图2)表明:P25/石墨烯纳米复合材料具有很高的催化活性,并且优于同等条件下的P25。

Claims (4)

1.一种合成二氧化钛/石墨烯纳米复合材料的方法,其特征在于:所述二氧化钛(TiO2)/石墨烯纳米复合材料的合成方法具体包括以下步骤:(1)通过Zeta电位确定TiO2表面电性;(2)根据TiO2表面电性确定TiO2或者石墨烯氧化物改性程序;(3)表面电荷改性后的TiO2与石墨烯氧化物通过静电吸引、自组装形成TiO2/石墨烯氧化物纳米复合材料;(4)将TiO2/石墨烯氧化物溶液在搅拌、N2曝气条件下进行紫外光照射;(5)将经过紫外光照射后的样品洗涤干净后冻干;(6)对冻干后的样品进行微波照射得到TiO2/石墨烯纳米复合材料。
2.权利要求1所述二氧化钛/石墨烯纳米复合材料,其合成方法的特征在于:如果TiO2表面带负电,表面电荷改性程序:将TiO2与石墨烯氧化物搅拌、混匀后加入阳离子聚电解质。
3.权利要求1所述二氧化钛/石墨烯纳米复合材料,其合成方法的特征在于:如果TiO2表面呈电中性,先用阳离子聚电解质对TiO2表面进行表面改性后再与石墨烯氧化物混合。
4.权利要求1所述二氧化钛/石墨烯纳米复合材料,其合成方法的特征在于:如果TiO2表面呈正电性,表面电荷改性程序:直接把TiO2与石墨烯氧化物混合或者对TiO2表面进一步正电荷改性后再与石墨烯氧化物混合。
CN201610341955.2A 2016-05-23 2016-05-23 一种合成二氧化钛/石墨烯纳米复合材料的方法 Pending CN105903462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610341955.2A CN105903462A (zh) 2016-05-23 2016-05-23 一种合成二氧化钛/石墨烯纳米复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610341955.2A CN105903462A (zh) 2016-05-23 2016-05-23 一种合成二氧化钛/石墨烯纳米复合材料的方法

Publications (1)

Publication Number Publication Date
CN105903462A true CN105903462A (zh) 2016-08-31

Family

ID=56749518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610341955.2A Pending CN105903462A (zh) 2016-05-23 2016-05-23 一种合成二氧化钛/石墨烯纳米复合材料的方法

Country Status (1)

Country Link
CN (1) CN105903462A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683897A (zh) * 2016-12-10 2017-05-17 宁国市大荣电器有限公司 一种改性石墨烯超级电容器电极材料
CN107673444A (zh) * 2017-08-18 2018-02-09 北京化工大学 一种石墨烯/二氧化钛纳米颗粒复合材料的制备方法
CN108083263A (zh) * 2018-02-24 2018-05-29 张静娟 一种制备高质量石墨烯材料的紫外降解法
CN108187653A (zh) * 2018-01-11 2018-06-22 绍兴文理学院 一种石墨烯基光催化材料的制备方法
CN111437820A (zh) * 2020-03-25 2020-07-24 东华大学 一种用于光催化分解水产氢的复合纳米材料及其制备方法
CN114073946A (zh) * 2020-08-11 2022-02-22 国家纳米科学中心 一种氧化石墨烯/二氧化钛复合纳米材料及其制备方法与应用
CN115449278A (zh) * 2022-10-20 2022-12-09 沈阳大学 一种石墨烯负载二氧化钛复合防腐蚀涂料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343239A (zh) * 2011-05-20 2012-02-08 四川大学 氧化石墨烯或石墨烯/无机粒子核/壳材料及其制备方法
CN104347276A (zh) * 2014-09-09 2015-02-11 华中科技大学 石墨烯管包裹金属氧化物纳米带及其制备方法
CN104525174A (zh) * 2015-01-05 2015-04-22 重庆文理学院 一种基于氧化石墨烯自组装制备石墨烯基复合材料的方法
CN105056929A (zh) * 2015-07-20 2015-11-18 重庆文理学院 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343239A (zh) * 2011-05-20 2012-02-08 四川大学 氧化石墨烯或石墨烯/无机粒子核/壳材料及其制备方法
CN104347276A (zh) * 2014-09-09 2015-02-11 华中科技大学 石墨烯管包裹金属氧化物纳米带及其制备方法
CN104525174A (zh) * 2015-01-05 2015-04-22 重庆文理学院 一种基于氧化石墨烯自组装制备石墨烯基复合材料的方法
CN105056929A (zh) * 2015-07-20 2015-11-18 重庆文理学院 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINCHENG LIU ET AL.: "Gram-scale production of graphene oxide–TiO2 nanorod composites: Towards high-activity photocatalytic materials", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106683897A (zh) * 2016-12-10 2017-05-17 宁国市大荣电器有限公司 一种改性石墨烯超级电容器电极材料
CN107673444A (zh) * 2017-08-18 2018-02-09 北京化工大学 一种石墨烯/二氧化钛纳米颗粒复合材料的制备方法
CN108187653A (zh) * 2018-01-11 2018-06-22 绍兴文理学院 一种石墨烯基光催化材料的制备方法
CN108083263A (zh) * 2018-02-24 2018-05-29 张静娟 一种制备高质量石墨烯材料的紫外降解法
CN111437820A (zh) * 2020-03-25 2020-07-24 东华大学 一种用于光催化分解水产氢的复合纳米材料及其制备方法
CN114073946A (zh) * 2020-08-11 2022-02-22 国家纳米科学中心 一种氧化石墨烯/二氧化钛复合纳米材料及其制备方法与应用
CN115449278A (zh) * 2022-10-20 2022-12-09 沈阳大学 一种石墨烯负载二氧化钛复合防腐蚀涂料及制备方法

Similar Documents

Publication Publication Date Title
CN105903462A (zh) 一种合成二氧化钛/石墨烯纳米复合材料的方法
Yang et al. Construction of porous-hydrangea BiOBr/BiOI nn heterojunction with enhanced photodegradation of tetracycline hydrochloride under visible light
Li et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity
Zhu et al. Facile synthesis of ZnO/GO/Ag3PO4 heterojunction photocatalyst with excellent photodegradation activity for tetracycline hydrochloride under visible light
Tang et al. One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties
Ge et al. Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity
Geetha et al. High performance photo-catalyst based on nanosized ZnO–TiO2 nanoplatelets for removal of RhB under visible light irradiation
Liu et al. One-pot hydrothermal synthesis of MXene Ti3C2/TiO2/BiOCl ternary heterojunctions with improved separation of photoactivated carries and photocatalytic behavior toward elimination of contaminants
Jiang et al. Highly efficient flower-like ZnIn2S4/CoFe2O4 photocatalyst with pn type heterojunction for enhanced hydrogen evolution under visible light irradiation
Yan et al. Multiscale cellulose based self-assembly of hierarchical structure for photocatalytic degradation of organic pollutant
Li et al. High piezocatalytic capability in CuS/MoS2 nanocomposites using mechanical energy for degrading pollutants
Zhang et al. Synergy of charge pre-separation and direct Z-scheme bridge in BiVO4 {0 4 0}/Ag6Si2O7 photocatalyst boosting organic pollutant degradation
Zou et al. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts
CN105442012A (zh) 一种复合纳米材料MoS2/TiO2纳米管阵列的制备方法及其应用
Liang et al. Remarkably efficient charge transfer through a double heterojunction mechanism by a CdS-SnS-SnS2/rGO composite with excellent photocatalytic performance under visible light
Cui et al. Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth
Chen et al. Photocatalytic degradation of MB by novel and environmental ZnO/Bi2WO6-CC hierarchical heterostructures
Xu et al. Facile assembly of BiVO 4/protonated gC 3 N 4/AgI with a novel dual Z-scheme mechanism for visible-light photocatalytic degradation of Rhodamine B
Zhang et al. Hierarchical Z-scheme 1D/2D architecture with TiO 2 nanowires decorated by MnO 2 nanosheets for efficient adsorption and full spectrum photocatalytic degradation of organic pollutants
Wong et al. Interfacial Schottky junctions modulated by photo-piezoelectric band bending to govern charge carrier migration for selective H2O2 generation
Pan et al. Construction of a magnetic Z-scheme photocatalyst with enhanced oxidation/reduction abilities and recyclability for the degradation of tetracycline
Liu et al. Construction of Ag nanoparticle decorated AgBr/BiVO4 shell/core structure plasmonic photocatalysts towards high photocatalytic elimination of contaminations under visible light
Teng et al. Flexible PAN-Bi2O2CO3–BiOI heterojunction nanofiber and the photocatalytic degradation property
Li et al. Piezoelectric polarization and interfacial electric field synergistically promote piezo-photocatalysis of in-situ transformed heterojunction
He et al. Enhanced photoelectrochemical activity of bi-functional photocatalytic fuel cell by a superior heterostructure SnO2/BiOBr/MoS2 photoanode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160831