CN105899890A - 带有存储容器的热泵 - Google Patents

带有存储容器的热泵 Download PDF

Info

Publication number
CN105899890A
CN105899890A CN201580003830.2A CN201580003830A CN105899890A CN 105899890 A CN105899890 A CN 105899890A CN 201580003830 A CN201580003830 A CN 201580003830A CN 105899890 A CN105899890 A CN 105899890A
Authority
CN
China
Prior art keywords
working fluid
condenser
heat pump
storage container
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580003830.2A
Other languages
English (en)
Other versions
CN105899890B (zh
Inventor
V.达诺夫
F.赖斯纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN105899890A publication Critical patent/CN105899890A/zh
Application granted granted Critical
Publication of CN105899890B publication Critical patent/CN105899890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本发明涉及一种设备(1),其包括存储容器(2、3)和热泵(4),热泵(4)具有至少一个冷凝器(6)、膨胀阀(8)、蒸发器(10)和压缩机(12),其中,热泵(4)包括用于循环流动的工作流体(24)的工作回路(42),其中,存储容器(2、3)就工作回路(42)而言布置在冷凝器(6)与蒸发器(10)之间,并且存储容器(2、3)包括活塞(14)和/或薄膜(16),用于调节工作流体(24)在冷凝器(6)中的液位。

Description

带有存储容器的热泵
本发明涉及一种用于调节热泵的工作流体的液位的设备及方法。
在制冷机、尤其在热泵中通常使用流体作为工作介质(工作流体)。在此,工作流体在热泵的工作回路内部循环流动。通常,工作流体在热泵初次投入运行时导入热泵的工作回路并且由此填充热泵。
在根据现有技术中已知的热泵中,工作流体的工作回路在热泵的运行过程中是闭合的。换言之,热泵的工作流体在闭合的工作回路内部循环流动。由此不会对工作流体的工作回路、尤其工作流体的温度曲线产生影响。仅仅在通常每年一次的维护作业中对可能逸出的工作流体进行补充。然而在维护作业期间热泵不处于运行状态。
总体上,热泵将自热源获取的热量释放至散热装置。在此会出现散热装置的温度以及热源温度的波动。已知的热泵可以仅不足地对散热装置和/或热源的温度波动作出反应。尤其热泵的效率(性能指数或者说能效比;英文作Coefficient of Performance;COP)视使用情况不同而由于温度波动而降低。
因此,本发明所要解决的技术问题在于,根据散热装置的温度波动调整热泵。
所述技术问题通过带有独立权利要求1的技术特征的设备并通过带有独立权利要求9的技术特征的方法解决。在从属权利要求中给出了本发明的各有利的设计方式和变型方案。
根据本发明的设备包括存储容器和热泵,该热泵具有至少一个冷凝器、膨胀阀、蒸发器和压缩机,其中,热泵包括用于循环流动的工作流体的工作回路,其中,存储容器就工作回路而言布置在压缩机与蒸发器之间,并且存储容器包括活塞和/或薄膜,用于调节工作流体在冷凝器中的液位。
通过根据本发明的存储容器在热泵的工作回路中的布置(所述存储容器包括活塞和/或薄膜),可以以有利的方式调节在热泵的冷凝器中的工作流体的液位。在此根据本发明,对工作流体在热泵的冷凝器中的液位的调节通过活塞、例如通过活塞的平移运动和/或通过薄膜在存储容器中的移动和/或变形实现。尤其通过根本发明的设备实现在热泵的运行过程中的液位调节。
在此,考虑将工作流体在冷凝器中的流体柱(液柱)高度或者说位置用于衡量液位的尺度。在热泵的运行过程中,冷凝的工作流体通常聚集在冷凝器的底部,其中,冷凝的工作流体在冷凝器中通过与散热装置的热接触而过冷。液位在此通过聚集在冷凝器中的液柱的高度给出。
在液位提高时,更多的冷凝的工作流体存在于冷凝器的底部,从而使总体上更多的工作流体与散热装置热接触,并且由此使工作流体更剧烈地过冷。由此可以通过提高或降低液位来调节工作流体的过冷。根据本发明,可以通过调节冷凝器中的工作流体的过冷的调节来对散热装置的温度波动作出反应。换言之,根据散热装置的温度波动调节冷凝器中的工作流体的过冷,其中,所述调节这样进行,使得热泵始终尽可能高效地工作。
根据现有技术已知的热泵则具有对工作流体的不可调节的过冷,因为在冷凝器中的液位是近乎恒定的。因此,根据现有技术不能根据散热装置的温度波动实现调节。
根据本发明,通过调节液位能够实现的是,通过调节工作流体的过冷直接对散热装置和/或热源的波动作出反应。在此,工作流体的更高的过冷是有利的,因为通过工作流体的提高的过冷增大了在冷凝器中的焓差。由此以有利的方式提高了性能指数(COP)并进而提高了热泵的效率。
本发明的另一优点在于,借助略微改变工作流体的流体量调节热源和/或散热装置的大的温度波动。由此可以省去在热泵的工作回路内部过度的流体填充量。
此外,可以以有利的方式在利用热回收器运行时通过工作流体的过冷调节吸入气体的过热。
总体上,借助活塞和/或薄膜调节工作流体在热泵的冷凝器中的液位,由此实现对工作流体的过冷的调节并由此改善在散热装置的温度波动时热泵的效率。
在根据本发明的用于运行热泵的方法中,借助冷凝器冷凝、借助膨胀阀膨胀、借助蒸发器蒸发并且借助压缩机压缩在热泵的工作回路内部循环流动的工作流体,其中,工作流体就工作回路而言在冷凝器与蒸发器之间导入存储容器,其中,工作流体在冷凝器中的液位借助存储容器的活塞和/或薄膜调节。
工作流体在热泵中的液位尤其可以借助活塞的平移运动和/或薄膜的移动和/或变形调节。这给出了与已经讨论过的根据本发明的设备相同价值且相同类型的优点。
根据本发明的一种有利设计方式,包括活塞的存储容器通过出口阀和入口阀与热泵流体连通,其中,出口阀就工作回路而言布置在冷凝器与膨胀阀之间,而入口阀布置在膨胀阀与蒸发器之间。
因此,有利地,工作流体在冷凝器之后和膨胀阀之前导入存储容器。因此这是有利的,因为工作流体在冷凝器之后和膨胀阀之前具有高压。由此能够实现的是,大量的工作流体在较短时间内从热泵的流体循环中排出并且导入存储容器。
在存储容器中,热泵的工作流体以液态的聚集状态暂存。在此,优选在出口阀打开且入口阀关闭的情况下完成工作流体向存储容器的导入。液位的调节通过借助活塞的线性移动增大和/或减小存储容积(在存储容器中可供工作流体使用的体积)实现。因此,通过增大存储容积可以将更多工作流体容纳在存储容器中,从而降低在冷凝器中的液位,并且导致对工作流体的降低的过冷。
若存储容器的存储容积现在借助活塞的线性移动减小,则工作流体自存储容器经过入口阀导引回热泵的工作回路,从而提高冷凝器中的液位,并因此导致对工作流体的提高的过冷。在工作流体自存储容器导引回热泵的工作回路中时,应该关闭出口阀并且打开入口阀。有利地,可以使工作流体在回流至热泵的工作回路时通过活塞的移动直接蒸发。
在此特别优选的是,存储容器设计为液压缸。
有利地,存储容器通过液压缸、优选通过双作用液压缸以技术上简单的方式实现。在此,液压缸内部的压力优选为最高20MPa。
此外还可以规定,活塞的上侧用冷凝器油润滑,使得液压缸的活塞的不密封性不重要。通过有利地使用液压缸,可以在工作流体的蒸发温度(或者说汽化温度)和冷凝温度相同的情况下借助工作流体在冷凝器内部的液位变化实现5K至15K范围内的过冷。
为了调节在出口阀或入口阀中的工作流体而规定,所述阀分别包括另一个膨胀阀和止回阀。
有利地,由此可以补偿在热泵的工作回路与存储容器之间的压力差。
在本发明的一种有利的设计方式中,存储容器设计为收集器,其中,收集器包括薄膜并且收集器就工作回路而言布置在冷凝器与膨胀阀之间。
收集器由此尤其直接集成在热泵的工作回路中。在此,热泵的工作流体收集在收集器中,其中,收集在收集器中的工作流体的流体量可以借助薄膜改变。换言之,通过薄膜的变形可以增大或减小收集器的由所述薄膜限定的第一部分容积,由此减小或增大第二部分容积(收集容积),该第二部分容积可供收集器内部的工作流体使用。
如果要增大在冷凝器中的工作流体的过冷,则增大收集器内部的第一部分容积并因此减小第二部分容积。如果要降低冷凝,则通过薄膜减小收集器中的第一部分容积,从而使更多液态的工作流体收集在收集器的第二部分容积中。通过借助薄膜调节在收集器中可供工作流体使用的第二部分容积(收集腔体),由此改变了工作流体在冷凝器中的液位。
在此特别优选的是,收集器与空气压缩机耦连,其中,空气压缩机设计用于将压力空气导入收集器的由薄膜限定的部分容积中。
优选借助将压力空气导入由薄膜限定的第一部分容积,调节薄膜的变形和由此实现的收集器的第一和第二部分容积的变化。在此,收集器的第一部分容积在压力空气导入时增大,从而使在收集器内部可供工作流体使用的第二部分容积减小。由此,总体上可以有利地调节工作流体在冷凝器中的液位。
第一部分容积的减小有利地通过压力空气出口阀实现,所述压力空气出口阀与收集器耦连。
若通过与收集器耦连的压力空气出口阀使压力空气从收集器的第一部分容积释放,则减小了第一部分容积。由于第一部分容积的减小而增大了收集器中可供工作流体使用的第二部分容积。换言之,由此使更多工作流体收集在收集器中,从而降低工作流体在热泵的冷凝器中的过冷。通过改变或调节压力空气的导入和导出,由此调节工作流体的过冷。
根据本发明的有利的设计方式,收集器包括移动单元,所述移动单元设计用于机械移动薄膜。
有利地,通过借助移动单元移动薄膜来增大或减小第一部分容积。由此也可以实现工作流体在热泵的冷凝器中的液位的调节,因为第二部分容积(收集腔体)相应地减小或增大。在该实施方式中,可以有利地省去空气压缩机和出口阀。
根据本发明的有利的设计方式,当超过或低于工作流体在冷凝器中的液位阈值时,可借助活塞和/或薄膜实施对工作流体的液位调节。
因为工作流体在冷凝器中的液位与工作流体的过冷成正比关系,通过调节液位有利地实现对工作流体的过冷的调节。若超过确定的液位(例如所述液位等于液位阈值),则工作流体可能会过于剧烈地过冷。由此,作为调节必须减小工作流体的液位。在相反低于液位阈值的情况下,可以通过调节来工作流体在冷凝器中的液位,从而设置工作流体的符合期望的增大的过冷。
根据本发明的另一优选设计方式,当超过或低于工作流体的温度阈值时,实施工作流体的液位的调节。
例如可能的是,直接通过测量在冷凝器中的温度来检测工作流体的温度和由此工作流体的过冷。在此,工作流体在冷凝器中的温度通常与工作流体在冷凝器中的液位成间接正比。在高液位情况下,存在较大的过冷和由此工作流体的较低的温度,而在低液位情况下,存在较高的温度和由此工作流体的较低的过冷。因此优选在热泵的冷凝器内部有利地实施工作流体的温度测量。可以规定在工作流体的工作回路中的温度和/或液位的其他测量点。
本发明的其他优点、技术特征和细节由以下所述的实施例结合附图给出。在此示出:
图1是热泵连同设计为液压缸的存储容器;和
图2是带有包括用于调节液位的薄膜的收集器的热泵。
在附图中相同的元件被标注以相同的附图标记。
图1示出设备1,设备1包括热泵4和存储容器2,其中,热泵4具有冷凝器6、膨胀阀8、蒸发器10和压缩机12。在此,热泵4通过出口阀18和入口阀20与存储容器2被热泵4的工作流体24流体连通。工作流体24在工作回路42中在热泵4内循环流动。
在图1所示的设备1的实施例中,存储容器2设计为液压缸2并且包括活塞14。液压缸2的存储容积30的调节在此通过活塞14的线性运动实现,其中,图1中通过方向箭头32、33表示线性运动。换言之,在液压缸2中可供工作流体24使用的第一部分容积30借助活塞14的线性运动增大(箭头33或减小(箭头32)。
在出口阀18打开且入口阀20关闭的情况下,在冷凝器6中冷凝的工作流体24就工作回路42而言或就工作回路42的方向而言在冷凝器6之后和膨胀阀8之前导入液压缸2中。在此,工作流体24有利地在膨胀阀8之前导入液压缸2,使得工作流体24在高压下、例如在10MPa至20MPa下导入液压缸2。通过提高的压力可以仅在短时间内就使大量工作流体24从热泵4的工作回路42中流出并且导入液压缸2。换言之,通过提高的压力提高工作流体24在出口阀18中的质量流量。为了调节,设置用于出口阀和入口阀18、20的另外的膨胀阀21和止回阀22。
为了使工作流体24导回到热泵4的工作回路42中,关闭出口阀18且打开出口阀20。在此,工作流体24通过线性运动(以方向箭头32所表示的)从液压缸2压出。工作流体24的导回就工作回路42而言优选在膨胀阀8之后以低压力水平完成。有利地,由此可以使工作流体24直接蒸发。
现在若通过借助活塞14(由箭头33所示)的运动增大存储容积30使更多的工作流体24收集在液压缸2中,则工作流体24在冷凝器6中的液位降低。工作流体24在冷凝器6中的液位越低,则过冷约少。因此,工作流体24几乎在沸点线上离开冷凝器6,并且由此与工作流体的汽相形成热力学平衡。换言之,不使工作流体24过冷或仅使工作流体24略微过冷。
总体上,所示设备1能够实现对工作流体24在热泵4的冷凝器6中的液位的调节,从而能够调节工作流体24在冷凝器6中的过冷。
图2示出设备1,所述设备包括热泵4和收集器3,其中,热泵4具有冷凝器6、膨胀阀8、蒸发器10和压缩机12。在图2所示的设备1的实施例中,收集器3包括薄膜16,薄膜16将收集器3的总容积分成第一和第二部分容积30、31。
在热泵4的工作回路42中循环流动的工作流体24被收集在收集器3的第二部分容积31(收集容积)中。收集器3就工作回路42而言布置在冷凝器6之后和膨胀阀8之前,并且直接集成在热泵4的工作回路42中。
通过压力空气借助空气压缩机26的导入,增大由薄膜16限定的第一部分容积30。部分容积30的增大或减小转化为第二部分容积31的减小或增大。在此,第一部分容积30的减小或第二部分容积31的增大通过借助压力空气出口阀28导出压力空气而实现。若第一部分容积30通过借助空气压缩机26导入压力空气而增大,则在收集器3中收集更少的工作流体24。因此更多的工作流体24聚集在热泵4的冷凝器6中。由此使工作流体24在冷凝器6中更剧烈地过冷,因为冷凝器6中的液位升高。
在通过压力空气借助压力空气出口阀28的导出而减小第一部分容积30时,第二部分容积31增大,从而使更多的工作流体24收集在收集器3中。由此工作流体24在热泵4的工作回路42中的液位降低,从而使工作流体24从冷凝器6排出,并且实现工作流体24在冷凝器6中过冷的减少。
根据现有技术,可以使用例如R134a和/或R245fa作为工作流体24。优选地,工作流体也优选是下列材料的至少之一:1,1,1,2,2,4,5,5,5-九氟-4-(三氟代甲基)-3-戊酮(商品名NovecTM649),全氟甲基丁酮,1-氯-3,3,3-三氟-1-丙烯,顺式-1,1,1,4,4,4-六氟-2-丁烯和/或环戊烷。也可以规定使用R134a,R400c和/或R410a。
尽管具体通过优选实施例详细阐释和描述了本发明,但本发明不局限于所公开的实施例,或者说本领域技术人员可以由此导出其他变型方案,只要不离开本发明的保护范围即可。

Claims (15)

1.一种设备(1),其包括存储容器(2、3)和热泵(4),所述热泵(4)具有至少一个冷凝器(6)、膨胀阀(8)、蒸发器(10)和压缩机(12),其中,所述热泵(4)包括用于循环流动的工作流体(24)的工作回路(42),其中,所述存储容器(2、3)就工作回路(42)而言布置在所述冷凝器(6)与所述蒸发器(10)之间,并且所述存储容器(2、3)包括活塞(14)和/或薄膜(16),用于调节工作流体(24)在冷凝器(6)中的液位。
2.根据权利要求1所述的设备(1),其特征在于,所述存储容器(2、3)包括活塞(14),并且通过出口阀和入口阀(18、20)与热泵(4)流体连通,其中,所述出口阀(18)就工作回路(42)而言布置在冷凝器(6)与膨胀阀(8)之间,并且所述入口阀(20)布置在所述膨胀阀(8)与所述蒸发器(10)之间。
3.根据权利要求2所述的设备(1),其特征在于,所述存储容器(2、3)设计为液压缸(2)。
4.根据权利要求2或3所述的设备(1),其特征在于,所述出口阀和/或入口阀(18、20)包括另一个膨胀阀(21)和止回阀(22)。
5.根据权利要求1所述的设备(1),其特征在于,所述存储容器(2、3)设计为收集器(3)并且包括薄膜(16),其中,所述收集器(3)就工作回路(42)而言布置在所述冷凝器(6)与所述膨胀阀(8)之间。
6.根据权利要求5所述的设备(1),其特征在于,所述收集器(3)与空气压缩机(26)耦连,其中,所述空气压缩机(26)设计用于将压力空气导入收集器(3)的由所述薄膜(16)限定的部分容积(30)中。
7.根据权利要求6所述的设备(1),其特征在于,所述收集器(3)的由薄膜(16)限定的部分容积(30)与压力空气出口阀(28)耦连。
8.根据权利要求5至7中任一项所述的设备(1),其特征在于,所述收集器(3)具有移动单元,所述移动单元设计用于机械移动薄膜(6)。
9.一种用于运行热泵(4)的方法,所述热泵带有在工作回路(42)内部循环流动的工作流体(24),其中,所述工作流体(24)借助冷凝器(6)冷凝,借助膨胀阀(8)膨胀,借助蒸发器(10)蒸发并且借助压缩机(12)被压缩,其中,所述工作流体(24)就工作回路(42)而言在冷凝器(6)与蒸发器(10)之间导入存储容器(2、3),其中,所述工作流体(24)在冷凝器(6)中的液位借助所述存储容器(2、3)的活塞(14)和/或薄膜(16)调节。
10.根据权利要求9所述的方法,其中,借助活塞(14)调节液位,并且其中,所述工作流体(24)就工作回路(42)而言在所述冷凝器(6)与所述膨胀阀(8)之间借助出口阀(18)导入存储容器(2、3)。
11.根据权利要求10所述的方法,其中,所述工作流体(24)就工作回路(42)而言在所述膨胀阀(8)与所述蒸发器(10)之间借助入口阀(20)自存储容器(2、3)导回所述热泵(4),其中,关闭所述出口阀(18)。
12.根据权利要求9所述的方法,其中,所述存储容器(2、3)设计为收集器(3),其中,借助所述薄膜(16)调节液位,并且其中,所述工作流体(24)就工作回路(42)而言在所述冷凝器(6)与所述膨胀阀(8)之间导入所述收集器(3)。
13.根据权利要求9至12中任一项所述的方法,其中,所述收集器(3)的由薄膜(16)限定的第一和/或第二部分容积(30、31)通过所述薄膜(16)的机械运动增大或减小。
14.根据权利要求9至13中任一项所述的方法,其中,当超过或低于所述工作流体(24)在所述冷凝器(6)中的液位阈值时,调节所述工作流体(24)的液位。
15.根据权利要求9至14中任一项所述的方法,其中,当超过或低于工作流体(24)的温度阈值时,调节所述工作流体(24)的液位。
CN201580003830.2A 2014-02-27 2015-01-21 带有存储容器的热泵 Active CN105899890B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014203578.3A DE102014203578A1 (de) 2014-02-27 2014-02-27 Wärmepumpe mit Vorratsbehälter
DE102014203578.3 2014-02-27
PCT/EP2015/051138 WO2015128122A1 (de) 2014-02-27 2015-01-21 Wärmepumpe mit vorratsbehälter

Publications (2)

Publication Number Publication Date
CN105899890A true CN105899890A (zh) 2016-08-24
CN105899890B CN105899890B (zh) 2018-10-23

Family

ID=52450063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580003830.2A Active CN105899890B (zh) 2014-02-27 2015-01-21 带有存储容器的热泵

Country Status (8)

Country Link
US (1) US20160370044A1 (zh)
EP (1) EP3097370B1 (zh)
JP (1) JP2017510781A (zh)
KR (2) KR20180021935A (zh)
CN (1) CN105899890B (zh)
CA (1) CA2940740A1 (zh)
DE (1) DE102014203578A1 (zh)
WO (1) WO2015128122A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763890A (zh) * 2017-09-26 2018-03-06 国网浙江省电力公司杭州供电公司 一种基于高压储液罐控制的高温热泵系统及控制方法
CN110537061A (zh) * 2017-04-19 2019-12-03 罗伯特·博世有限公司 用于用冷却介质充注热泵的管路回路的方法、用于该方法的容器和热泵
CN113007914A (zh) * 2019-12-19 2021-06-22 开利公司 制冷系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10830515B2 (en) * 2015-10-21 2020-11-10 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling refrigerant in vapor compression system
CN105485991B (zh) * 2016-01-04 2018-07-24 珠海格力电器股份有限公司 一种变容压缩机系统及控制方法、空调
CN105650926B (zh) * 2016-03-21 2018-12-07 珠海格力电器股份有限公司 冷媒循环系统及具有其的空调器
US11112156B2 (en) * 2016-10-31 2021-09-07 Hefei Hualing Co., Ltd. Refrigeration apparatus
KR20180135882A (ko) * 2017-04-01 2018-12-21 이동원 냉매 저장수단을 구비한 히트펌프
KR20190117344A (ko) 2018-04-08 2019-10-16 이동원 냉매 저장 탱크를 구비한 히트펌프
DE102022100918A1 (de) 2022-01-17 2023-07-20 Schaeffler Technologies AG & Co. KG Aktive Füllmengensteuerung von Kfz-Kältemittelsystemen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331224A (ja) * 1993-05-24 1994-11-29 Nippondenso Co Ltd 冷凍サイクル装置
JPH11248266A (ja) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp 空気調和機及び凝縮器
CN102109237A (zh) * 2009-12-28 2011-06-29 付继平 一种冷剂输送装置及其使用该装置的制冷机
CN202254452U (zh) * 2011-06-14 2012-05-30 合肥天鹅制冷科技有限公司 一种制冷系统蒸发器的液位控制及回油系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248040Y2 (zh) * 1973-05-11 1977-11-01
JPS5369963A (en) * 1976-12-03 1978-06-21 Hitachi Ltd Refrigerant flow control in refrigeration cycle
JPS5610269U (zh) * 1979-07-03 1981-01-28
JPS57114361U (zh) * 1981-01-07 1982-07-15
DE3701086A1 (de) * 1987-01-16 1988-08-04 Bayerische Motoren Werke Ag Kaeltemittelkreislauf einer klimaanlage
JPS63233251A (ja) * 1987-03-20 1988-09-28 アイシン精機株式会社 冷房装置
JPH0158055U (zh) * 1987-10-02 1989-04-11
NO915127D0 (no) * 1991-12-27 1991-12-27 Sinvent As Kompresjonsanordning med variabelt volum
JPH07120082A (ja) * 1993-10-29 1995-05-12 Nippondenso Co Ltd 冷凍サイクル装置
DE9406879U1 (de) * 1994-04-25 1995-08-24 Liebherr-Hausgeräte GmbH, 88416 Ochsenhausen Vorrichtung zum Befüllen von Kältekreisläufen von Kühl- und/oder Gefriergeräten mit einem Kältemittel
US5611211A (en) * 1994-09-07 1997-03-18 General Electric Company Refirgeration system with electrically controlled refrigerant storage device
JP2001296075A (ja) * 2000-04-13 2001-10-26 Shimadzu Corp ガス冷却装置
JP2002156166A (ja) * 2000-11-20 2002-05-31 Fujitsu General Ltd 多室形空気調和機
US6672084B2 (en) * 2001-07-05 2004-01-06 Vai Holdings, Llc Energy saving refrigeration system using composition control with mixed refrigerants
LU90945B1 (en) * 2002-08-05 2004-02-06 Delphi Tech Inc Bidirectional receiver dryer
US7096679B2 (en) * 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
US7370483B2 (en) * 2005-02-22 2008-05-13 Carrier Corporation Refrigerant cycle with three-way service valve for environmentally friendly refrigerant
ITMO20060418A1 (it) * 2006-12-21 2008-06-22 Teklab S A S Di Barbieri Mauro E C Impianto di refrigerazione
JP5422899B2 (ja) * 2008-02-29 2014-02-19 ダイキン工業株式会社 空気調和装置
DE102009031293A1 (de) * 2008-07-02 2010-01-07 Tkr Spezialwerkzeuge Gmbh Vorrichtung zum Befüllen von Fluidsystemen
WO2011016264A1 (ja) * 2009-08-07 2011-02-10 三菱重工業株式会社 車両用空調システム
DE102011005749B4 (de) * 2011-03-18 2013-08-14 Bayerische Motoren Werke Aktiengesellschaft Sammler für Kühl- und/oder Heizsysteme und Kühl- und/oder Heizsystem
DE102011052775B4 (de) * 2011-08-17 2013-09-05 Thermofin Gmbh Anordnung und Verfahren zur Kältemittelfüllstandsüberwachung und -regelung in Kälteanlagen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331224A (ja) * 1993-05-24 1994-11-29 Nippondenso Co Ltd 冷凍サイクル装置
JPH11248266A (ja) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp 空気調和機及び凝縮器
CN102109237A (zh) * 2009-12-28 2011-06-29 付继平 一种冷剂输送装置及其使用该装置的制冷机
CN202254452U (zh) * 2011-06-14 2012-05-30 合肥天鹅制冷科技有限公司 一种制冷系统蒸发器的液位控制及回油系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537061A (zh) * 2017-04-19 2019-12-03 罗伯特·博世有限公司 用于用冷却介质充注热泵的管路回路的方法、用于该方法的容器和热泵
CN107763890A (zh) * 2017-09-26 2018-03-06 国网浙江省电力公司杭州供电公司 一种基于高压储液罐控制的高温热泵系统及控制方法
CN107763890B (zh) * 2017-09-26 2020-04-24 国网浙江省电力公司杭州供电公司 一种基于高压储液罐控制的高温热泵系统及控制方法
CN113007914A (zh) * 2019-12-19 2021-06-22 开利公司 制冷系统

Also Published As

Publication number Publication date
EP3097370B1 (de) 2020-09-23
KR20160129029A (ko) 2016-11-08
KR20180021935A (ko) 2018-03-05
JP2017510781A (ja) 2017-04-13
EP3097370A1 (de) 2016-11-30
US20160370044A1 (en) 2016-12-22
CN105899890B (zh) 2018-10-23
CA2940740A1 (en) 2015-09-03
WO2015128122A1 (de) 2015-09-03
DE102014203578A1 (de) 2015-08-27

Similar Documents

Publication Publication Date Title
CN105899890A (zh) 带有存储容器的热泵
CN101910756B (zh) 带有润滑剂冷却器的制冷剂蒸气压缩系统
CA2490660C (en) Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
CN101688708B (zh) 用于均衡泵送制冷系统的方法和设备
CN107076475A (zh) 用于运行具有接收器的蒸气压缩系统的方法
CN103958986A (zh) 冷冻空调装置
CN1343296A (zh) 蒸汽压缩系统及其方法
CN205580036U (zh) 空调装置
EP2959239B1 (en) Oil management for heating, ventilation and air conditioning system
CN116324300B (zh) 流体处理系统及对其提供控制的方法
CN107850356A (zh) 具有液体分离器应用的热回收系统
CN106461275B (zh) 制冷循环装置
US3365900A (en) Refrigeration machine and method of operation
JP5975706B2 (ja) アキュムレータ及び冷凍サイクル装置
CN109595844A (zh) 一种自复叠二氧化碳空气源热泵
CN105674626B (zh) 一种带高压油分的空气源二氧化碳热泵系统
CN208154871U (zh) 一种热能循环利用的高温热泵系统
CN209386598U (zh) 一种自复叠二氧化碳空气源热泵
AU2013230336B2 (en) Cooling system and a method for separation of oil
CN205783242U (zh) 一种利用液压油热供暖系统
CN105849483A (zh) 具有油分离器的压缩机
CN103398497A (zh) 一种单级压缩单级吸收的复合热泵
CN209027152U (zh) 多重换热油分装置及其热泵系统
CN101815911A (zh) 控制冷却系统的方法和装置
CN106196373A (zh) 一种精确供液式热管一体机空调系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211213

Address after: Munich, Germany

Patentee after: Siemens energy Global Ltd.

Address before: Munich, Germany

Patentee before: SIEMENS AG