CN105860438A - 一种发泡低密度烧蚀材料的成型方法 - Google Patents

一种发泡低密度烧蚀材料的成型方法 Download PDF

Info

Publication number
CN105860438A
CN105860438A CN201610282656.6A CN201610282656A CN105860438A CN 105860438 A CN105860438 A CN 105860438A CN 201610282656 A CN201610282656 A CN 201610282656A CN 105860438 A CN105860438 A CN 105860438A
Authority
CN
China
Prior art keywords
mass parts
forming method
low density
foamed
foamed low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610282656.6A
Other languages
English (en)
Other versions
CN105860438B (zh
Inventor
林治峰
谭珏
梁馨
罗丽娟
方洲
毛科铸
朱亚平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
China Academy of Launch Vehicle Technology CALT
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT, Aerospace Research Institute of Materials and Processing Technology filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201610282656.6A priority Critical patent/CN105860438B/zh
Publication of CN105860438A publication Critical patent/CN105860438A/zh
Application granted granted Critical
Publication of CN105860438B publication Critical patent/CN105860438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • B29C44/16Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining shaped by the expansion of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种发泡低密度烧蚀材料的成型方法,首先针对室温固化硅橡胶选择化学发泡剂,通过先配环氧树脂体系,再配发泡硅橡胶体系,将二者混合后加入空心微球及其他功能填料,搅拌均匀得到发泡树脂基体;等待发泡基本完成后通过抽真空低压将其灌注到蜂窝增强材料中;再经过室温固化及中温固化得到发泡低密度烧蚀材料。本发明的成型方法克服空心填料份数增加带来的混料及灌注工艺变差以及固化后材料性能较差的缺点,通过在树脂体系内发泡,降低了材料的密度,而且不影响灌注成型。

Description

一种发泡低密度烧蚀材料的成型方法
技术领域
本发明涉及一种发泡低密度烧蚀材料的成型方法。
背景技术
航天器在进入大气层的过程中,由于摩擦而产生高温,需要有效的防热手段。从阿波罗飞船直至目前的各种航天返回器主要采用的是烧蚀法,即烧蚀防热材料。它是以损耗材料自身来吸收大量的热量,从而阻止热传导到材料的内部结构中去。
航天返回器最外层烧蚀防热材料除了满足耐烧蚀性能外,材料本身的密度越低越有利于返回器减重,从而携带更多的载荷。目前烧蚀材料主要通过添加空心微球等轻质填料的方法来降低密度。该方法简单直接,即通过在树脂基体中添加大量轻质填料来降低烧蚀材料密度。然而由于空心填料与树脂相容性差,其添加量越大,低密度烧蚀材料树脂基体相对比例变少,混料工艺性下降,很难混合均匀。而且空心填料当达到一定份数后整个体系很松散,就会使材料的灌注难度大大增加,固化后力学性能也较差。
发明内容
本发明所要解决的技术问题是:克服现有技术的不足,本发明提供了一种发泡低密度烧蚀材料的成型方法,克服空心填料份数增加带来的混料及灌注工艺变差以及固化后材料性能较差的缺点,通过在树脂体系内发泡,降低了材料的密度,而且不影响材料的灌注成型。
本发明所采用的技术方案是:一种发泡低密度烧蚀材料的成型方法,包括如下步骤:
(1)以100质量份的环氧树脂为基准,将100质量份的环氧树脂、60~80质量份的固化剂及0.1~2质量份的基体催化剂按比例混合;
(2)以100质量份的室温固化硅橡胶为基准,将100质量份的室温固化硅橡胶、2~10质量份的发泡剂及0.5~2质量份的发泡催化剂按比例混合;
(3)将步骤(1)和步骤(2)中获得的两种混合物混合并搅拌均匀后,加入50phr~150phr的空心微球、1phr~5phr功能填料,搅拌均匀得到发泡树脂基体;
(4)将发泡树脂基体制成预制体,室温放置后,将预制体码放在蜂窝上并抽真空灌注到蜂窝中;
(5)经室温固化后,再次升温,加热固化得到发泡低密度烧蚀材料。
所述步骤(4)中室温放置时间为0.5h~12h。
所述步骤(4)中预制体灌注到蜂窝中采用低压灌注,低压范围为0.3MPa~0.6MPa。
所述步骤(5)中室温固化时间范围为7~10天。
所述步骤(5)中再次升温至60℃~120℃,升温速率范围为10℃/h~30℃/h。
所述步骤(1)中固化剂为胺类固化剂或酸酐类固化剂,基体催化剂为三聚催化剂或有机锡催化剂。
所述步骤(2)中发泡剂为物理发泡胶囊或偶氮类发泡剂,发泡催化剂为有机锡催化剂或铂金催化剂。
所述步骤(3)中空心微球为无机硅酸盐,功能填料为有机纤维或无机纤维。
所述发泡低密度烧蚀材料包括1质量份的环氧树脂、1~4质量份的硅橡胶树脂,1~6质量份的空心微球,0.01phr~0.05phr的功能填料。
本发明与现有技术相比的优点在于:
(1)本发明采用将树脂基体发泡的方法降低了材料密度的同时,克服空心填料份数增加带来的混料及灌注工艺变差以及固化后材料性能较差的缺点,克服了混料工艺及灌注工艺难度。
(2)本发明与传统的方法相比,传统的方法添加空心填料在降低烧蚀材料密度方面存在极限值,而本发明通过发泡成型可以突破传统方法的极限值限制进一步降低材料密度。
(3)本发明的成型方法可以在制得的材料密度相同的条件下减少空心填料的份数,在保持良好工艺性的同时增加功能填料的份数,从而提高烧蚀材料的性能,提高工艺水平,降低生产成本。
附图说明
图1为本发明发泡低密度烧蚀材料的成型方法示意图。
具体实施方式
一种发泡低密度烧蚀材料的成型方法,包括如下步骤:
(1)以100质量份的环氧树脂为基准,将100质量份的环氧树脂、60~80质量份的固化剂及0.1~2质量份的基体催化剂按比例混合;固化剂为胺类固化剂或酸酐类固化剂,基体催化剂为三聚催化剂或有机锡催化剂。
(2)以100质量份的室温固化硅橡胶为基准,将100质量份的室温固化硅橡胶、2~10质量份的发泡剂及0.5~2质量份的发泡催化剂按比例混合;发泡剂为物理发泡胶囊或偶氮类发泡剂,发泡催化剂为有机锡催化剂或铂金催化剂。
(3)将步骤(1)和步骤(2)中获得的两种混合物混合并搅拌均匀后,加入50phr~150phr的空心微球、1phr~5phr功能填料,搅拌均匀得到发泡树脂基体;空心微球为无机硅酸盐,功能填料为有机纤维或无机纤维。
(4)将发泡树脂基体制成预制体,室温放置0.5h~12h后,将预制体码放在蜂窝上并抽真空低压灌注到蜂窝中,低压范围为0.3MPa~0.6MPa;
(5)经室温固化7~10天后,升温至60℃~120℃加热固化得到发泡低密度烧蚀材料,升温速率范围为10℃/h~30℃/h。获得的发泡低密度烧蚀材料包括1质量份的环氧树脂、1~4质量份的硅橡胶树脂,1~6质量份的空心微球,0.01phr~0.05phr的功能填料。
实施例1
发泡低密度烧蚀材料的成型方法,具体步骤为:
(1)首先将环氧树脂、胺类固化剂及有机锡类催化剂按100:70:0.5的比例混合,然后将室温固化硅橡胶、偶氮类发泡剂及有机锡类催化剂按100:5:0.5的比例混合,最后将两种混合物按1:1比例倒在一起快速搅拌均匀;
(2)在步骤(1)搅拌均匀后所得的混合物中加入100phr的空心微球及2phr的功能填料,快速搅拌均匀得到发泡树脂基体;空心微球为无机硅酸盐,功能填料为有机纤维;
(3)将发泡树脂基体制成预制体后,室温放置12h;
(4)将预制体码放在蜂窝上,抽真空打压0.3MPa灌注到蜂窝中;
(5)经室温固化7天后,100℃固化得到发泡低密度烧蚀材料,该材料含环氧树脂、硅橡胶树脂、空心微球及其他少量功能填料,其中环氧树脂、硅橡胶树脂、空心微球的比例为1:1:1。
实施例2
发泡低密度烧蚀材料的成型方法,具体步骤为:
(1)首先将环氧树脂、胺类固化剂及有机锡类催化剂按100:80:1的比例混合,然后将室温固化硅橡胶、偶氮类发泡剂及有机锡类催化剂按100:3:1的比例混合,最后将两种混合物按1:4比例倒在一起快速搅拌均匀;
(2)在步骤(1)搅拌均匀后所得的混合物中加入120phr的空心微球及4phr的功能填料,快速搅拌均匀得到发泡树脂基体;空心微球为无机硅酸盐,功能填料为有机纤维;
(3)将发泡树脂基体制成预制体后,室温放置2h;
(4)将预制体码放在蜂窝上,真空打压0.6MPa灌注到蜂窝中;
(5)经室温固化7天后,120℃中温固化得到发泡低密度烧蚀材料,该材料含环氧树脂、硅橡胶树脂、空心微球及其他少量功能填料,其中环氧树脂、硅橡胶树脂、空心微球的比例为1:4:6。

Claims (9)

1.一种发泡低密度烧蚀材料的成型方法,其特征在于,包括如下步骤:
(1)以100质量份的环氧树脂为基准,将100质量份的环氧树脂、60~80质量份的固化剂及0.1~2质量份的基体催化剂按比例混合;
(2)以100质量份的室温固化硅橡胶为基准,将100质量份的室温固化硅橡胶、2~10质量份的发泡剂及0.5~2质量份的发泡催化剂按比例混合;
(3)将步骤(1)和步骤(2)中获得的两种混合物混合并搅拌均匀后,加入50phr~150phr的空心微球、1phr~5phr功能填料,搅拌均匀得到发泡树脂基体;
(4)将发泡树脂基体制成预制体,室温放置后,将预制体码放在蜂窝上并抽真空灌注到蜂窝中;
(5)经室温固化后,再次升温,加热固化得到发泡低密度烧蚀材料。
2.根据权利要求1所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(4)中室温放置时间为0.5h~12h。
3.根据权利要求1或2所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(4)中预制体灌注到蜂窝中采用低压灌注,低压范围为0.3MPa~0.6MPa。
4.根据权利要求3所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(5)中室温固化时间范围为7~10天。
5.根据权利要求4所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(5)中再次升温至60℃~120℃,升温速率范围为10℃/h~30℃/h。
6.根据权利要求1或2所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(1)中固化剂为胺类固化剂或酸酐类固化剂,基体催化剂为三聚催化剂或有机锡催化剂。
7.根据权利要求1或2所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(2)中发泡剂为物理发泡胶囊或偶氮类发泡剂,发泡催化剂为有机锡催化剂或铂金催化剂。
8.根据权利要求1或2所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述步骤(3)中空心微球为无机硅酸盐,功能填料为有机纤维或无机纤维。
9.根据权利要求1或2所述的一种发泡低密度烧蚀材料的成型方法,其特征在于:所述发泡低密度烧蚀材料包括1质量份的环氧树脂、1~4质量份的硅橡胶树脂,1~6质量份的空心微球,0.01phr~0.05phr的功能填料。
CN201610282656.6A 2016-04-29 2016-04-29 一种发泡低密度烧蚀材料的成型方法 Active CN105860438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610282656.6A CN105860438B (zh) 2016-04-29 2016-04-29 一种发泡低密度烧蚀材料的成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610282656.6A CN105860438B (zh) 2016-04-29 2016-04-29 一种发泡低密度烧蚀材料的成型方法

Publications (2)

Publication Number Publication Date
CN105860438A true CN105860438A (zh) 2016-08-17
CN105860438B CN105860438B (zh) 2019-01-15

Family

ID=56629013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610282656.6A Active CN105860438B (zh) 2016-04-29 2016-04-29 一种发泡低密度烧蚀材料的成型方法

Country Status (1)

Country Link
CN (1) CN105860438B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096812A (en) * 1996-09-23 2000-08-01 Textron Systems Corporation Low density, light weight intumescent coating
CN1974695A (zh) * 2006-11-23 2007-06-06 复旦大学 一种无卤低烟超薄型有机无机复合防火涂料及其制备方法
CN101319085A (zh) * 2008-07-22 2008-12-10 上海材料研究所 一种轻质高强度环氧发泡材料及其制备方法
CN102675827A (zh) * 2012-05-17 2012-09-19 镇江育达复合材料有限公司 用hp-rtm工艺快速成型的环氧树脂基碳纤维复合材料
CN102863747A (zh) * 2012-09-25 2013-01-09 中国工程物理研究院化工材料研究所 一种耐高温高强度环氧泡沫塑料及其制备方法
CN103087464A (zh) * 2013-02-01 2013-05-08 哈尔滨工业大学 一种热防护烧蚀材料的制备方法
CN103102642A (zh) * 2013-02-01 2013-05-15 哈尔滨工业大学 一种轻质烧蚀材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096812A (en) * 1996-09-23 2000-08-01 Textron Systems Corporation Low density, light weight intumescent coating
CN1974695A (zh) * 2006-11-23 2007-06-06 复旦大学 一种无卤低烟超薄型有机无机复合防火涂料及其制备方法
CN101319085A (zh) * 2008-07-22 2008-12-10 上海材料研究所 一种轻质高强度环氧发泡材料及其制备方法
CN102675827A (zh) * 2012-05-17 2012-09-19 镇江育达复合材料有限公司 用hp-rtm工艺快速成型的环氧树脂基碳纤维复合材料
CN102863747A (zh) * 2012-09-25 2013-01-09 中国工程物理研究院化工材料研究所 一种耐高温高强度环氧泡沫塑料及其制备方法
CN103087464A (zh) * 2013-02-01 2013-05-08 哈尔滨工业大学 一种热防护烧蚀材料的制备方法
CN103102642A (zh) * 2013-02-01 2013-05-15 哈尔滨工业大学 一种轻质烧蚀材料的制备方法

Also Published As

Publication number Publication date
CN105860438B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
CN101824206B (zh) 一种超高强浮力材料及其制备方法
CN101319085B (zh) 一种轻质高强度环氧发泡材料及其制备方法
CN105238061A (zh) 发泡硅橡胶胶料、低密度硅橡胶海绵及其制备方法
CN107619464A (zh) 太阳能保温水箱用聚氨酯复合保温材料
CN111320842B (zh) 一种新型硬质气凝胶泡沫及其制备方法
CN106633656B (zh) 一种较低粘度下微孔发泡环氧树脂基材料的制备方法
CN104673160A (zh) 填充表面改性碳化硅各向同性导热胶黏剂及制备方法
CN104987481B (zh) 一种凝胶记忆海绵及其制备方法
CN103965590B (zh) 一种协同增韧的环氧树脂复合材料及其制备方法
CN105001600B (zh) 一种阻燃环氧泡沫材料的制备方法
CN110194828A (zh) 一种相变吸能聚氨酯弹性体防爆罐外防护罩的制备方法
CN103483774A (zh) 一种高性能固体浮力材料及其制备方法
CN102863747A (zh) 一种耐高温高强度环氧泡沫塑料及其制备方法
CN106317782A (zh) 一种复合浮力材料的制备方法
CN106158336B (zh) 一种树脂绝缘干式变压器线圈压力凝胶成型方法
CN106188606A (zh) 组合发泡剂、聚氨酯硬质泡沫及其制造方法
CN106188615A (zh) 三元组合发泡剂、聚氨酯硬质泡沫及其制造方法
CN106279611A (zh) 酚醛‑聚氨酯泡沫保温材料的制备方法
CN101824157A (zh) 以端羟基聚丁二烯改性氰酸酯树脂的方法
CN105860438A (zh) 一种发泡低密度烧蚀材料的成型方法
CN107552795B (zh) 一种利用多孔淀粉发泡制备泡沫金属的方法
CN108129692A (zh) 一种发泡硅橡胶材料及其制备方法和应用
CN105086375A (zh) 环氧树脂微孔材料的制备方法
CN108164741B (zh) 一种芳纶蜂窝增强的硅基绝热材料及其制备方法
US4090986A (en) Thermoset epoxy foam compositions and a method of preparing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant