CN105838013B - 一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法 - Google Patents

一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法 Download PDF

Info

Publication number
CN105838013B
CN105838013B CN201610183740.2A CN201610183740A CN105838013B CN 105838013 B CN105838013 B CN 105838013B CN 201610183740 A CN201610183740 A CN 201610183740A CN 105838013 B CN105838013 B CN 105838013B
Authority
CN
China
Prior art keywords
chitosan
vinyl ether
maleic acid
methyl vinyl
acid copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610183740.2A
Other languages
English (en)
Other versions
CN105838013A (zh
Inventor
张天柱
马晓娥
周乃珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610183740.2A priority Critical patent/CN105838013B/zh
Publication of CN105838013A publication Critical patent/CN105838013A/zh
Application granted granted Critical
Publication of CN105838013B publication Critical patent/CN105838013B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/08Copolymers with vinyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/08Copolymers with vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法,其为互穿网络结构,是由壳聚糖中的氨基与甲基乙烯基醚马来酸共聚物的羧基发生静电作用形成聚电解质复合物,先形成P(MVE‑alt‑MA)‑CS半互穿网络结构,之后通过交联剂N,N’‑亚甲基双丙烯酰胺并加热使N,N’‑亚甲基双丙烯酰胺双键与壳聚糖中的氨基发生聚合,进一步形成互穿网络结构得到纳米级凝胶。本发明的优点在于该纳米凝胶的合成过程简单绿色,反应条件温和,适用于大规模生产。该纳米凝胶在药物载体、催化体系、污染处理等方面具有潜在的应用价值。

Description

一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳 米凝胶及其制备方法
技术领域
本发明属于聚合物纳米凝胶技术领域,特别涉及一种基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶的制备方法。
背景技术
纳米凝胶(microgel)为交联聚合物粒子,直径在1-1000nm之间。与块状凝胶相比,纳米凝胶具有较大的比表面积和较高的负载量,且可以更加迅速、准确地对环境的刺激作出响应,因此,纳米凝胶在药物载体、催化体系、污染处理等方面具有巨大的潜在应用价值。纳米凝胶的主要制备方法有分散聚合、沉淀聚合、反相悬浮聚合、反相乳液聚合以及反相微乳液聚合等。
甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))作为一种亲水性、生物相容性和粘附性,聚羧酸聚合物,已在生物技术领域有许多重要的应用,尤其药理和保健应用,如增稠剂、悬浮剂、牙齿粘附剂和漱口水,病毒的捕获,核酸的分离,细胞的封装及培养;另一方面,P(MVE-alt-MA)具羧酸官能团,可以在聚合物主链为聚阴离子特性以及易于化学改性。
壳聚糖(CS)是自然界唯一大量存在的碱性多糖,具有良好的生物相容性、生物可降解性、抗肿瘤及抗菌性能。壳聚糖吡喃糖环上的氨基化学性质活拨,易于发生各种化学反应,可用于对壳聚糖进行修饰。壳聚糖仅能溶于酸性溶液,这一特性限制了它的应用,在壳聚糖的各种水溶性改性中,降解改性受到了广泛的关注壳聚糖降解后得到的低聚物,特别是分子量在1万以下的低聚糖,在提髙巨唾细胞吞噬能力、促进肝脏抗体增长和抑制肿瘤细胞转移等方面表现出明显优势。
癌症严重威胁人类健康。化学疗法是临床上治疗肿瘤的主要手段之一,由于抗癌药物存在缺乏选择性、稳定性差、体内半衰期短等缺点,会对正常组织和细胞产生毒副作用。为了克服癌症治疗药物的诸多缺点,制备具有良好的生物相容性、能够智能控制药物释放的抗癌药物载体已成为当前的研究热点。本发明以壳聚糖中的氨基与P(MVE-alt-MA)的羧基发生静电作用形成聚电解质复合物,通过N,N’-亚甲基双丙烯酰胺(MBAAm)交联壳聚糖形成纳米级凝胶。该纳米凝胶具有pH敏感性。
发明内容
本发明的目的是提供一种基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶及其制备方法,以解决现有技术中纳米凝胶合成步骤复杂,稳定性差,生物相容性差等缺陷。
为实现上述目的,本发明采用的技术方案为:
一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶,其为互穿网络结构,是由壳聚糖(CS)中的氨基与甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))的羧基发生静电作用形成聚电解质复合物,先形成P(MVE-alt-MA)-CS半互穿网络结构,之后通过交联剂N,N’-亚甲基双丙烯酰胺(MBAAm)并加热使N,N’-亚甲基双丙烯酰胺(MBAAm)双键与壳聚糖(CS)中的氨基发生聚合,进一步形成互穿网络结构得到纳米级凝胶。
一种制备上述的基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶的方法,包括如下步骤:
步骤一、制备水溶性壳聚糖(WSC);于室温下配制浓度为0.25mg/mL~1.0mg/mL的水溶性壳聚糖溶液;
步骤二、将甲基乙烯基醚马来酸酐共聚物(P(MVE-alt-MAH))于90℃加热2h进行水解得到甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA)),室温下配制浓度为0.25mg/mL~1.0mg/mL的甲基乙烯基醚马来酸共聚物的水溶液;
步骤三、取步骤二配制的甲基乙烯基醚马来酸共聚物溶液于容器中,加入步骤一配置的壳聚糖溶液,容器接有冷凝管,并在容器中通入N2,磁力搅拌12h;加入交联剂N,N’-亚甲基双丙烯酰胺(MBAAm),在N2纯化下缓慢加热至60℃,继续反应1h;然后将反应液冷却至室温,用过滤孔径为10μm的滤纸过滤除去聚集体,透析,得到所述复合纳米凝胶。
进一步的,步骤一中,采用双氧水氧化降解的方法制备水溶性壳聚糖:将壳聚糖分散到浓度为3wt.%的双氧水溶液中,于70℃搅拌3h,抽滤,取滤液冷冻干燥,得到淡黄色粉末,即为水溶性壳聚糖;其中壳聚糖与双氧水溶液的质量体积比为10:72g/ml。
进一步的,所述壳聚糖的脱乙酰度为80%~95%。
进一步的,所述聚甲基乙烯基醚共聚马来酸的数均分子量为80000~311000。
进一步的,步骤三中,甲基乙烯基醚马来酸共聚物与壳聚糖的体积比为:100:100~100:10。
进一步的,步骤三中,磁力搅拌的转速为600rpm-2000rpm。
进一步的,步骤三中,透析时使用的透析袋截留分子量为8000~14000,透析时间不少于3天。
进一步的,步骤三中,交联剂的用量为壳聚糖质量的2%~20%。
进一步的,步骤三中反应溶液的pH保持在pH=4.8±0.2。
有益效果:本发明具有以下优点:
1、本发明原料廉价,合成路线简单,周期短,无污染,适用于大规模生产。
2、由于P(MVE-alt-MA)分子中含有大量的羧基及WCS氨基,因此所制备的纳米凝胶具有pH敏感性,其粒径,表面电荷及稳定性等性能可通过pH值调节,使其适应更广泛的生物医学应用。
3、由于P(MVE-alt-MA)分子中含有大量的羧基,因此本发明所制备的纳米凝胶表面在一定的pH条件下带有负电荷,可防止蛋白吸附,延长粒子在体内的循环。
4、本发明所制备的纳米凝胶可通过所含有羧基有利于与含氨基药物(如盐酸阿霉素等)通过静电作用进行药物负载。
附图说明
图1是实施例2获得的基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶透射电镜图。
图2是实施例2制备的基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶在不同pH值条件下粒径分布图。
具体实施方式
下面结合具体实施方式对本发明作更进一步的说明。
甲基乙烯基醚马来酸共聚物P(MVE-alt-MA)是对人体和动物无毒无害的高分子材料,具有良好亲水性、化学稳定性、生物相容性、生物黏附性的多元羧酸聚合物而被广泛应用于生物技术、药理学及保健应用。如作为稳定剂,增塑剂,粘合剂和缓释剂等。P(MVE-alt-MA)的微阵列结构能够支持人多能干细胞(hPSCs)(HUES1,HUES9和iPSCs)的黏附,增殖和自我更新。在P(MVE-alt-MA)上培养的人多能干细胞hPSCs能维持其特征形貌,表达了高水平多能性标记物和保持正常的染色质组型。基于该聚合物良好的生物相容性,稳定性,本发明采用分散聚合法制备基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶。可应用于药物控释载体等。
本发明基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶,在低浓度条件下,壳聚糖溶液加入到P(MVE-alt-MA)溶液中,壳聚糖中的氨基与P(MVE-alt-MA)的羧基发生静电作用形成聚电解质复合物(-NH3+(CS)/-COO-(P(MVE-alt-MA))),从而形成P(MVE-alt-MA)-CS半互穿网络结构,之后加入交联剂N,N’-亚甲基双丙烯酰胺(MBAAm)并加热使MBAAm双键与壳聚糖中的氨基发生聚合,进一步形成互穿网络结构得到具有pH敏感复合纳米凝胶。
上述基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶的制备方法,包括如下步骤:
步骤一、采用双氧水氧化降解的方法制备水溶性壳聚糖(WSC):将壳聚糖分散到浓度为3wt.%的双氧水溶液中,其中,壳聚糖与双氧水溶液的质量体积比为10:72g/ml;于70℃搅拌3h,抽滤,取滤液冷冻干燥,得到淡黄色粉末,即为水溶性壳聚糖。室温下配制水溶性壳聚糖溶液,其浓度为0.25mg/mL~1.0mg/mL;
其中,壳聚糖的脱乙酰度为80%~95%。
步骤二、将甲基乙烯基醚马来酸酐共聚物(P(MVE-alt-MAH))于90℃加热2h进行水解得到甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA)),室温下制备配制P(MVE-alt-MA)的水溶液,其浓度为0.25mg/mL~1.0mg/mL;
其中,聚甲基乙烯基醚共聚马来酸的数均分子量为80000~311000。
步骤三、取步骤二配制的甲基乙烯基醚马来酸共聚物P(MVE-alt-MA)溶液于250mL三口烧瓶,加入步骤一配置的壳聚糖水溶液,三口烧瓶接有冷凝管,并通入N2,转速600rpm-2000rpm下磁力搅拌12h。加入交联剂N,N’-亚甲基双丙烯酰胺(MBAAm),N2纯化下缓慢加热至60℃,继续反应1h。反应液冷却至室温,用过滤孔径10μm滤纸过滤除去聚集体,透析不少于三天,透析使用的透析袋截留分子量为8000~14000;反应溶液的pH保持在pH=4.8±0.2;
其中,甲基乙烯基醚马来酸共聚物与壳聚糖的反应体积比为:100:100~100:10;
交联剂的用量为壳聚糖质量的2%~20%。
下面结合一些实施例对本发明做进一步说明。以下实例所采用的原料来源说明:聚甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))购自百灵威科技有限公司;壳聚糖(chitosan,CS,脱乙酰度95%,数均分子量1.06×106),上海晶纯化工有限公司;N,N’-亚甲基双丙烯酰胺(MBAAm)购自上海阿拉丁生化科技股份有限公司;双氧水(H2O2)为分析纯,未经纯化直接使用。所有溶液均由去离子水配制。
实施例1
(1)、水溶性壳聚糖溶液(WCS)的配制
将10g壳聚糖分散到72ml浓度为3wt.%的双氧水溶液中,70℃搅拌3h,抽滤,取滤液冷冻干燥,得到淡黄色粉末,即水溶性壳聚糖。室温下配制水溶性壳聚糖溶液浓度为0.25mg/mL;
(2)、P(MVE-alt-MA)溶液的配制
将甲基乙烯基醚马来酸酐共聚物(P(MVE-alt-MAH))于90℃加热2h进行水解得到甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA)),室温下制备配制P(MVE-alt-MA)溶液浓度为1.0mg/mL;
(3)、纳米凝胶的制备
取100mL P(MVE-alt-MA)溶液于250mL三口烧瓶,按P(MVE-alt-MA)溶液与WCS溶液体积比100:70加入上述配置的壳聚糖溶液,三口烧瓶接有冷凝管,并通入N2,磁力搅拌12h。加入交联剂N,N’-亚甲基双丙烯酰胺(MBAAm),N2纯化下缓慢加热至60℃,反应继续1h。反应液冷却至室温,用过滤孔径10μm滤纸过滤除去聚集体,透析三天(用截留分子量为:8000~14000,室温下用稀盐酸调节pH=4.8±0.2)。
实施例2
(1)、水溶性壳聚糖溶液(WCS)的配制
将10g壳聚糖分散到72ml浓度为3wt.%的双氧水溶液中,70℃搅拌3h,抽滤,取滤液冷冻干燥,得到淡黄色粉末,即水溶性壳聚糖。室温下配制水溶性壳聚糖溶液浓度为0.5mg/mL;
(2)、P(MVE-alt-MA)溶液的配制
将甲基乙烯基醚马来酸酐共聚物(P(MVE-alt-MAH))于90℃加热2h进行水解得到甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA)),室温下制备配制P(MVE-alt-MA)溶液浓度为1.0mg/mL;
(3)、纳米凝胶的制备
取100mL P(MVE-alt-MA)溶液于250mL三口烧瓶,按P(MVE-alt-MA)溶液与WCS溶液体积比100:50加入上述配置的壳聚糖溶液,三口烧瓶接有冷凝管,并通入N2,磁力搅拌12h。加入交联剂N,N’-亚甲基双丙烯酰胺(MBAAm),N2纯化下缓慢加热至60℃,反应继续1h。反应液冷却至室温,用过滤孔径10μm滤纸过滤除去聚集体,透析三天(用截留分子量为:8000~14000,室温下用稀盐酸调节pH=4.8±0.2)。
图1是本实施例制备的基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶的透射电镜图,该纳米凝胶呈球状结构,此种结构使得该凝胶具有较大的比表面积。图2是本实施例制备的基于甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA))及壳聚糖(CS)pH敏感复合纳米凝胶在不同pH值条件下粒径分布图,该测试结果表明该纳米凝胶的粒径可随pH值变化而不同,可通过pH值调节。
实施例3
(1)、水溶性壳聚糖溶液(WCS)的配制
将10g壳聚糖分散到72ml浓度为3wt.%的双氧水溶液中,70℃搅拌3h,抽滤,取滤液冷冻干燥,得到淡黄色粉末,即水溶性壳聚糖。室温下配制水溶性壳聚糖溶液浓度为0.5mg/mL;
(2)、P(MVE-alt-MA)溶液的配制
将甲基乙烯基醚马来酸酐共聚物(P(MVE-alt-MAH))于90℃加热2h进行水解得到甲基乙烯基醚马来酸共聚物(P(MVE-alt-MA)),室温下制备配制P(MVE-alt-MA)溶液浓度为0.5mg/mL;
(3)、纳米凝胶的制备
取100mL P(MVE-alt-MA)溶液于250mL三口烧瓶,按P(MVE-alt-MA)溶液与WCS溶液体积比100:30加入上述配置的壳聚糖溶液,三口烧瓶接有冷凝管,并通入N2,磁力搅拌12h。加入交联剂N,N’-亚甲基双丙烯酰胺(MBAAm),N2纯化下缓慢加热至60℃,反应继续1h。反应液冷却至室温,用过滤孔径10μm滤纸过滤除去聚集体,透析三天(用截留分子量为:8000~14000,室温下用稀盐酸调节pH=4.8±0.2)。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:包括如下步骤:
步骤一、制备水溶性壳聚糖;于室温下配制浓度为0.25 mg/mL ~ 1.0 mg/mL的水溶性壳聚糖溶液;
步骤二、将甲基乙烯基醚马来酸酐共聚物于90℃加热2h进行水解得到甲基乙烯基醚马来酸共聚物,室温下配制浓度为0.25 mg/mL ~ 1.0 mg/mL的甲基乙烯基醚马来酸共聚物的水溶液;
步骤三、取步骤二配制的甲基乙烯基醚马来酸共聚物溶液于容器中,加入步骤一配置的壳聚糖溶液,容器接有冷凝管,并在容器中通入N2,磁力搅拌12h;加入交联剂N,N’ -亚甲基双丙烯酰胺,在N2纯化下加热至60℃,继续反应1h;然后将反应液冷却至室温,用过滤孔径为10μm的滤纸过滤除去聚集体,透析,得到所述复合纳米凝胶。
2.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:步骤一中,采用双氧水氧化降解的方法制备水溶性壳聚糖:将壳聚糖分散到浓度为3 wt.%的双氧水溶液中,于70℃搅拌3 h,抽滤,取滤液冷冻干燥,得到淡黄色粉末,即为水溶性壳聚糖;其中壳聚糖与双氧水溶液的质量体积比为10:72g/ml。
3.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:所述壳聚糖的脱乙酰度为80%~95%。
4.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:所述甲基乙烯基醚马来酸共聚物的数均分子量为80000 ~311000。
5.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:步骤三中,甲基乙烯基醚马来酸共聚物溶液与壳聚糖溶液的体积比为:100:100 ~100:10。
6.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:步骤三中,磁力搅拌的转速为600rpm-2000rpm。
7.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:步骤三中,透析时使用的透析袋截留分子量为8000 ~14000,透析时间不少于3天。
8.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:步骤三中,交联剂的用量为壳聚糖质量的2% ~20%。
9.根据权利要求1所述的制备基于甲基乙烯基醚马来酸共聚物及壳聚糖 pH敏感复合纳米凝胶的方法,其特征在于:步骤三中,反应溶液的pH保持在pH=4.8±0.2。
CN201610183740.2A 2016-03-28 2016-03-28 一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法 Expired - Fee Related CN105838013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610183740.2A CN105838013B (zh) 2016-03-28 2016-03-28 一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610183740.2A CN105838013B (zh) 2016-03-28 2016-03-28 一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN105838013A CN105838013A (zh) 2016-08-10
CN105838013B true CN105838013B (zh) 2017-10-13

Family

ID=56584609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610183740.2A Expired - Fee Related CN105838013B (zh) 2016-03-28 2016-03-28 一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN105838013B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750381B (zh) * 2016-12-06 2019-02-01 东华大学 一种基于互穿网络结构的载四氧化三铁纳米水凝胶的制备方法
EP3904468B1 (en) * 2020-04-30 2022-10-19 Société BIC Method for preparing thermochromic water-based gel ink compositions, and thermochromic water-based gel ink compositions thereof
CN113999329B (zh) * 2021-11-23 2022-10-25 江苏科技大学 一种接枝纳米粒子的壳聚糖凝胶电解质及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952279A (zh) * 2012-05-10 2013-03-06 东南大学 用于肿瘤细胞三维培养的水凝胶及应用
CN103962112B (zh) * 2014-05-13 2016-06-29 东南大学 用于细胞三维培养的光响应智能凝胶微球的制备方法

Also Published As

Publication number Publication date
CN105838013A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
Del Valle et al. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives
Wang et al. Microencapsulation using natural polysaccharides for drug delivery and cell implantation
CN102250365B (zh) 一种pH敏感的还原响应性纳米凝胶及其制备方法
CN106467613B (zh) 一种自愈合聚阴离子-壳聚糖季铵盐水凝胶及其应用
CN102198117B (zh) 一种温敏性高分子微胶囊及其制备方法和应用
Wang et al. Preparation, characterization and applications of low-molecular-weight alginate–oligochitosan nanocapsules
CN102532580B (zh) 一种制备多功能纳米载体的方法
CN103520113A (zh) 一种埃洛石纳米复合凝胶微球及其制备方法
CN105838013B (zh) 一种基于甲基乙烯基醚马来酸共聚物及壳聚糖pH敏感复合纳米凝胶及其制备方法
CN108578357A (zh) 一种具有核-壳结构的蛋白质-多糖自组装纳米凝胶及其制备方法与应用
CN105969825A (zh) 一种酶催化交联还原响应的透明质酸微凝胶及其制备方法
CN1718616A (zh) 一种药用智能纳米凝胶材料及其制备方法
CN102688195A (zh) 一种具有pH敏感性的包载盐酸阿霉素的壳聚糖羧甲基壳聚糖纳米缓释微粒的制备方法
Abere et al. Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine: A mini review
Lencina et al. Recent studies on alginates based blends, composites, and nanocomposites
CN106750416B (zh) 一种拥有自愈合和pH响应性能的可注射水凝胶及其制备方法和应用
CN102100663B (zh) 一种pH敏感型原位凝胶纳米缓释眼药水的制备方法
CN106701730A (zh) 含半乳糖基壳聚糖分子的海藻酸盐水凝胶微球载体及应用
Ai et al. Nanocellulose-based hydrogels for drug delivery
CN104138471A (zh) 一种新型壳聚糖纳米粒及其制备方法
CN106399291A (zh) 一种半乳糖基接枝改性的海藻酸盐微球及应用
CN103497344B (zh) 用于负载贵金属颗粒的纳米凝胶及其制备方法与应用
Zheng et al. Supramolecular assemblies of multifunctional microgels for biomedical applications
Singha et al. Applications of alginate-based bionanocomposites in drug delivery
CN108578387A (zh) 一种靶向叶酸-聚乙二醇-木质素结合物载药纳米粒子及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171013

CF01 Termination of patent right due to non-payment of annual fee