CN105897316A - 一种基于统计特性的多天线能效优化方法 - Google Patents
一种基于统计特性的多天线能效优化方法 Download PDFInfo
- Publication number
- CN105897316A CN105897316A CN201610451609.XA CN201610451609A CN105897316A CN 105897316 A CN105897316 A CN 105897316A CN 201610451609 A CN201610451609 A CN 201610451609A CN 105897316 A CN105897316 A CN 105897316A
- Authority
- CN
- China
- Prior art keywords
- energy efficiency
- channel
- codebook
- antenna
- statistical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000005457 optimization Methods 0.000 title claims abstract description 31
- 238000012549 training Methods 0.000 claims abstract description 21
- 230000005540 biological transmission Effects 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 31
- 238000004891 communication Methods 0.000 claims description 18
- 238000013139 quantization Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000007619 statistical method Methods 0.000 abstract description 4
- 230000003068 static effect Effects 0.000 description 13
- 238000004088 simulation Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 230000036962 time dependent Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000013146 percutaneous coronary intervention Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/026—Co-operative diversity, e.g. using fixed or mobile stations as relays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开一种在多天线MIMO系统中基于统计特性的传输与能效优化方法,包括:接收端采用基于训练序列的MMSE估计获得信道估计值,并基于码本进行有限反馈,从而使得发射端获得信道状态信息并进行波束赋形的数据传输;针对这一传输过程进行能效优化,根据其信道统计特性对MMSE估计值和估计误差,及码本反馈量化值和反馈误差进行统计分析,进而通过信道容量形成针对能效度量的统计分析和能效优化模型,给出能效最大化的训练功率及数据功率分配。采用本发明的技术方案,可以有效的提高系统能效性,而在快速时变信道环境下,可以以极低复杂度获得趋近于已有动态功率分配方法的性能。
Description
技术领域
本发明属于无线通信中功率分配相关领域,尤其涉及一种基于统计特性的多天线能效优化方法,进一步涉及一种结合多天线MIMO系统及信道统计特性的传输与能效优化方法。
技术背景
随着信息技术的迅猛发展以及智能终端的大规模普及,移动业务的市场需求也在进一步提高。为了实现更好的能效优化性从而提供更高服务质量,无线通信技术不断进行革新和改进。其中,近来提出了MIMO技术。
MIMO技术可以在不增加天线发射功率和频谱资源的情况下,成倍的提高系统信道容量及系统性能。然而,随着天线数量的增加,功率损耗成为MIMO技术应用的挑战。已有研究表明,功率损耗成为制约多天线MIMO系统的重要原因。在单用户MIMO系统中,为了进行频效优化,采用增大带宽、提高发射功率、增多发射天线数目的方式,导致包括线路功率、信号处理功率等的功率损耗现象。
发明内容
本发明要解决的技术问题是,提供一种在多天线MIMO系统环境下的基于统计特性的多天线能效优化方法,来降低功率损耗对于系统能效的影响,根据所获得的信道估计、估计误差、信道反馈和反馈误差等统计特性,通过研究其统计规律,结合能效度量公式,计算其能效最大化的训练功率及数据功率分配方法同时提高系统能效性。
为解决上述问题,本发明采用如下的技术方案:
一种基于统计特性的多天线能效优化方法包括以下步骤:
步骤1、建立通信链路系统模型
所述通信链路系统中数据x的接收信号y为:其中,PD为数据功率分配,h为信道响应矢量,且服从分布,n为高斯白噪声信号,且服从分布,为信道量化值;
步骤2、MMSE信道估计与分析
基于接收信号y对信道响应矢量h进行MMSE估计,得到信道估计矢量且其中,为估计误差;
步骤3、信道反馈
通过基于Llyod码本的有限反馈方式对所述信道估计矢量量化,得到信道量化值且其中,eFe为量化误差;
步骤4、基于估计和反馈的能效优化,包括以下步骤:
步骤4.1、计算信道容量
其中,Nt为通信链路系统中发射天线的根数,R为信道容量的下界;
步骤4.2、能效优化
根据发射端设计功率控制器的目标为最大化遍历能效的下界值,结合所述信道容量,能量效率度量为:
其中,E为能量效率,J为训练序列持续时间,PTr为每个发射天线上的训练功率,PD为数据传输功率,PC为电路功耗,a为恒定功率放大器的效率,T为每个时隙的符号数,εFe为量化误差eFe的方差下界;
根据获得的εFe和统计特性,得出使能量效率E最大化的最优PTr及PD。
作为优选,所述MIMO通信链路系统具有Nt根发射天线和单根接收天线,设训练序列S为J×Nt阶矩阵,且SHS=JPTrI,为在第nt个发射天线上发送的训练序列,其中,nt=1,…,Nt。
作为优选,基于接收信号y对信道响应矢量h的MMSE估计表示为:
且协方差εTr为:
作为优选,采用码本F对接收端的信道估计矢量量化过程如下:
其中,F={f1,…,fB},且fi∈F,且i=1,2,3,B,b为每时隙有限反馈比特数,Nt为MIMO通信链路系统中发射天线的根数;
即,选取第i*列所对应的码本矢量作为量化后的信道矢量接收端对进行有限反馈。
作为优选,所述量化误差eFe的方差下界εFe为:
所述量化误差eFe与反馈获得的信道量化矢量相互独立,则有:
作为优选,基于预存码本内的每一个码字为Nt×1维的矢量,随机抽取B个矢量作为设计码本的初始码本,利用Lloyd算法进行离线的迭代搜索,形成覆盖整个信道估计值空间的码本F。
作为优选,所述MIMO通信链路系统为点对点MIMO通信链路系统。
本发明通过综合信道估计、信道反馈、波束赋形的多天线链路传输过程,对系统功率进行能效的整体优化。通过分析信道的MMSE估计及分析Llyod码本的信道反馈,获得信道估计、估计误差、信道反馈和反馈误差等的统计特性,给出能效度量公式和能效最大化的训练功率及数据功率分配方法。
在单用户MIMO通信系统中,建立系统信道模型和传输模型。接收端采用基于训练序列的MMSE估计获得信道估计值,并基于码本进行有限反馈,从而使得发射端获得信道状态信息并进行波束赋形的数据传输。针对这一传输过程进行能效优化,根据其信道统计特性对MMSE估计值和估计误差,及码本反馈量化值和反馈误差进行统计分析,进而通过信道容量形成针对能效度量的统计分析和能效优化模型,给出能效最大化的训练功率及数据功率分配方法。仿真结果表明,与已有静态功率分配方法相比,提出方法可以有效的提高系统能效性,而在快速时变信道环境下,提出方法以极低复杂度获得趋近于已有动态功率分配方法的性能。
进一步,通过对反馈内容进行基于码本的量化,以解决由于MIMO有限反馈系统中反馈链路的反馈速率受到限制,而码本质量的好坏将对基于码本的有限反馈系统性能的优劣造成直接影响。
附图说明
图1为基于统计特性的多天线系统能效优化结构示意图;
图2为电路电源功率变化的能效变化趋势(Nt=2,T=100,CB=32,α=0.98);
图3为电路电源功率变化的能效变化趋势(Nt=4,T=100,CB=32,α=0.98);
图4为码本数变化的能效变化趋势(Nt=4,T=80,α=0.98);
图5为时间相关参数变化的能效变化趋势(Nt=4,T=100,CB=4,PC=100);
图6为电路电源功率变化的能效变化趋势(Nt=4,T=100,CB=4,α=0.79)。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
如图1所示,本发明提供一种基于统计特性的多天线能效优化方法包括以下步骤:
步骤1、建立系统模型
本发明针对点对点MIMO通信链路系统,其具有Nt根发射天线(Nt≥2)和单根接收天线,设训练序列S是J×Nt阶矩阵,且SHS=JPTrI,其中表示在第nt(nt=1,…,Nt)个发射天线上发送的训练序列,J代表训练序列持续时间,满足J≥Nt,PTr为每个天线上的训练功率。
在训练序列阶段,接收端所收到的J×1维信号矢量yTr为:yTr=Sh+n;其中,h是Nt×1的信道响应矢量,其元素是独立服从分布的高斯变量;n是J×1维的高斯白噪声矢量,服从分布。
在数据传输阶段,在理想情况下,采用hH/|||hH||作为波束赋型传输数据,可使接收端的信噪比(SNR)最大化。然而,实际系统中,h是未知的,接收端仅能通过yTr进行信道的MMSE估计获得因此,假设信道在每个时隙内是恒定的,使用b个反馈比特的Lloyd码本对进行量化和有限反馈。发射端从信道反馈获得的信道信息被描述为其标准化的共轭转置被用作波束形成向量。
因此,数据x的接收信号y由下式给出:
其中,PD是数据功率分配,设数据x功率归一化E{xxH}=1,n为高斯白噪声信号。
步骤2、MMSE信道估计与分析
接收端基于接收信号对信道响应矢量h的MMSE估计可以表示为:
由上式可知统计特性满足信道响应与信道估计满足其中是与统计独立的估计误差,其协方差矩阵可以由前式计算得:
步骤3:信道反馈
步骤3.1码本设计
本发明采用基于Llyod码本的有限反馈方式。基于预存码本内的每一个码字为Nt×1维的矢量,随机抽取B个矢量作为设计码本的初始码本,利用Lloyd算法进行离线的迭代搜索,形成覆盖整个信道估计值空间的码本F={f1,…,fB}。若每时隙有限反馈比特数为b,则满足:
采用码本F对接收端的信道估计量化过程如下:
即选取第i*列所对应的码本矢量作为量化后的信道矢量接收端对进行有限反馈。
发送端根据存储的码本F反馈的恢复进行波束赋型传输,即
步骤3.2信道反馈分析
根据上述有限反馈过程可知,信道估值和信道量化值间满足根据速率失真理论,对于满足复高斯变量进行b比特的量化,当实部与虚部相互独立时,等同于对的变量进行的量化。因此,量化eFe的方差下界为:
由于量化误差eFe与反馈获得的信道量化矢量相互独立,因此有:
步骤4:基于估计和反馈的能效优化
步骤4.1信道容量
考虑信道估计损失和反馈波束的遍历容量下界的可以表示为:
其中误差的影响被认为是一种干扰。
为了进一步化简,根据Backward Triangle不等式与严格的Cauchy-Bunyakovskii-Schwarz不等式,有:
且||eFe||很小。即:
此外,根据变量独立性可获得的期望值有:
综上信道容量R可得:
其中,R(||eFe||2)在范围内是关于||eFe||2的凸函数时,根据Jensen不等式:,有:
E{R||eFe||2}≥R(E{||eFe||2}≥R(εFe}
当||eFe||很小时,这个不等式是严格的。
步骤4.2能效优化
发射端设计功率控制器的目标是最大化遍历能效的下界值。结合上一步的信道容量,其度量为:
其中J代表训练序列持续时间,(T-J)是数据传输持续时间,PTr是每个发射天线上的训练功率,PD是数据传输功率,PC是电路功耗,a是恒定功率放大器(PA)的效率,T是每个时隙的符号数。
综上能量效率E可得:
因此,只需根据前述公式获得的εFe和统计特性,通过简单代数运算即可
得出使能量效率E最大化的最优PTr及PD。
下面给出了仿真参数的设置与仿真结果和分析:
我们利用MATLAB进行仿真,建立系统模型。根据能量效率优化(14)求解出在当前信道条件下统计最优的PTr及PD,将其带入系统,采用MMSE估计、基于Llyod码本有限反馈的传输方法,并统计其平均能效。其中PA效率a=2,噪声协方差采用的码本根据以往经验,基于阈值ζ=10-5进行设计。
由能效的度量公式可以看出,系统能效受天线总数Nt、符号数T、码本数CB、时间相关参数α以及电路电源PC变化的影响。为说明提出算法的性能,将其分别与传统静态功率分配方法,已有静态优化功率分配方法、已有动态功率分配方法进行比较。其中,传统静态功率分配方法为随机选取两对功率,即传统静态功率1取为PTr=100mw,PD=50mw,传统静态功率2取为PTr=300mw,PD=100mw。因此,我们充分考虑不同参数的影响,评估验证能效性能,对不同条件下不同方法的能量效益进行分析比较。
仿真图2是在天线总数Nt=2、符号数T=100、码本数CB=32、时间相关参数α=0.98时,电路电源PC所对应能效平均值的变化趋势。所提出方法的基于统计特性的功率分配方法的能效相较于其他静态优化功率分配方法和传统静态功率分配方法更高,系统性能更为优越。性能优于已有静态优化方法,主要是提出方法考虑了反馈误差给出了更准确的功率分配方法。
仿真图3是在天线总数Nt=4、符号数T=100、码本数CB=32、时间相关参数α=0.98时,电路电源PC所对应能效平均值的变化趋势。所提出方法的基于统计特性的功率分配方法的能效相较于其他静态优化功率分配方法和传统静态功率分配方法更高,系统性能更为优越。且随着天线总数的增加,提出方法的基于统计特性的功率分配方法的能效越高,更加体现优越性。
仿真图4是在天线总数Nt=4、符号数T=80、时间相关参数α=0.98、电路电源功率PC=20mW、PC=100mW及PC=220mW时,不同码本数CB所对应能效的变化趋势。所提出方法的基于统计特性的功率分配方法的能效相较于已有静态优化功率分配方法更高,随着码本大小增加,反馈损失逐渐减小,能效值趋于稳定。
仿真图5是在天线总数Nt=4、符号数T=100、码本数CB=4,电路电源PC=100mW时,时间相关参数α所对应能效平均值的变化趋势。从图中可以看出,所提出的基于统计特性的功率分配方法的能效相较于已有静态优化功率分配方法和传统静态功率分配方法更高,系统性能更为优越;而与动态优化方法相比,在慢速时变的强相关性信道条件下,性能有损失,而在快速时变的低相关性信道环境下,所提出的基于统计特性的功率分配方法能够更好的覆盖独立统计特性,具有较好的性能。
仿真图6中是在天线总数Nt=4、符号数T=100、码本数CB=4,时间相关参数α=0.79时,电路电源PC所对应能效平均值的变化趋势。所提出的基于统计特性的功率分配方法的能效相较于已有静态优化功率分配方法、已有动态优化功率分配方法和传统静态功率分配方法更高,系统性能更为优越。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。
Claims (7)
1.一种基于统计特性的多天线能效优化方法,其特征在于,包括以下步骤:
步骤1、建立通信链路系统模型
所述通信链路系统中数据x的接收信号y为:其中,PD为数据功率分配,h为信道响应矢量,且服从分布,n为高斯白噪声信号,且服从分布,为信道量化值;
步骤2、MMSE信道估计与分析
基于接收信号y对信道响应矢量h进行MMSE估计,得到信道估计矢量且其中,为估计误差;
步骤3、信道反馈
通过基于Llyod码本的有限反馈方式对所述信道估计矢量量化,得到信道量化值且其中,eFe为量化误差;
步骤4、基于估计和反馈的能效优化,包括以下步骤:
步骤4.1、计算信道容量
其中,Nt为通信链路系统中发射天线的根数,R为信道容量的下界;
步骤4.2、能效优化
根据发射端设计功率控制器的目标为最大化遍历能效的下界值,结合所述信道容量,能量效率度量为:
其中,E为能量效率,J为训练序列持续时间,PTr为每个发射天线上的训练功率,PD为数据传输功率,PC为电路功耗,a为恒定功率放大器的效率,T为每个时隙的符号数,εFe为量化误差eFe的方差下界;
根据获得的εFe和统计特性,得出使能量效率E最大化的最优PTr及PD。
2.如权利要求1所述的基于统计特性的多天线能效优化方法,其特征在于,所述MIMO通信链路系统具有Nt根发射天线和单根接收天线,设训练序列S为J×Nt阶矩阵,且SHS=JPTrI,为在第nt个发射天线上发送的训练序列,其中,nt=1,…,Nt。
3.如权利要求2所述的基于统计特性的多天线能效优化方法,其特征在于,基于接收信号y对信道响应矢量h的MMSE估计表示为:且协方差εTr为:
4.如权利要求1所述的基于统计特性的多天线能效优化方法,其特征在于,采用码本F对接收端的信道估计矢量量化过程如下:
其中,F={f1,…,fB},且fi∈F,且i=1,2,3,......,B,b为每时隙有限反馈比特数,Nt为MIMO通信链路系统中发射天线的根数;
即,选取第i*列所对应的码本矢量作为量化后的信道矢量接收端对进行有限反馈。
5.如权利要求4所述的基于统计特性的多天线能效优化方法,其特征在于,所述量化误差eFe的方差下界εFe为:
所述量化误差eFe与反馈获得的信道量化矢量相互独立,则有:
6.如权利要求4所述的基于统计特性的多天线能效优化方法,基于预存码本内的每一个码字为Nt×1维的矢量,随机抽取B个矢量作为设计码本的初始码本,利用Lloyd算法进行离线的迭代搜索,形成覆盖整个信道估计值空间的码本F。
7.如权利要求1所述的基于统计特性的多天线能效优化方法,其特征在于,所述MIMO通信链路系统为点对点MIMO通信链路系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610451609.XA CN105897316B (zh) | 2016-06-21 | 2016-06-21 | 一种基于统计特性的多天线能效优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610451609.XA CN105897316B (zh) | 2016-06-21 | 2016-06-21 | 一种基于统计特性的多天线能效优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105897316A true CN105897316A (zh) | 2016-08-24 |
CN105897316B CN105897316B (zh) | 2019-06-14 |
Family
ID=56730924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610451609.XA Expired - Fee Related CN105897316B (zh) | 2016-06-21 | 2016-06-21 | 一种基于统计特性的多天线能效优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105897316B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108768470A (zh) * | 2018-05-25 | 2018-11-06 | 南京邮电大学 | 一种反馈受限下中继协同通信系统信息传输方法 |
CN110061767A (zh) * | 2018-01-17 | 2019-07-26 | 中国移动通信有限公司研究院 | 码本生成方法及码本生成装置 |
US10742282B2 (en) | 2018-10-30 | 2020-08-11 | Samsung Electronics Co., Ltd. | System and method for generating codebook for analog beamforming |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101145817A (zh) * | 2006-09-14 | 2008-03-19 | 联想(北京)有限公司 | 一种多入多出系统空间发射功率的分配方法及发射机 |
EP2645653A1 (en) * | 2012-03-30 | 2013-10-02 | NTT DoCoMo, Inc. | Transmission filter calculator, communication device and methods |
CN104617996A (zh) * | 2015-01-06 | 2015-05-13 | 郑州大学 | 大规模mimo系统中最大化最小信噪比的预编码设计方法 |
CN105338609A (zh) * | 2015-09-29 | 2016-02-17 | 北京工业大学 | 多天线系统高能效动态功率分配方法 |
-
2016
- 2016-06-21 CN CN201610451609.XA patent/CN105897316B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101145817A (zh) * | 2006-09-14 | 2008-03-19 | 联想(北京)有限公司 | 一种多入多出系统空间发射功率的分配方法及发射机 |
EP2645653A1 (en) * | 2012-03-30 | 2013-10-02 | NTT DoCoMo, Inc. | Transmission filter calculator, communication device and methods |
CN104617996A (zh) * | 2015-01-06 | 2015-05-13 | 郑州大学 | 大规模mimo系统中最大化最小信噪比的预编码设计方法 |
CN105338609A (zh) * | 2015-09-29 | 2016-02-17 | 北京工业大学 | 多天线系统高能效动态功率分配方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110061767A (zh) * | 2018-01-17 | 2019-07-26 | 中国移动通信有限公司研究院 | 码本生成方法及码本生成装置 |
CN108768470A (zh) * | 2018-05-25 | 2018-11-06 | 南京邮电大学 | 一种反馈受限下中继协同通信系统信息传输方法 |
CN108768470B (zh) * | 2018-05-25 | 2021-09-24 | 南京邮电大学 | 一种反馈受限下中继协同通信系统信息传输方法 |
US10742282B2 (en) | 2018-10-30 | 2020-08-11 | Samsung Electronics Co., Ltd. | System and method for generating codebook for analog beamforming |
Also Published As
Publication number | Publication date |
---|---|
CN105897316B (zh) | 2019-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105338609B (zh) | 多天线系统高能效动态功率分配方法 | |
CN103746730B (zh) | Lte‑a系统中的两级码本选择方法 | |
CN102104453A (zh) | 一种预编码方法和装置以及解码方法和装置 | |
CN105978674A (zh) | 基于压缩感知的fdd下大规模mimo信道估计的导频优化方法 | |
US8218668B2 (en) | Multi-user MIMO method, apparatus and communication system for transmitting signal | |
CN101964695B (zh) | 多用户多输入多输出下行链路预编码方法及系统 | |
CN103490804A (zh) | 基于优先度遗传模拟退火的多用户mimo系统天线选择方法 | |
CN105897316B (zh) | 一种基于统计特性的多天线能效优化方法 | |
CN101110623A (zh) | 一种有限反馈多入多出多用户系统的部分用户反馈方法 | |
CN102420646B (zh) | 下行多用户mimo系统中的线性预编码方法和装置 | |
CN112054832B (zh) | 一种深度学习多输入多输出检测方法 | |
CN103731244B (zh) | Lte-a终端反馈系统中双码本差分设计方法 | |
CN113114313A (zh) | 一种mimo-noma系统导频辅助信号检测方法、系统及存储介质 | |
CN107707284B (zh) | 一种基于信道统计量码本量化反馈的混合预编码方法 | |
CN101494625A (zh) | 一种线性均衡方法及线性均衡器 | |
CN102571172B (zh) | 在mimo无线通信系统中进行用户调度的方法和设备 | |
CN102801456A (zh) | 单小区中继移动通信蜂窝系统的联合下行预编码方法 | |
CN104113399B (zh) | 多用户mimo系统中基于矩阵条件数的用户选择方法 | |
CN102404090B (zh) | 基于奇异值分解的多用户mimo系统下行链路传输方法 | |
CN102843219B (zh) | 协作多点联合传输中鲁棒的和速率优化预编码方法 | |
Huang et al. | Event-driven optimal feedback control for multiantenna beamforming | |
CN102013958A (zh) | 快速时变mimo系统中基于非码本预编码的传输方法 | |
CN101873203A (zh) | Mimo中继系统中基于码书预编码的信号发送方法 | |
CN101640649B (zh) | 信道预测时确定信道预测系数的方法、装置及信道预测器 | |
Sung et al. | A two-stage precoding method based on interference alignment for interference channel systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190614 |
|
CF01 | Termination of patent right due to non-payment of annual fee |