CN105885076A - 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法 - Google Patents

一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法 Download PDF

Info

Publication number
CN105885076A
CN105885076A CN201610144363.1A CN201610144363A CN105885076A CN 105885076 A CN105885076 A CN 105885076A CN 201610144363 A CN201610144363 A CN 201610144363A CN 105885076 A CN105885076 A CN 105885076A
Authority
CN
China
Prior art keywords
microcrystalline cellulose
polypyrrole
subsequently
prepared
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610144363.1A
Other languages
English (en)
Other versions
CN105885076B (zh
Inventor
叶先龙
高力群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhi-Shun Technology Co., Ltd.
Original Assignee
NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd filed Critical NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN201610144363.1A priority Critical patent/CN105885076B/zh
Publication of CN105885076A publication Critical patent/CN105885076A/zh
Application granted granted Critical
Publication of CN105885076B publication Critical patent/CN105885076B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法,属于导电复合材料技术领域。针对目前聚吡咯材料溶解性差,力学性能较低,无法满足现有生产的需求的问题,通过将微晶纤维素进行改性负载石墨烯材料,随后将纤维素复合石墨烯材料与聚吡咯热压复合,制备一种加工难度较小,力学性能较好的柔性导电材料,本发明通过将柔性材料与导电材料进行复合,大大改善其加工性能,同时其复合材料电导率可达0.35~0.45s/cm,通过微晶纤维素和吡咯进行复合制备,绿色安全,对环境无污染。

Description

一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法
技术领域
本发明涉及一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法,属于导电复合材料技术领域。
背景技术
导电高分子是目前广受关注的研究课题之一,纳米导电高分子具有电导率高,环境稳定性好,生物相容性好的特点,并且广泛的应用于电子工业、光学仪器、化学和电化学传感器、电致色变元件、致动器、场发射器件等领域。在所有导电高分子中,聚吡咯是研究最广泛的导电高分子,其合成简便,抗氧化性能良好,与其它导电高分子相比电导率较高、易成膜、柔软等优点而日益受到人们的关注。聚吡咯已被用于制作生物感应器、功能分子膜、二次电池和非线性光学装置等。 从纯聚合物、掺杂薄膜到双层膜复合材料和现在的纳米复合材料, 聚吡咯的热稳定性、机械延展性等均有了很大提高。
但是与大多数共辆导电高分子一样,聚吡咯难熔难溶,难溶于普通溶剂,导致其加工操作困难较大,无法完全对其保证进行有效的加工和处理,所以需要一种较为柔性的导电材料,在不损害其电化学性能的同时,使其加工操作的难度大大降低。
发明内容
本发明所要解决的技术问题:针对目前聚吡咯材料溶解性差,力学性能较低,无法满足现有生产的需求的问题,提供了一种通过将微晶纤维素进行改性负载石墨烯材料,随后将纤维素复合石墨烯材料与聚吡咯热压复合,制备一种加工难度较小,力学性能较好的柔性导电材料,导电性能较好,且加工制作十分方便。
为解决上述技术问题,本发明采用如下所述的技术方案是:
(1)按体积比1:1,将1.2mL浓度为0.1mg/mL的石墨烯添加至浓度为0.02mol/L的十六烷基三甲基溴化铵中,在200~300W下超声分散10~15min,制备得石墨烯分散液备用;
(2)称取55~60g微晶纤维素,将其置于100~200mL去离子水中,随后搅拌混合并超声分散20~30min,待分散完成后,对其过滤并收集滤渣,用去离子水洗涤至pH至7.0后,将其置于50~60℃下干燥3~4h,待干燥完成后,将其置于30MPa下额的均质机中均质处理50~60min;
(3)待均质处理完成后,量取8~10mL均质悬浊液,将其置于索氏抽提器中抽滤成膜,带静置10~15min后,将步骤(1)制备的石墨烯分散液置于索氏抽提器中再次抽滤,随后收集复合薄膜,在80~85℃下热压20~24h,制备得微晶纤维素柔性薄膜;
(4)将上述制备的微晶纤维素柔性薄膜平铺至500mL烧杯中,随后添加200~250mL的吡咯单体,使其将纤维素膜完全淹没,同时滴加20~25mL质量浓度为10%的三氯化铁溶液,随后将烧杯置于紫外辐照箱中,调节紫外灯与烧杯间距为10cm;
(5)待调整灯距后,对辐照箱中通入氮气排除空气,随后打开紫外灯,对其辐照接枝改性处理25~30min,待接枝完成后,收集接枝完成的纤维素膜,将其置于质量分数为30%乙醇溶液中,在200~300W超声振荡清洗5~10min,并置于40~50℃下真空干燥6~8h,即可制备得一种聚吡咯/微晶纤维素高柔性导电复合材料。
本发明的应用方法:按重量份数计,分别称取75~85份将上述制备的高柔性导电复合材料、10~15份炭黑粉末和5~10份聚偏氟乙烯,搅拌混合制备得混合电极材料,随后按固液质量比50:1,将二甲基甲酰胺滴加至混合电极材料中,并将其置于玛瑙研钵中碾磨混合10~15min,随后均匀涂覆置1cm2的镍片表面,在1~2MPa下压制1~2min后,将其置于65~70℃下干燥6~8h,即可制备得电池电极。
本发明与其他方法相比,有益技术效果是:
(1)本发明通过将柔性材料与导电材料进行复合,大大改善其加工性能,同时其复合材料电导率可达0.35~0.45s/cm;
(2)通过微晶纤维素和吡咯进行复合制备,绿色安全,对环境无污染。
具体实施方式
首先按体积比1:1,将1.2mL浓度为0.1mg/mL的石墨烯添加至浓度为0.02mol/L的十六烷基三甲基溴化铵中,在200~300W下超声分散10~15min,制备得石墨烯分散液备用;称取55~60g微晶纤维素,将其置于100~200mL去离子水中,随后搅拌混合并超声分散20~30min,待分散完成后,对其过滤并收集滤渣,用去离子水洗涤至pH至7.0后,将其置于50~60℃下干燥3~4h,待干燥完成后,将其置于30MPa下额的均质机中均质处理50~60min;待均质处理完成后,量取8~10mL均质悬浊液,将其置于索氏抽提器中抽滤成膜,带静置10~15min后,将步骤(1)制备的石墨烯分散液置于索氏抽提器中再次抽滤,随后收集复合薄膜,在80~85℃下热压20~24h,制备得微晶纤维素柔性薄膜;将上述制备的微晶纤维素柔性薄膜平铺至500mL烧杯中,随后添加200~250mL的吡咯单体,使其将纤维素膜完全淹没,同时滴加20~25mL质量浓度为10%的三氯化铁溶液,随后将烧杯置于紫外辐照箱中,调节紫外灯与烧杯间距为10cm;待调整灯距后,对辐照箱中通入氮气排除空气,随后打开紫外灯,对其辐照接枝改性处理25~30min,待接枝完成后,收集接枝完成的纤维素膜,将其置于质量分数为30%乙醇溶液中,在200~300W超声振荡清洗5~10min,并置于40~50℃下真空干燥6~8h,即可制备得一种聚吡咯/微晶纤维素高柔性导电复合材料。
实例1
首先按体积比1:1,将1.2mL浓度为0.1mg/mL的石墨烯添加至浓度为0.02mol/L的十六烷基三甲基溴化铵中,在200W下超声分散10min,制备得石墨烯分散液备用;称取55g微晶纤维素,将其置于100mL去离子水中,随后搅拌混合并超声分散20min,待分散完成后,对其过滤并收集滤渣,用去离子水洗涤至pH至7.0后,将其置于50℃下干燥3h,待干燥完成后,将其置于30MPa下额的均质机中均质处理50min;待均质处理完成后,量取8mL均质悬浊液,将其置于索氏抽提器中抽滤成膜,带静置10min后,将石墨烯分散液置于索氏抽提器中再次抽滤,随后收集复合薄膜,在80℃下热压20h,制备得微晶纤维素柔性薄膜;将上述制备的微晶纤维素柔性薄膜平铺至500mL烧杯中,随后添加200mL的吡咯单体,使其将纤维素膜完全淹没,同时滴加20mL质量浓度为10%的三氯化铁溶液,随后将烧杯置于紫外辐照箱中,调节紫外灯与烧杯间距为10cm;待调整灯距后,对辐照箱中通入氮气排除空气,随后打开紫外灯,对其辐照接枝改性处理25min,待接枝完成后,收集接枝完成的纤维素膜,将其置于质量分数为30%乙醇溶液中,在200W超声振荡清洗5min,并置于40℃下真空干燥6h,即可制备得一种聚吡咯/微晶纤维素高柔性导电复合材料。
按重量份数计,分别称取75份将上述制备的高柔性导电复合材料、15份炭黑粉末和10份聚偏氟乙烯,搅拌混合制备得混合电极材料,随后按固液质量比50:1,将二甲基甲酰胺滴加至混合电极材料中,并将其置于玛瑙研钵中碾磨混合10min,随后均匀涂覆置1cm2的镍片表面,在1MPa下压制1min后,将其置于65℃下干燥6h,即可制备得电池电极。
实例2
首先按体积比1:1,将1.2mL浓度为0.1mg/mL的石墨烯添加至浓度为0.02mol/L的十六烷基三甲基溴化铵中,在250W下超声分散12min,制备得石墨烯分散液备用;称取57g微晶纤维素,将其置于150mL去离子水中,随后搅拌混合并超声分散25min,待分散完成后,对其过滤并收集滤渣,用去离子水洗涤至pH至7.0后,将其置于55℃下干燥4h,待干燥完成后,将其置于30MPa下额的均质机中均质处理55min;待均质处理完成后,量取9mL均质悬浊液,将其置于索氏抽提器中抽滤成膜,带静置12min后,将石墨烯分散液置于索氏抽提器中再次抽滤,随后收集复合薄膜,在82℃下热压22h,制备得微晶纤维素柔性薄膜;将上述制备的微晶纤维素柔性薄膜平铺至500mL烧杯中,随后添加225mL的吡咯单体,使其将纤维素膜完全淹没,同时滴加22mL质量浓度为10%的三氯化铁溶液,随后将烧杯置于紫外辐照箱中,调节紫外灯与烧杯间距为10cm;待调整灯距后,对辐照箱中通入氮气排除空气,随后打开紫外灯,对其辐照接枝改性处理27min,待接枝完成后,收集接枝完成的纤维素膜,将其置于质量分数为30%乙醇溶液中,在250W超声振荡清洗8min,并置于45℃下真空干燥7h,即可制备得一种聚吡咯/微晶纤维素高柔性导电复合材料。
按重量份数计,分别称取80份将上述制备的高柔性导电复合材料、15份炭黑粉末和5份聚偏氟乙烯,搅拌混合制备得混合电极材料,随后按固液质量比50:1,将二甲基甲酰胺滴加至混合电极材料中,并将其置于玛瑙研钵中碾磨混合12min,随后均匀涂覆置1cm2的镍片表面,在2MPa下压制1min后,将其置于67℃下干燥7h,即可制备得电池电极。
实例3
首首先按体积比1:1,将1.2mL浓度为0.1mg/mL的石墨烯添加至浓度为0.02mol/L的十六烷基三甲基溴化铵中,在300W下超声分散15min,制备得石墨烯分散液备用;称取60g微晶纤维素,将其置于200mL去离子水中,随后搅拌混合并超声分散30min,待分散完成后,对其过滤并收集滤渣,用去离子水洗涤至pH至7.0后,将其置于60℃下干燥4h,待干燥完成后,将其置于30MPa下额的均质机中均质处理60min;待均质处理完成后,量取10mL均质悬浊液,将其置于索氏抽提器中抽滤成膜,带静置15min后,将石墨烯分散液置于索氏抽提器中再次抽滤,随后收集复合薄膜,在85℃下热压24h,制备得微晶纤维素柔性薄膜;将上述制备的微晶纤维素柔性薄膜平铺至500mL烧杯中,随后添加250mL的吡咯单体,使其将纤维素膜完全淹没,同时滴加25mL质量浓度为10%的三氯化铁溶液,随后将烧杯置于紫外辐照箱中,调节紫外灯与烧杯间距为10cm;待调整灯距后,对辐照箱中通入氮气排除空气,随后打开紫外灯,对其辐照接枝改性处理30min,待接枝完成后,收集接枝完成的纤维素膜,将其置于质量分数为30%乙醇溶液中,在300W超声振荡清洗10min,并置于50℃下真空干燥8h,即可制备得一种聚吡咯/微晶纤维素高柔性导电复合材料。
按重量份数计,分别称取85份将上述制备的高柔性导电复合材料、10份炭黑粉末和5份聚偏氟乙烯,搅拌混合制备得混合电极材料,随后按固液质量比50:1,将二甲基甲酰胺滴加至混合电极材料中,并将其置于玛瑙研钵中碾磨混合15min,随后均匀涂覆置1cm2的镍片表面,在2MPa下压制2min后,将其置于70℃下干燥8h,即可制备得电池电极。

Claims (1)

1. 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法,其特征在于具体制备步骤为:
(1)按体积比1:1,将1.2mL浓度为0.1mg/mL的石墨烯添加至浓度为0.02mol/L的十六烷基三甲基溴化铵中,在200~300W下超声分散10~15min,制备得石墨烯分散液备用;
(2)称取55~60g微晶纤维素,将其置于100~200mL去离子水中,随后搅拌混合并超声分散20~30min,待分散完成后,对其过滤并收集滤渣,用去离子水洗涤至pH至7.0后,将其置于50~60℃下干燥3~4h,待干燥完成后,将其置于30MPa下额的均质机中均质处理50~60min;
(3)待均质处理完成后,量取8~10mL均质悬浊液,将其置于索氏抽提器中抽滤成膜,带静置10~15min后,将步骤(1)制备的石墨烯分散液置于索氏抽提器中再次抽滤,随后收集复合薄膜,在80~85℃下热压20~24h,制备得微晶纤维素柔性薄膜;
(4)将上述制备的微晶纤维素柔性薄膜平铺至500mL烧杯中,随后添加200~250mL的吡咯单体,使其将纤维素膜完全淹没,同时滴加20~25mL质量浓度为10%的三氯化铁溶液,随后将烧杯置于紫外辐照箱中,调节紫外灯与烧杯间距为10cm;
(5)待调整灯距后,对辐照箱中通入氮气排除空气,随后打开紫外灯,对其辐照接枝改性处理25~30min,待接枝完成后,收集接枝完成的纤维素膜,将其置于质量分数为30%乙醇溶液中,在200~300W超声振荡清洗5~10min,并置于40~50℃下真空干燥6~8h,即可制备得一种聚吡咯/微晶纤维素高柔性导电复合材料。
CN201610144363.1A 2016-03-15 2016-03-15 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法 Active CN105885076B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610144363.1A CN105885076B (zh) 2016-03-15 2016-03-15 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610144363.1A CN105885076B (zh) 2016-03-15 2016-03-15 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN105885076A true CN105885076A (zh) 2016-08-24
CN105885076B CN105885076B (zh) 2019-01-15

Family

ID=57014595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610144363.1A Active CN105885076B (zh) 2016-03-15 2016-03-15 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN105885076B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517333A (zh) * 2016-11-01 2017-03-22 中南大学 一种柔性导电MoS2保温薄膜及其制备方法
CN106824125A (zh) * 2017-01-11 2017-06-13 西南交通大学 一种高吸附性能的纤维素基复合材料的制备方法
CN112435770A (zh) * 2020-11-12 2021-03-02 湖北鼎晖耐火材料有限公司 一种基于多晶莫来石纤维的导电材料的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927090A (zh) * 2014-11-18 2015-09-23 青岛科技大学 一种柔性透明导电石墨烯/纤维素复合膜及其制备方法
CN105175761A (zh) * 2015-09-08 2015-12-23 哈尔滨工业大学 一种细菌纤维素/聚苯胺/石墨烯膜材料的制备方法及其应用
CN105206431A (zh) * 2015-10-12 2015-12-30 中国林业科学研究院木材工业研究所 电极材料的制备方法和由其制备的电极材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927090A (zh) * 2014-11-18 2015-09-23 青岛科技大学 一种柔性透明导电石墨烯/纤维素复合膜及其制备方法
CN105175761A (zh) * 2015-09-08 2015-12-23 哈尔滨工业大学 一种细菌纤维素/聚苯胺/石墨烯膜材料的制备方法及其应用
CN105206431A (zh) * 2015-10-12 2015-12-30 中国林业科学研究院木材工业研究所 电极材料的制备方法和由其制备的电极材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李生英等: "聚吡咯/SnO_2/醋酸纤维素纳米复合膜的制备及其光催化合成聚甲基丙烯酸甲酯", 《应用化学》 *
杨慧婷等: "聚吡咯/纤维素导电复合织物的制备及表征", 《东北林业大学学报》 *
谢允斌等: "多功能性聚吡咯复合膜", 《化学进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517333A (zh) * 2016-11-01 2017-03-22 中南大学 一种柔性导电MoS2保温薄膜及其制备方法
CN106824125A (zh) * 2017-01-11 2017-06-13 西南交通大学 一种高吸附性能的纤维素基复合材料的制备方法
CN112435770A (zh) * 2020-11-12 2021-03-02 湖北鼎晖耐火材料有限公司 一种基于多晶莫来石纤维的导电材料的制作方法
CN112435770B (zh) * 2020-11-12 2022-05-27 湖北鼎晖耐火材料有限公司 一种基于多晶莫来石纤维的导电材料的制作方法

Also Published As

Publication number Publication date
CN105885076B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN104992853B (zh) 制备超级电容器柔性可弯曲薄膜电极的方法
Kong et al. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device
Namazi et al. Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces
Chen et al. Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis
Dai et al. Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone
CN103613755B (zh) 一种石墨烯/聚苯胺纳米复合材料、制备方法及应用
Wang et al. Anatase titania coated CNTs and sodium lignin sulfonate doped chitosan proton exchange membrane for DMFC application
CN102219997B (zh) 一种采用细菌纤维素为模板制备聚吡咯包覆细菌纤维素纳米导电复合材料的方法
Zhang et al. Enhanced anhydrous proton conductivity of SPEEK/IL composite membrane embedded with amino functionalized mesoporous silica
Elumalai et al. Anion exchange composite membrane based on octa quaternary ammonium Polyhedral Oligomeric Silsesquioxane for alkaline fuel cells
Kumar et al. Tire waste derived turbostratic carbon as an electrode for a vanadium redox flow battery
Zhang et al. Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly (arylene ether ketone sulfone) s
CN104211960A (zh) 一种石墨烯/聚苯胺复合材料的一步化学制备方法
Yuan et al. Novel quaternized carbon dots modified polysulfone-based anion exchange membranes with improved performance
Gahlot et al. Enhanced electrochemical performance of stable SPES/SPANI composite polymer electrolyte membranes by enriched ionic nanochannels
Yang et al. Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density
Wang et al. Ultrathin cellulose nanofiber/carbon nanotube/Ti3C2Tx film for electromagnetic interference shielding and energy storage
Zhang et al. Enhancing properties of poly (2, 6-dimethyl-1, 4-phenylene oxide)-based anion exchange membranes with 5-mercaptotetrazole modified graphene oxides
CN105885076A (zh) 一种聚吡咯/微晶纤维素高柔性导电复合材料的制备方法
Lv et al. Novel polybenzimidazole/graphitic carbon nitride nanosheets composite membrane for the application of acid-alkaline amphoteric water electrolysis
Hosseini et al. Polyaniline grafted chitosan/GO‐CNT/Fe3O4 nanocomposite as a superior electrode material for supercapacitor application
Wang et al. Solution processing of cross-linked porous organic polymers
Wang et al. Preparation and characterization of polyaniline/p-phenylenediamine grafted graphene oxide composites for supercapacitors
Sharma et al. Electrochemical behavior of solvothermally grown ZIF-8 as electrode material for supercapacitor applications
Shang et al. Preparation and characterization of organic-inorganic hybrid anion exchange membrane based on crown ether functionalized mesoporous SBA-NH2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20181129

Address after: 518114 Area B, A# 2nd floor, No. 101 North Li Lang Road, Lilang Community, Nanwan Street, Longgang District, Shenzhen City, Guangdong Province

Applicant after: Shenzhen Zhi-Shun Technology Co., Ltd.

Address before: 315000 5, 167 Kai Xin Road, Jiangdong District, Ningbo, Zhejiang.

Applicant before: NINGBO JIANGDONG POMONA ELECTRONIC TECHNOLOGY CO., LTD.

GR01 Patent grant
GR01 Patent grant