CN105887084A - 一种具有自修复功能的镁合金复合涂层制备方法 - Google Patents

一种具有自修复功能的镁合金复合涂层制备方法 Download PDF

Info

Publication number
CN105887084A
CN105887084A CN201610313339.6A CN201610313339A CN105887084A CN 105887084 A CN105887084 A CN 105887084A CN 201610313339 A CN201610313339 A CN 201610313339A CN 105887084 A CN105887084 A CN 105887084A
Authority
CN
China
Prior art keywords
magnesium alloy
arc oxidation
ranges
coating
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610313339.6A
Other languages
English (en)
Other versions
CN105887084B (zh
Inventor
宋东福
徐静
农登
郑开宏
王顺成
甘春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Guangdong Institute of Materials and Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Materials and Processing filed Critical Guangdong Institute of Materials and Processing
Priority to CN201610313339.6A priority Critical patent/CN105887084B/zh
Publication of CN105887084A publication Critical patent/CN105887084A/zh
Application granted granted Critical
Publication of CN105887084B publication Critical patent/CN105887084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种具有自修复功能的镁合金复合涂层制备方法,由以下步骤组成:打磨镁合金表面,除油脱脂;用微弧氧化电解液,控制电流或电压法,调整脉冲电源频率和占空比,微弧氧化时间为15~60min;将微弧氧化后镁合金清洗、烘干,置于压力7~8×10‑3Pa和100~200℃的真空镀膜室中,调整氩气压力2~3Pa,脉冲偏压占空比为20~30%,偏压为800~1000V,放电清洗2~5min;采用纯铝或纯钛靶材,氩离子轰击结束,至压力3~5×10‑1Pa,偏压占空比为40~50%,偏压500~1000V;电弧电流为60~120A,镀膜时间10~60min。本发明方法具有无铬、无氟、无磷、无重金属离子等有害物质,制备的镁合金涂层具有耐蚀性、良好的导热性和自修复性。

Description

一种具有自修复功能的镁合金复合涂层制备方法
技术领域
本发明涉及一种镁合金复合涂层的制备方法,具体涉及到微弧氧化技术和电弧离子镀膜技术。
背景技术
镁合金具有比强度和比刚度高、铸造性能好、电屏蔽和阻尼性能优异及可回收利用等特点,广泛地应用于航空航天、汽车摩托车、工具、电子通讯、光学仪器、计算机制造等领域。但镁合金的电极电位极负(-2.36V),且自然氧化膜与金属体积比为0.79,自然氧化膜无法完全覆盖基体,且疏松多孔,无法保护镁合金基体,耐蚀性能差。为了改善镁合金表面的耐蚀性能,许多表面处理技术相继被开发出来,如:化学转化、阳极氧化、微弧氧化、金属覆层、气相沉积以及涂装等。由于镁合金化学活性极高,至今未开发出单一能解决镁合金在苛刻条件下防腐蚀的方法。因此,国内外通常采用两种或两种以上表面处理技术,制备高耐蚀性的复合涂层。典型方法如下:
中国专利ZL201210190789.2公开了一种将微弧氧化技术和电泳涂装技术结合起来,制备镁合金微弧氧化/有机涂层复合涂层的方法。该复合涂层的陶瓷层厚度约为15~35µm,孔隙率15~40%,表面粗糙度2.0~4.5µm,电泳涂层20~45µm。该膜层拥有优异的综合性能,能够完全满足我国国防军工、航空航天等领域对镁合金涂层耐腐蚀、耐湿热等性能的要求。
中国专利ZL201210370483.5公开了一种将微弧氧化技术和电镀结合起来,制备镁合金微弧氧化/金属镍复合涂层。所制备复合涂层不仅具有较好的防护厚度,而且与基体结合力好,具有良好的耐蚀性能佳、硬度高和表面光亮度好。
CN103710738A公开了一种将微弧氧化技术和阴极电沉积技术起来,制备镁合金微弧氧化/有机酸转化膜复合涂层。该发明能显著提高镁及其合金的耐蚀性,工艺简单,成本较低,易实现工业化。
CN104878377A公开了一种在镁合金表面制备氧化石墨烯与微弧氧化陶瓷复合膜层的方法》该法将微弧氧化技术和涂覆技术起来,制备镁合金微弧氧化/氧化石墨烯复合涂层。所制备复合涂层腐蚀电流密度降低至为14.5nA/cm2,是基体镁合金腐蚀电流的1/7240。
上述四种方法为制备高耐蚀性复合涂层提供了良好的技术方法,但都不具备自修复性能。当复合保护涂层一旦遭到破坏,其镁合金基材将在腐蚀介质的作用下迅速蔓延,导致镁合金构件的失效,制备具有自修复功能的高性能涂层十分必要。目前,镁合金表面的自修复涂层主要有铬酸转化膜、金属覆层,如铝、钛等。前者膜层中含六价铬,膜层破坏时能吸水膨胀,覆盖破坏区域,形成新的保护膜;后者膜层破坏时快速形成新的致密氧化膜,保护基体。但六价铬有毒,已被欧盟等禁止使用。而现有的金属覆层制备技术如热喷涂、电镀、化学镀层存在结合力差、耐蚀性能不佳,气相沉积膜层薄、耐蚀性不佳、沉积效率低等问题。因此,至今还未能制备兼具耐蚀性和自修复性的镁合金防护涂层。
发明内容
本发明的目的是提出一种具有自修复、高耐蚀性的镁合金复合涂层制备方法。
本发明的技术方案由以下步骤组成:
1.预处理:用400~1000#砂纸或砂轮机打磨镁合金表面,除油脱脂;
2.微弧氧化:用微弧氧化电解液,通过控制电流或者电压法,脉冲电源频率为100~800Hz,电流密度为1~3A/dm2,电压0~450V,占空比为8~20%,微弧氧化时间为15~60min,氧化膜厚度为5~50μm;
3.离子清洗:将微弧氧化后镁合金清洗、烘干,置于压力7~8×10-3Pa和100~200℃的真空镀膜室中,调整氩气压力2~3Pa,脉冲偏压占空比为20~30%,偏压为800~1000V,放电清洗2~5min;
4.电弧离子镀膜:采用纯铝或纯钛靶材,氩离子轰击结束,至压力3~5×10-1Pa;偏压占空比为40~50%,偏压500~1000V,电弧电流为60~120A,镀膜时间10~60min。
所述微弧氧化的电解液组成为:硅酸钠5~20g/L,氢氧化钠2~5g/L,偏铝酸钠1~5g/L,丙三醇为2~8ml/L,其余为去离子水。
本方法首先在镁合金表面制备一层5~50µm的微弧氧化陶瓷膜,然后在其表面电弧离子镀一层0.1~3µm的纯铝或纯钛。本发明方法具有无铬、无氟、无磷、无重金属离子等有害物质,属于环保型表面处理技术。
本发明结合微弧氧化和电弧离子镀制备具有耐蚀性的自修复涂层。微弧氧化是利用微弧区瞬间的高温烧结作用直接在镁合金表面上原位生成陶瓷层的过程,氧化膜层呈多孔状,与基质结合牢固,且具有陶瓷特性,质地坚硬、分布均匀,具有优异的耐蚀性和耐磨性。电弧离子镀是以镀膜材料作为靶极,借助于触发装置,使靶表面产生弧光放电,镀膜材料在电弧作用下,产生无熔池蒸发并沉积在基片上的一种镀膜方法。与其它真空镀膜技术相比,具有金属离化率高、镀膜速度快、与基材结合力好、镀层材料及适基材范围宽、成本较低等特点。镁合金表面经微弧氧化处理后,首先在表面形成了一层多孔的硬质陶瓷层,然后进入电弧离子镀膜阶段,微弧氧化膜的微孔处的电阻较小,离化金属离子在偏压的作用下,优先在微孔底部沉积,起到封孔的作用。同时,氧化膜表面形成的纯铝或纯钛膜层能快速形成一层很薄的、致密的自然氧化膜,该膜具有良好的耐蚀性能和自修复性能。此外由于复合涂层的表层为金属镀层,其散热性能尤佳。因此,本发明制备的镁合金涂层不仅具备高耐蚀性,同时兼具良好的导热性和自修复性,适合于3C领域的应用。
具体实施方式
实施例1
1.预处理:用400~1000#砂纸或砂轮机打磨镁合金表面,除油脱脂;
2.微弧氧化:用微弧氧化电解液,电解液组成为:硅酸钠20g/L,氢氧化钠2g/L,偏铝酸钠5g/L,丙三醇为2ml/L,其余为去离子水;在脉冲电源频率为500Hz,控制电流密度为2.5A/dm2,占空比为8%,微弧氧化时间为25min,氧化膜厚度为20μm;
3.离子清洗:将微弧氧化后镁合金清洗、烘干,置于压力7×10-3Pa和100℃的真空镀膜室中,调整氩气压力2.0Pa,脉冲偏压占空比为20%,偏压为1000V,放电清洗5min;
4.电弧离子镀膜:采用纯铝靶材,氩离子轰击结束后,镀膜室内气体至压力3×10-1Pa;偏压占空比为40%,偏压500V,电弧电流为70A,镀膜时间45min。
本实施方案获得的涂层厚度25µm,涂层结合强度35MPa,耐中性盐雾达800h,所得纯铝镀层具有自修复功能。
实施例2
1.预处理:用400~1000#砂纸或砂轮机打磨镁合金表面,除油脱脂;
2.微弧氧化:用微弧氧化电解液,电解液组成为:硅酸钠5g/L,氢氧化钠5g/L,偏铝酸钠1g/L,丙三醇为8ml/L,其余为去离子水;在脉冲电源频率为800Hz,在5min內升至250V,10min內升至450V,保持电压450V,占空比为20%,微弧氧化时间为60min,氧化膜厚度为45μm;
3.离子清洗:将微弧氧化后镁合金清洗、烘干,置于压力8×10-3Pa和200℃的真空镀膜室中,调整氩气压力3.0Pa,脉冲偏压占空比为25%,偏压为1000V,放电清洗2min;
4.电弧离子镀膜:采用纯钛靶材,氩离子轰击结束后,镀膜室内气体至压力5×10-1Pa;偏压占空比为50%,偏压500V,电弧电流为100A,镀膜时间60min。
本实施方案获得的涂层厚度50µm,涂层结合强度35MPa,耐中性盐雾时间达800h,所得纯钛镀层具有自修复功能。

Claims (2)

1.一种具有自修复功能的镁合金复合涂层制备方法,其特征是由以下步骤组成:
1)预处理:用400~1000#砂纸或砂轮机打磨镁合金表面,除油脱脂;
2)微弧氧化:用微弧氧化电解液,在脉冲电源频率为100~800Hz,电流密度为1~3A/dm2,电压0~450V,占空比为8~20%,微弧氧化时间为15~60min,氧化膜厚度为5~50μm;
3)离子清洗:将微弧氧化后镁合金清洗、烘干,置于压力7~8×10-3Pa和100~200℃的真空镀膜室中,调整氩气压力2~3Pa,脉冲偏压占空比为20~30%,偏压为800~1000V,放电清洗2~5min;
4)电弧离子镀膜:采用纯铝或纯钛靶材,氩离子轰击结束,至压力3~5×10-1Pa;偏压占空比为40~50%,偏压500~1000V,电弧电流为60~120A,镀膜时间10~60min。
2.根据权利要求1所述的镁合金复合涂层制备方法,其特征是所述微弧氧化的电解液组成为:硅酸钠5~20g/L,氢氧化钠2~5g/L,偏铝酸钠1~5g/L,丙三醇为2~8ml/L,其余为去离子水。
CN201610313339.6A 2016-05-12 2016-05-12 一种具有自修复功能的镁合金复合涂层制备方法 Active CN105887084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610313339.6A CN105887084B (zh) 2016-05-12 2016-05-12 一种具有自修复功能的镁合金复合涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610313339.6A CN105887084B (zh) 2016-05-12 2016-05-12 一种具有自修复功能的镁合金复合涂层制备方法

Publications (2)

Publication Number Publication Date
CN105887084A true CN105887084A (zh) 2016-08-24
CN105887084B CN105887084B (zh) 2018-10-30

Family

ID=56702804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610313339.6A Active CN105887084B (zh) 2016-05-12 2016-05-12 一种具有自修复功能的镁合金复合涂层制备方法

Country Status (1)

Country Link
CN (1) CN105887084B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567117A (zh) * 2016-11-21 2017-04-19 西北工业大学 一种钛合金材料的表面处理方法
CN111020505A (zh) * 2019-12-16 2020-04-17 上海交通大学 在镁合金表面用氩离子刻蚀制备高耐腐蚀Al薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2382164A1 (en) * 1999-08-17 2001-02-22 Alexandr Sergeevich Shatrov Light alloy-based composite protective multifunction coating
CN1928165A (zh) * 2006-06-13 2007-03-14 兰州理工大学 在镁合金表面生成微弧氧化陶瓷层的方法
CN101698957A (zh) * 2009-10-29 2010-04-28 中国科学院长春应用化学研究所 一种耐热铸造稀土镁合金的微弧氧化处理方法
CN102899703A (zh) * 2012-09-06 2013-01-30 浙江工业大学 一种硅酸盐电解液及其在制备镁合金微弧氧化膜中的应用
CN103882426A (zh) * 2014-03-14 2014-06-25 四川理工学院 一种轻金属及其合金表面复合涂层的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2382164A1 (en) * 1999-08-17 2001-02-22 Alexandr Sergeevich Shatrov Light alloy-based composite protective multifunction coating
CN1928165A (zh) * 2006-06-13 2007-03-14 兰州理工大学 在镁合金表面生成微弧氧化陶瓷层的方法
CN101698957A (zh) * 2009-10-29 2010-04-28 中国科学院长春应用化学研究所 一种耐热铸造稀土镁合金的微弧氧化处理方法
CN102899703A (zh) * 2012-09-06 2013-01-30 浙江工业大学 一种硅酸盐电解液及其在制备镁合金微弧氧化膜中的应用
CN103882426A (zh) * 2014-03-14 2014-06-25 四川理工学院 一种轻金属及其合金表面复合涂层的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106567117A (zh) * 2016-11-21 2017-04-19 西北工业大学 一种钛合金材料的表面处理方法
CN111020505A (zh) * 2019-12-16 2020-04-17 上海交通大学 在镁合金表面用氩离子刻蚀制备高耐腐蚀Al薄膜的方法

Also Published As

Publication number Publication date
CN105887084B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
US11634808B2 (en) Anti-corrosion conductive film and pulse bias alternation-based magnetron sputtering deposition method and application thereof
CN105887159B (zh) 一种兼具装饰性和功能性的镁合金复合涂层制备方法
CN103590008B (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
CN106702329B (zh) 一种钛合金表面基于多弧离子镀铝的微弧氧化陶瓷涂层及其制备方法
Zhang et al. Preparation and corrosion performance of PEO coating with low porosity on magnesium alloy AZ91D in acidic KF system
CN105603424B (zh) 一种Si改性的β‑(Ni,Pt)Al涂层及其制备方法
CN107164731B (zh) 一种镁合金表面铝复合防护层的制备方法
CN103882426A (zh) 一种轻金属及其合金表面复合涂层的制备方法
CN102560338B (zh) 一种金属陶瓷涂层及其制备方法
CN104760349A (zh) 一种钛铝合金表面抗高温氧化和耐热腐蚀Al-Cr涂层及其制备方法
CN105887084A (zh) 一种具有自修复功能的镁合金复合涂层制备方法
CN110306148B (zh) 联合采用热喷涂和电子束重熔技术制备铝基非晶层的方法
CN100582290C (zh) 钕铁硼磁体表面磁控电弧离子镀不锈钢防护层的方法
CN102965626B (zh) 粉末冶金多孔材料的镀镍方法
CN108796493B (zh) 一种轻金属表面冷喷涂涂层的封孔改性方法
US20200199734A1 (en) Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby
CN111254476A (zh) 一种纯铜表面耐蚀黑色微弧氧化膜的制备方法
CN103774092B (zh) 一种在镁合金表面制备导电且耐腐蚀涂层的方法
TW201243090A (en) Anticorrosive treatment for aluminum alloy and aluminum alloy articles manufactured thereof
CN104419926A (zh) 磁体表面处理方法
CN109666912B (zh) 一种Hf/TiBx防腐蚀多层涂层的制备方法
CN206878105U (zh) 一种燃料电池双极板
CN113881917B (zh) 一种港口起重机防腐涂层及制备方法
CN113430490B (zh) 可变磁场磁控溅射镀膜装置及高导电碳基涂层的制备方法
Zhao et al. Effect of substrate bias voltage on structure and corrosion resistance of AlCrN coatings prepared by multi-arc ion plating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of materials and processing, Guangdong Academy of Sciences

Address before: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: Guangdong Institute Of Materials And Processing

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220926

Address after: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee after: Institute of new materials, Guangdong Academy of Sciences

Address before: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: Institute of materials and processing, Guangdong Academy of Sciences