CN105845771A - 缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法 - Google Patents

缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法 Download PDF

Info

Publication number
CN105845771A
CN105845771A CN201610277282.9A CN201610277282A CN105845771A CN 105845771 A CN105845771 A CN 105845771A CN 201610277282 A CN201610277282 A CN 201610277282A CN 105845771 A CN105845771 A CN 105845771A
Authority
CN
China
Prior art keywords
cushion
film
thermosensitive film
induced growth
vanadium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610277282.9A
Other languages
English (en)
Inventor
高彦峰
丁卓翰
万冬云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610277282.9A priority Critical patent/CN105845771A/zh
Publication of CN105845771A publication Critical patent/CN105845771A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/06Coating with inorganic material, other than metallic material
    • C23C20/08Coating with inorganic material, other than metallic material with compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种缓冲层诱导生长的高性能的VO2热敏薄膜,包括:衬底层,所述衬底为普通玻璃、石英玻璃等;缓冲层,所述缓冲层成分为TiO2、Al2O3、CeO2、ZrO2、ZnO、SnO2或MgO中的一种,所述VO2热敏薄膜为缓冲层诱导生长的二氧化钒热敏薄膜,所述缓冲层厚度为25 nm~250 nm;所述缓冲层诱导生长的二氧化钒薄膜厚度为25 nm~250 nm;方块电阻为10 kΩ/□~60 kΩ/□;电阻温度系数为‑3%/K~‑5%/K。本发明还提供了上述热敏薄膜的制备方法,其步骤:在衬底上采用化学沉积方法或物理沉积方法制备一个具有锐钛矿结构的TiO2缓冲层,及在该缓冲层上利用该缓冲层诱导生长的二氧化钒热敏薄膜。该方法操作简单,成本低;且该二氧化钒VO2薄膜具有薄膜电阻值合适、电阻温度系数(TCR)高的特点。

Description

缓冲层诱导生长的高性能的VO2热敏薄膜及制备方法
技术领域
本发明涉及缓冲层诱导生长的高性能的VO2热敏薄膜及制备方法,属于氧化物热敏薄膜技术领域。
背景技术
氧化钒半导体热敏薄膜材料具有高的电阻温度系数(TCR)和较低的 1/f 噪声。二氧化钒(VO2)目前应用最为广泛,非制冷红外探测器芯片采用热敏薄膜材料是二氧化钒(VO2)热敏薄膜。该热敏薄膜的电阻温度系数(TCR)高,薄膜的噪声小,红外探测器灵敏度高(Y. Y. Su. (应用表面科学) Appl. Surf. Sci. 357 (2015) 887-891)。但是,二氧化钒是一种热敏电阻的相变材料,它包含A相,B相,C相,R相,M相,其中M相和R相在68度时会发生从红外透明的半导体态(M相)到红外不透明的金属态(R相)的转变,在当晶体温度升至68℃后,其晶态结构由单斜结构向四方结构转变,相变前后的电阻将发生相变,相变时存在温度滞后现象严重限制了其进一步应用。VO2 (B)相在室温下无相变,没有电学、光学参数的突变,也没有热滞效应,是一种理想的红外探测器材料。但是,由于VO2 (B)相具有的电阻太大(达到MΩ级)、TCR较小(小于2%/K),质量较差,限制了VO2 (B)相薄膜在非制冷红外探测器上的应用(V. Y. Zerov. J. (光学技术) Opt. Technol. 68 (2001) 88-100)。
单晶的二氧化钒VO2具有高的TCR,理论值可达到-6.7%/K,制备二氧化钒VO2单晶相薄膜,采用与其晶格匹配的单晶衬底,如Al2O3、TiO2、MgO, 通过单晶衬底表面的原子排列,外延生长,得到二氧化钒VO2单晶相薄膜。然而,在现有的技术中,诱导VO2薄膜外延生长的单晶衬底价格极其昂贵,成本很高,难以实现产业化生产(M. Nishikawa. (应用表面科学)Appl. Surf. Sci. 257 (2011) 2643–2646)。
综上所述,本领域缺乏成本低、高性能的二氧化钒VO2热敏薄膜,因此本领域迫切需要开发成本低、高性能的二氧化钒VO2热敏薄膜,能在控制薄膜电阻的基础上大幅度提高其温度电阻系数(TCR)。
发明内容
本发明的第一目的在于获得红外探测器件中的一种缓冲层诱导生长的高性能的VO2热敏薄膜。
本发明的第二目的在于获得能提高电阻温度系数(TCR)的电阻合适的缓冲层诱导生长的高性能的VO2热敏薄膜的制备方法。本发明的第一方面,提供了一种缓冲层诱导生长的高性能的VO2热敏薄膜,所述二氧化钒热敏薄膜包括:
衬底层,所述衬底为普通玻璃、石英玻璃、单晶硅、Al2O3、陶瓷基板;
缓冲层,所述缓冲层成分为TiO2、Al2O3、CeO2、ZrO2、ZnO、SnO2或MgO中的一种,其中,
二氧化钒热敏薄膜,所述二氧化钒热敏薄膜为缓冲层诱导生长的二氧化钒热敏薄膜,
所述缓冲层的厚度为25 nm~250 nm。
在一优选例中,所述的缓冲层的厚度为40 nm~150 nm。
所述缓冲层诱导生长的二氧化钒热敏薄膜厚度为25 nm~250 nm。
在一优选例中,所述的缓冲层诱导生长的二氧化钒热敏薄膜的厚度为40 nm~150nm。
所述缓冲层诱导生长的二氧化钒热敏薄膜的方块电阻为10 kΩ/□~60 kΩ/□。
所述缓冲层诱导生长的二氧化钒热敏薄膜的电阻温度系数为 -3%/K~ -5%/K。
本发明的第二方面, 提供一种本发明所阐述缓冲层诱导生长的高性能的VO2热敏薄膜的制备方法,其包括如下步骤:
在衬底上采用化学沉积方法或物理沉积方法制备一个具有锐钛矿结构的TiO2缓冲层及在该缓冲层上利用该缓冲层诱导生长的二氧化钒热敏薄膜,其中,
所述缓冲层的厚度为25 nm~250 nm;
所述缓冲层诱导生长的二氧化钒热敏薄膜的厚度为50 nm~500 nm。
在本发明的一个具体实施例中,所述TiO2缓冲层的制备方法包括化学沉积方法或物理沉积方法。
优选的,所述TiO2缓冲层的制备方法所述化学沉积方法包括溶胶凝胶法提拉、溶胶凝胶法旋涂或溶胶凝胶法刮涂;所述物理沉积方法包括磁控溅射法、热蒸发沉积法或脉冲激光沉积法。
在本发明的一个具体实施例中,
若采用溶胶凝胶法提拉、溶胶凝胶法旋涂或溶胶凝胶法刮涂制备缓冲层时,
采用二氧化钛或钛醇盐为溶质,采用无机碱和过氧化物的混合溶液作为溶剂,
热处理温度为150 ℃~1000 ℃,退火时间为3 h~6 h;在一优选例中,所述无机碱为氨水;
在一优选例中,所述过氧化物为过氧化氢。
在本发明的一个具体实施例中,采用磁控溅射法、热蒸发沉积法或脉冲激光沉积法制备缓冲层时,
所述磁控溅射法的工作气压为0.3 Pa~3 Pa,沉积时间为10 min~60 min,射频溅射功率为70 W~200 W;
所述热蒸发沉积法的蒸发温度为300 ℃~650 ℃,沉积时间为20 min~60 min, 蒸发源与基底的间距为9 cm~30 cm;
所述脉冲激光沉积法的衬底温度为50 ℃~700 ℃,沉积时间为10 min~40 min,靶材上的平均激光能量密度为1 J/cm2~10 J/cm2
在本发明的一个具体实施例中,所述缓冲层诱导生长的二氧化钒热敏薄膜的制备方法包括化学沉积方法或物理沉积方法。
所述缓冲层诱导生长的二氧化钒热敏薄膜的制备方法所述化学沉积方法包括溶胶凝胶法提拉、溶胶凝胶法旋涂或溶胶凝胶法刮涂;所述物理沉积方法包括热蒸发沉积法、脉冲激光沉积法或磁控溅射法。
在本发明的一个具体实施例中,
若采用溶胶凝胶法提拉、溶胶凝胶法旋涂或溶胶凝胶法刮涂制备缓冲层诱导生长的二氧化钒热敏薄膜时,采用的原料溶质为五氧化二钒粉末,溶剂为去离子水,采用热处理温度为150 ℃~1000 ℃,退火时间为3 h~6 h。
在本发明的一个具体实施例中,
若采用热蒸发沉积法或脉冲激光沉积法制备缓冲层诱导生长的二氧化钒热敏薄膜时,
所述热蒸发沉积法蒸发温度为300 ℃~650 ℃,沉积时间为20 min~60 min, 蒸发源与基底的间距为9 cm~30 cm;所述脉冲激光沉积法衬底温度为50 ℃~700 ℃,沉积时间为10 min~40 min,靶材上的平均激光能量密度为1 J/cm2~10 J/cm2
在本发明的一个具体实施例中,若采用磁控溅射法制备缓冲层诱导生长的二氧化钒热敏薄膜时,以金属V或V的氧化物为靶材,通过磁控溅射将靶材溅射到二氧化钛缓冲层上。
所述磁控溅射法的工作压力为0.3 Pa~3 Pa;沉积时间为10 min~60 min;射频溅射功率为70 W~200 W。
上述的缓冲层诱导生长的高性能的VO2热敏薄膜在红外探测与成像器件中的应用。
本发明与现有技术相比具有的优点在于:本发明的制备方法,操作简单,成本低;且该二氧化钒(VO2)热敏薄膜具有电阻阻值合适、电阻温度系数(TCR)高的特点。
附图说明
图1为对比例1、实施例1中的二氧化钒热敏薄膜的X射线的XRD衍射图谱,图中,纵坐标为衍射强度(Intensity) ,横坐标为X射线入射角度的两倍(2 theta)。
图2为对比例1、 实施例1中的二氧化钒热敏薄膜紫外可见近红外光透过率的对比图,图中,纵坐标为光透过率 (Transmission) ,横坐标为紫外可见近红外光的波长(Wavelength),虚线为曲线VO2热敏薄膜高温下的光透过率曲线;双点划线为TiO2/VO2热敏薄膜高温下的光透过率曲线;黑线为VO2热敏薄膜低温下的光透过率曲线;点划线为TiO2/VO2热敏薄膜在低温下的光透过率曲线。
图3为对比例1、实施例1中的二氧化钒热敏薄膜的电阻温度特性曲线的对比图,图中,纵坐标为薄膜电阻 (Resistance) ,横坐标为温度 (Temperature),黑色五角星形为VO2热敏薄膜升温电阻曲线;白色五角星形为TiO2/VO2热敏薄膜升温电阻曲线;黑色圆形为VO2热敏薄膜降温电阻曲线;白色圆形为TiO2/VO2热敏薄膜降温电阻曲线。
图4为对比例2、实施例2中的二氧化钒热敏薄膜的X射线的XRD衍射图谱,图中,纵坐标为衍射强度(Intensity) ,横坐标为X射线入射角度的两倍(2 theta)。
图5为对比例2与实施例2中的二氧化钒热敏薄膜的紫外可见近红外光透过率的对比图,图中,纵坐标为光透过率 (Transmission) ,横坐标为紫外可见近红外光的波长(Wavelength),虚线为曲线VO2热敏薄膜高温下的光透过率曲线;双点划线为TiO2/VO2热敏薄膜高温下的光透过率曲线;黑线为VO2热敏薄膜低温下的光透过率曲线;点划线为TiO2/VO2热敏薄膜在低温下的光透过率曲线。
图6为实施例2中的二氧化钒热敏薄膜的电阻温度特性曲线,图中,纵坐标为薄膜电阻 (Resistance) ,横坐标为温度 (Temperature),白色五角星形为TiO2/VO2热敏薄膜升温电阻曲线;白色圆形为TiO2/VO2热敏薄膜降温电阻曲线。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明,而不用于限制本发明的范围,在阅读了本发明后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求限定的范围。
本发明人经过广泛而深入的研究,通过改进制备工艺,从而获得了电阻合适,TCR高的缓冲层诱导生长的高性能的二氧化钒热敏薄膜的制备方法,在此基础上完成了本发明。
对比例1:
采用磁控溅射的方法,直接在衬底上沉积VO2热敏薄膜。以金属氧化物VO2靶作为靶材,以石英玻璃和单晶硅为衬底;本底真空抽至5×10-4 Pa,以纯度为99.99%的氩气为工作气体,工作气压维持在1.0 Pa,采用室温溅射,靶材与衬底距离设置为6.5 cm,采用射频反应磁控溅射,溅射功率为160 W,沉积时间为15 min,制备得到VO2热敏薄膜,该薄膜厚度为100nm;制得的热敏薄膜经400 ℃在N2气氛下2 h退火,自然冷却到室温后,室温方块电阻为88kΩ/□,电阻温度系数为-2.59%/K。
实施例1:
采用射频反应磁控溅射的方法,以金属氧化物TiO2和VO2靶作为靶材,以石英玻璃和单晶硅为衬底本底真空抽至5.0×10-4 Pa,以纯度为99.99%的氩气为工作气体,工作气体维持在1.0 Pa,采用室温溅射,靶材与衬底距离设置为6.5 cm,采用射频反应磁控溅射TiO2靶,沉积一层TiO2薄膜,溅射功率200 W,沉积时间600 s,TiO2沉积完毕后,沉积后的TiO2薄膜在550 ℃温度下在N2气氛下进行退火2 h,退火后,再次置入腔体;本底真空抽至5.0×10-4Pa,工作气体维持在1.0 Pa,采用射频反应溅射VO2靶,在TiO2缓冲层上再沉积一层VOx薄膜,溅射功率160 W,沉积时间900 s。VOx沉积完毕后得到缓冲层诱导生长的高性能二氧化钒热敏薄膜,其薄膜厚度为200 nm。对沉积得到的TiO2/VOx薄膜在N2气氛保护下400℃退火2 h,得到VO2 (B)相与VO2 (M)相混合结构薄膜,即为缓冲层诱导生长的高性能二氧化钒热敏薄膜,该薄膜在20~30℃之间的方块电阻为17 kΩ/□,电阻温度系数为-3.31%/K ,如图1-3所示,与对比例1相比,此实施例1所制备的热敏薄膜电阻温度系数高,电阻下降,热滞降低,有利于热敏薄膜在非制冷红外探测器上的应用。
对比例2:
采用射频反应磁控溅射的方法,直接在衬底上沉积VO2热敏薄膜 。以金属氧化物VO2靶作为靶材,以石英玻璃和单晶硅为衬底;本底真空抽至5×10-4 Pa,以纯度为99.99%的氩气为工作气体,工作气压维持在1.0 Pa,采用室温溅射,靶材与衬底距离设置为6.5 cm,采用射频反应磁控溅射,溅射功率为160 W,沉积时间为15 min,制备得到VO2热敏薄膜,该薄膜厚度为100 nm。制得的热敏薄膜经450 ℃在N2气氛下2 h退火,自然冷却到室温后,室温方块电阻为160 kΩ/□。
实施例2:
采用射频反应磁控溅射的方法,以金属氧化物TiO2和VO2靶作为靶材,以石英玻璃和单晶硅为衬底;本底真空抽至5.0×10-4 Pa,以纯度为99.99%的氩气为工作气体,工作气体维持在1.0 Pa,采用室温溅射,靶材与衬底距离设置为6.5 cm,采用射频反应磁控溅射TiO2靶,沉积一层TiO2薄膜,溅射功率200 W,沉积时间600 s,TiO2沉积完毕后,沉积后的TiO2薄膜经550 ℃温度下在N2气氛下2 h退火。退火完毕后,再次置入腔体;本底真空抽至5.0×10-4 Pa,工作气体维持在1.0 Pa,采用射频反应溅射VO2靶在TiO2缓冲层上沉积一层VOx薄膜,溅射功率160 W,沉积时间900 s。VOx沉积完毕后得到缓冲层诱导生长的高性能二氧化钒热敏薄膜,其薄膜厚度为200 nm。对沉积得到的TiO2/VOx薄膜在N2气氛保护下450℃退火2h,得到VO2 (B)相结构薄膜,即为缓冲层诱导生长的高性能二氧化钒热敏薄膜,该薄膜在20~30℃之间的方块电阻阻为40.18 kΩ/□,电阻温度系数为-3.49%/K,如图4-6所示,与对比例2相比,此实施例1所制备的热敏薄膜,其电阻温度系数增大,方阻小,可用来制作红外探测器件。与对比例2相比,经过TiO2缓冲层诱导生长的B相VO2热敏薄膜,其电阻温度系数增大方阻小,可用来制作红外探测器件。
实施例3 :
以普通玻璃为衬底,采用溶胶凝胶旋涂法,制备TiO2缓冲层并在该缓冲层上诱导生长VO2热敏薄膜。
实施例4:
以普通玻璃为衬底,采用溶胶凝胶浸渍提拉法,制备TiO2缓冲层并在该缓冲层上诱导生长VO2热敏薄膜。
实施例5:
以普通玻璃为衬底,采用热蒸发法,制备ZnO缓冲层并在该缓冲层上诱导生长VO2热敏薄膜。
实施例6:
以陶瓷基板为衬底,采用脉冲激光沉积法,制备Al2O3缓冲层并在该缓冲层上诱导生长VO2热敏薄膜。
实施例7:
分别以石英玻璃和单晶硅为衬底,采用磁控溅射法,制备CeO2缓冲层并在该缓冲层上诱导生长VO2热敏薄膜。
实施例8:
分别以石英玻璃和单晶硅为衬底,采用磁控溅射法,制备ZrO2缓冲层并在该缓冲层上诱导生长VO2热敏薄膜。
各实施例缓冲层诱导生长VO2热敏薄膜的效果分别见表1,从表1中可以看出,各实施例中缓冲层对VO2热敏薄膜的生长进行诱导后,提高了VO2热敏薄膜的电阻温度系数,有效降低了热敏薄膜的方块电阻。
表1 各实施例缓冲层对二氧化钒热敏薄膜的诱导效果
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中。任何他人完成的技术实体或方法,若是与本申请的权利要求范围所定义的相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

Claims (6)

1.一种缓冲层诱导生长的高性能的VO2热敏薄膜,其特征在于,所述二氧化钒热敏薄膜包括:
衬底层,所述衬底为普通玻璃、石英玻璃、单晶硅、Al2O3、陶瓷基板;
缓冲层,所述缓冲层成分为TiO2、Al2O3、CeO2、ZrO2、ZnO、SnO2或MgO中的一种,其中,
二氧化钒热敏薄膜,所述二氧化钒热敏薄膜为缓冲层诱导生长的二氧化钒热敏薄膜,
所述缓冲层的厚度为25 nm~250 nm,
所述缓冲层诱导生长的二氧化钒薄膜厚度为25 nm~250 nm。
2.按权利要求1所述的缓冲层诱导生长的高性能的VO2热敏薄膜,其特征在于,所述缓冲层诱导生长的二氧化钒热敏薄膜的方块电阻为10 kΩ/□~60 kΩ/□。
3.按权利要求2所述的缓冲层诱导生长的高性能的VO2热敏薄膜,其特征在于,所述缓冲层诱导生长的二氧化钒热敏薄膜的电阻温度系数为 -3%/K~ -5%/K。
4.一种按权利要求1所述的缓冲层诱导生长的高性能的VO2热敏薄膜的制备方法,其特征在于,其包括如下步骤:在衬底上采用化学沉积方法或物理沉积方法制备一个具有锐钛矿结构的TiO2缓冲层及在该缓冲层上利用该缓冲层诱导生长的二氧化钒热敏薄膜,其中,所述缓冲层的厚度为25 nm~250 nm,所述缓冲层冲层诱导生长的二氧化钒热敏薄膜的厚度为50 nm~500 nm。
5.一种按权利要求4所述的缓冲层诱导生长的高性能的VO2热敏薄膜的制备方法,其特征在于,所述TiO2缓冲层的制备方法所述化学沉积方法包括溶胶凝胶法提拉、溶胶凝胶法旋涂或溶胶凝胶法刮涂;所述物理沉积方法包括磁控溅射法、热蒸发沉积法或脉冲激光沉积法。
6.根据权利要求1-3中任一项所述的缓冲层诱导生长的高性能的VO2热敏薄膜在红外探测与成像器件中的应用。
CN201610277282.9A 2016-05-01 2016-05-01 缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法 Pending CN105845771A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610277282.9A CN105845771A (zh) 2016-05-01 2016-05-01 缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610277282.9A CN105845771A (zh) 2016-05-01 2016-05-01 缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法

Publications (1)

Publication Number Publication Date
CN105845771A true CN105845771A (zh) 2016-08-10

Family

ID=56589919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610277282.9A Pending CN105845771A (zh) 2016-05-01 2016-05-01 缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法

Country Status (1)

Country Link
CN (1) CN105845771A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779820A (zh) * 2016-08-26 2018-03-09 中国科学院上海硅酸盐研究所 一种二氧化钒薄膜及其低温沉积方法
CN107794497A (zh) * 2016-08-31 2018-03-13 中国科学院上海硅酸盐研究所 一种a相或b相二氧化钒薄膜的制备方法
CN108220897A (zh) * 2016-12-14 2018-06-29 中国科学院上海硅酸盐研究所 磁控溅射低温制备二氧化钒薄膜的方法
CN108390112A (zh) * 2018-01-30 2018-08-10 中国电力科学研究院有限公司 一种电池内短路的模拟方法和装置
CN109735816A (zh) * 2019-02-26 2019-05-10 中国科学院半导体研究所 二氧化钒柔性薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118004A (ja) * 2000-10-11 2002-04-19 Sharp Corp 感温抵抗変化膜およびその製造方法並びに感温抵抗変化膜を用いた赤外線センサ
CN101183690A (zh) * 2007-12-13 2008-05-21 上海集成电路研发中心有限公司 一种红外探测器及其制造方法
CN101586985A (zh) * 2008-05-23 2009-11-25 中国电子科技集团公司第十三研究所 单片集成非制冷红外/紫外双色探测器及其制造方法
CN101626047A (zh) * 2009-04-17 2010-01-13 华中科技大学 一种高电阻温度系数二氧化钒薄膜的制备方法
CN103606585A (zh) * 2013-11-25 2014-02-26 电子科技大学 一种高吸收结构的太赫兹室温探测器及制备方法
CN104878358A (zh) * 2015-06-12 2015-09-02 电子科技大学 一种高电阻温度系数氧化钒热敏薄膜材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118004A (ja) * 2000-10-11 2002-04-19 Sharp Corp 感温抵抗変化膜およびその製造方法並びに感温抵抗変化膜を用いた赤外線センサ
CN101183690A (zh) * 2007-12-13 2008-05-21 上海集成电路研发中心有限公司 一种红外探测器及其制造方法
CN101586985A (zh) * 2008-05-23 2009-11-25 中国电子科技集团公司第十三研究所 单片集成非制冷红外/紫外双色探测器及其制造方法
CN101626047A (zh) * 2009-04-17 2010-01-13 华中科技大学 一种高电阻温度系数二氧化钒薄膜的制备方法
CN103606585A (zh) * 2013-11-25 2014-02-26 电子科技大学 一种高吸收结构的太赫兹室温探测器及制备方法
CN104878358A (zh) * 2015-06-12 2015-09-02 电子科技大学 一种高电阻温度系数氧化钒热敏薄膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘涛: "氧化钒热敏薄膜的制备及结构性能研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779820A (zh) * 2016-08-26 2018-03-09 中国科学院上海硅酸盐研究所 一种二氧化钒薄膜及其低温沉积方法
CN107779820B (zh) * 2016-08-26 2019-11-19 中国科学院上海硅酸盐研究所 一种二氧化钒薄膜及其低温沉积方法
CN107794497A (zh) * 2016-08-31 2018-03-13 中国科学院上海硅酸盐研究所 一种a相或b相二氧化钒薄膜的制备方法
CN107794497B (zh) * 2016-08-31 2019-12-17 中国科学院上海硅酸盐研究所 一种a相或b相二氧化钒薄膜的制备方法
CN108220897A (zh) * 2016-12-14 2018-06-29 中国科学院上海硅酸盐研究所 磁控溅射低温制备二氧化钒薄膜的方法
CN108390112A (zh) * 2018-01-30 2018-08-10 中国电力科学研究院有限公司 一种电池内短路的模拟方法和装置
CN109735816A (zh) * 2019-02-26 2019-05-10 中国科学院半导体研究所 二氧化钒柔性薄膜及其制备方法

Similar Documents

Publication Publication Date Title
CN105845771A (zh) 缓冲层诱导生长的高性能的vo2热敏薄膜及制备方法
Gulen et al. Role of annealing temperature on microstructural and electro-optical properties of ITO films produced by sputtering
Zhou et al. Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties
Chang et al. Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering
Al-Kuhaili Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma
CN109652765B (zh) 一种高性能及高稳定性二氧化钒基热致变色涂层及其制备方法
CN104611670B (zh) 一种高电阻温度系数氧化钒薄膜的制备方法
Yang et al. Transmittance change with thickness for polycrystalline VO2 films deposited at room temperature
Jianjun et al. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering
Kim et al. Enhanced conductance properties of UV laser/RTA annealed Al-doped ZnO thin films
Wang et al. Post-deposition annealing effects on the transparent conducting properties of anatase Nb: TiO2 films on glass substrates
Zong et al. Tuning the electrical and optical properties of ZrxOy/VO2 thin films by controlling the stoichiometry of ZrxOy buffer layer
Ding et al. Evaluation of structural properties of AZO conductive films modification using low-temperature ultraviolet laser annealing
Ghasemi et al. Structural and optical properties of nanocrystalline MoO3 thin films grown by thermal oxidation of sputtered molybdenum films
CN108070835B (zh) 一种高电阻温度系数二氧化钒薄膜及其低温沉积方法
CN104261694A (zh) 一种红外透过率自动调节智能玻璃的产业化制备方法
JP2008297500A (ja) サーモクロミック体その製造方法
JP2023155281A (ja) 複合タングステン酸化物膜及び該膜を有する膜形成基材、並びに物品
CN111613400A (zh) 一种常温ntc热敏电阻薄膜及其制备方法
CN108796452B (zh) 一种二氧化钒薄膜及其制备方法和应用
Yang et al. Improvement of high-temperature resistance of the Ag-based multilayer films deposited by magnetron sputtering
Hojabri et al. Optical properties of nano-crystalline zirconia thin films prepared at different post-oxidation annealing times
Mendil et al. ZnO thin films grown by plasma sputtering process for optoelectronic applications: Effect of substrate type
Eisa et al. Femtosecond pulsed laser induced growth of highly transparent indium-tin-oxide thin films: Effect of deposition temperature and oxygen partial pressure
Moshabaki et al. Influence of Process Parameters on Optical and Physical Properties of Ito Thin Film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160810

WD01 Invention patent application deemed withdrawn after publication