CN105837842B - 一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法 - Google Patents

一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法 Download PDF

Info

Publication number
CN105837842B
CN105837842B CN201610165323.5A CN201610165323A CN105837842B CN 105837842 B CN105837842 B CN 105837842B CN 201610165323 A CN201610165323 A CN 201610165323A CN 105837842 B CN105837842 B CN 105837842B
Authority
CN
China
Prior art keywords
silicon oxide
mesopore silicon
diffusion dialysis
film
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610165323.5A
Other languages
English (en)
Other versions
CN105837842A (zh
Inventor
钱家盛
李雪云
苗继斌
夏茹
杨斌
陈鹏
曹明
苏丽芬
郑争志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201610165323.5A priority Critical patent/CN105837842B/zh
Publication of CN105837842A publication Critical patent/CN105837842A/zh
Application granted granted Critical
Publication of CN105837842B publication Critical patent/CN105837842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/124Preparation of adsorbing porous silica not in gel form and not finely divided, i.e. silicon skeletons, by acidic treatment of siliceous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法,通过模板法制备介孔氧化硅,然后利用介孔氧化硅通过直接共混法制备扩散渗析专用阳离子膜。所得阳离子膜包括疏水性聚合物区、含有固定离子的活性区和间隙区。本发明制备的介孔氧化硅含有大量的交换基团,可提高膜的离子通量,保证分离效果,同时可以改进传统聚合物的机械性能和热力学性能。本发明制备的扩散渗析专用阳离子膜的含水量(WR)为136.4%~193.7%,离子交换容量为0.1~0.3mmol/g,OH渗析系数UOH为0.008~0.025mol/h,分离系数为11.5~40。

Description

一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法
一、技术领域
本发明涉及一种阳离子膜的制备方法,具体地说是一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法,属于扩散渗析用杂化阳离子膜的技术领域。
二、背景技术
直接共混法技术是制备有机-无机杂化材料最简单的方法,其优点是操作简单,操作温度低,不会破坏有机相,并且适合于各种形态的纳米粒子。可以根据需要调整无机物的配比从而得到性质、功能多样的杂化膜,是目前应用比较广泛的制备有机-无机杂化膜的方法。传统的共混法是将无机物颗粒直接加入有机物溶液中,并通过机械力使其均匀分散在有机质中。这种方法的缺点是膜液损失较多,且无机物易团聚。此外,有机-无机杂化膜中,无机物对于杂化膜综合性能的提高起着至关重要的作用,因此,无机物的选择是一个非常重要的过程。在多种无机材料中,介孔氧化硅由于具有高度均一的孔道,较大的比表面积,以及优异的热力学稳定性,因此被选做制备杂化膜的无机填充材料。
《微孔和介孔材料》(Microporous and Mesoporous Materials 148(2012)8-14)报道了合成一种介孔氧化硅,并通过简易原位模板法与磺化聚酰亚胺混合制备出有机-无机杂化膜。合成的杂化复合膜在热力学稳定性、含水量、质子电导率等方面有明显的提高,尤其是介孔氧化硅的添加,其介孔结构大大的促进了质子传输能力。该复合膜可用于燃料电池隔膜。
《能源杂志》(Journal of Power Sources 270(2014)292-303)报道了合成一种介孔氧化硅,并且在其内表面和外表面负载不同的基团,然后通过直接共混法将其与nafion有机质混合制备出有机-无机杂化复合膜。得到的杂化膜的质子电导率有显著的提高,并且在高温和低湿度的条件下仍能够保持较高的质子电导率。该复合膜可用于高温下的燃料电池隔膜。
《分离与纯化技术》(Separation and Purification Technology 141(2015)307-313)报道了通过直接共混法将纳米氧化硅与磺化聚苯醚混合制备出有机-无机阳离子交换膜。得到的杂化膜具有良好的耐热性、耐碱性和机械性能。利用扩散渗析回收NaOH的结果表明,该复合膜具有良好的分离效果,但是其氢氧根的通量还有待进一步的提高。
通过文献的调查研究发现,介孔氧化硅的应用较为广泛,且有利用介孔氧化硅作为无机填充材料制备有机-无机杂化膜应用于气体分离、燃料电池等方向,但利用介孔氧化硅作为填充材料,制备出杂化膜应用于扩散渗析回收废碱上,基本上没有。因此,本发明提供了一种新的回收废碱的材料。
三、发明内容
本发明的目的在于提供一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法,以期可以提高现有的商品膜的回收效率和离子选择性。
本发明利用介孔氧化硅制备扩散渗析用阳离子膜的方法,包括如下步骤:
1、将介孔氧化硅加入DMF(N,N′-二甲基甲酰胺)中,超声分散均匀,得到介孔氧化硅悬浮液;
2、将磺化聚苯醚溶于DMF中,离心除去杂质,收集上层澄清液;
3、将介孔氧化硅悬浮液滴加至步骤2的澄清液中,滴加完毕后室温下继续搅拌30min,获得膜液;
4、将步骤3所得膜液在玻璃板上流延成膜,并于55℃下真空干燥,即得扩散渗析用阳离子膜。
膜液中磺化聚苯醚的质量分数为10%,膜液中磺化聚苯醚与介孔氧化硅的质量比为1:0.01~0.2。
所述介孔氧化硅是通过如下方法制备得到的:
将1-5g三嵌段共聚物P123溶于盐酸溶液中,加入正硅酸乙酯,预水解后再加入硅烷偶联剂KH550(3-氨基丙基三乙氧基硅烷),于40℃下反应20h,得到悬浮液;将所述悬浮液在100℃下静置24h,抽滤得到白色固体,干燥后经过索氏提取除去模板剂P123,即得到氨基修饰的介孔氧化硅。
所述盐酸溶液的浓度为2mol/L,所述盐酸溶液的体积为100~150mL。
所述KH550与正硅酸乙酯的摩尔比为1:9。
正硅酸乙酯的预水解温度为40℃,预水解时间为1.5h。
所述索氏提取的具体参数为:
将1g干燥后的白色固体置于150mL无水乙醇以及1.5mL浓盐酸(质量浓度为37.5%)的混合溶液中,85℃下提取48小时。
本发明方法制备的扩散渗析用阳离子膜,包括疏水性聚合物区、含有固定离子的活性区和间隙区。其特点在于,介孔氧化硅的介孔结构有助于协助OH-的传输。
与已有技术相比,本发明的优势体现在:
本发明通过模板法制备介孔氧化硅,方法简单,原料来源广泛;本发明制备的介孔氧化硅具有高度均一的介孔结构,对其表面进行氨基修饰,提高了无机相与有机相的相容性,且氨基基团的存在有利于在保证分离效果的条件下,提高碱回收效率。
本发明利用介孔氧化硅通过直接共混法制备的扩散渗析用阳离子膜的水含量(WR)为136.4%~193.7%,离子交换容量为0.1~0.3mmol/g,OH-渗析系数UOH为0.008~0.025mol/h,分离系数为11.5~40。与传统的阳离子膜相比,本发明的阳离子膜含水量以及OH-的渗析系数和离子选择性均有明显提高,该膜可作为扩散渗析回收废碱专用阳离子杂化膜。
本发明方法采取先合成一种介孔氧化硅,并对其表面进行氨基修饰,然后通过直接共混法将其与磺化聚苯醚溶液混合均匀,得到混合液可以直接涂膜,然后真空条件下干燥得到一系列具有不同离子交换能力的杂化膜阳离子膜。本发明方法与《膜科学杂志》(Journal of Membrane Science 379(2011)112-120)报道的利用一种多硅共聚物与磺化聚苯醚溶液进行溶胶凝胶反应,得到阳离子交换膜相比,本发明采用的方法操作更为简单容易,原料来源广泛,得到的杂化膜的亲水性和储水能力更强,在扩散渗析回收碱的过程中效率更高,并且可以通过调节介孔氧化硅的用量来调节杂化膜的离子交换能力和储水能力。本发明方法与《分离与纯化技术》(Separation and Purification Technology 141(2015)307-313)报道的通过直接共混法将纳米氧化硅与磺化聚苯醚溶液混合制备的阳离子交换膜和《膜科学杂志》(Journal of Membrane Science 498(2016)201–207)报道的通过直接共混法将磺化的纳米氧化硅与磺化聚苯醚溶液混合制备的阳离子交换膜相比,本发明采用的无机填充材料具有高比表面积,高度均一的介孔孔道等独特的性能,这些独特的性能更好的促进了有机相与无机相之间的相容性,得到的杂化膜具有优异的耐热性,储水性能以及更高的分离效率。
在之前的报道(《分离与纯化技术》(Separation and Purification Technology141(2015)307-313)和《膜科学杂志》(Journal of Membrane Science 498(2016)201–207))中,大都专注于通过改善杂化膜中的无机填充材料及其表面负载基团来改善膜的离子交换容量以及含水量来解决扩散渗析回收废碱过程中离子渗析系数和选择性之间的桎梏。我们的研究打破了传统的有机-无机杂化阳离子交换膜对一般无机填充材料的使用。采用具有高比表面积、高度有序的介孔孔道、高热力学稳定性的介孔氧化硅,该无机材料的使用不仅提高了杂化膜的力学性能,同时由于其独特的介孔结构,增加了杂化膜的储水能力和离子运输通道,因此在扩散渗析过程中,OH-渗析系数和离子选择性有明显的提高。
四、附图说明
图1是介孔氧化硅透射电镜图片。通过图1中的透射电镜图片可以看出介孔氧化硅的介孔结构。
图2和图3分别是介孔氧化硅氮气吸附-脱附等温线和孔径分布曲线。图2中介孔氧化硅的氮气吸附-脱附等温曲线属于IV型,它是介孔材料一个典型的吸附等温线类型之一;此外,等温线的滞后环比较接近于H1型,这是介孔材料孔径高度均一的特征之一,图3孔径分布曲线可以更直观的说明这一特点。
五、具体实施方式
以下通过具体实例对本发明进行进一步说明。
实施例1:
1、介孔氧化硅的制备
在三口烧瓶中加入2mol/L的盐酸溶液120mL、4g三嵌段共聚物P123,将温度设定为40℃,搅拌至P123完全溶解,随后加入10mL正硅酸乙酯(TEOS)于40℃下预水解1.5h,再加入1mL KH550,40℃下搅拌反应20h,得到悬浮液;将所得悬浮液在100℃条件下静置24h,抽滤得到白色固体,干燥后经索氏提取(150ml(无水乙醇):1.5mL浓盐酸:1g(粉体),时间48h,温度85℃)得到氨基修饰的介孔氧化硅。
2、扩散渗析用阳离子膜的制备
(1)按照磺化聚苯醚与介孔氧化硅的质量比为1:0.02的比例称取步骤1制备的介孔氧化硅以及磺化聚苯醚;将介孔氧化硅加入DMF中,超声分散30min,得到介孔氧化硅悬浮液;将磺化聚苯醚溶于DMF中,离心除去杂质,收集上层澄清液;
(2)将介孔氧化硅悬浮液缓慢滴加至澄清液中,滴加完毕后室温下继续搅拌30min,获得膜液;膜液中磺化聚苯醚的质量分数为10%。
(3)将步骤(2)所得膜液在玻璃板上流延成膜,并于55℃下真空干燥,即得扩散渗析用阳离子膜。
3、性能测试
(1)水含量(WR)测试:称量0.1-0.2g样品,在恒温通风干燥箱中55℃烘至恒重,记录重量为m1,室温浸泡在蒸馏水中48h,尽量避免样品浮在水面;取出样品,快速用滤纸吸干表面的水份,快速称量,记重量为m2;WR=(m2-m1)*100%/m1平行测定三个样品,取平均值。
(2)离子交换容量(IEC)测试:称量0.1-0.2g样品,质量记为m,在1M HCl溶液中浸泡48h,用去离子水浸泡48h,利用pH试纸检测H+是否洗净;将洗净的膜在一定体积(60-80ml,记下用量为V)1M NaCl浸泡48h,取10ml浸泡液,用NaOH标准溶液滴定,酚酞做指示剂,IEC=CNaOH*VNaOH*(VH2O/5)/m。
(3)扩散渗析过程测试:扩散渗析池是由左右两半室组成,测试时,把膜固定在扩散渗析池中间,然后在扩散渗析池两侧分别加100ml混合液(混合液中NaOH的浓度为1mol/L,Na2WO4的浓度为0.1mol/L)和100ml蒸馏水,同时通电搅拌以减小浓差极化的影响,1h后停止搅拌,分别取出渗析液和水侧液进行测定。测试及计算方法见《膜科学杂志》(Journal ofMembrane Science 379(2011)112-120)。
经测试,本实施例所获得的扩散渗析用阳离子膜的性能参数为:膜的水含量(WR)为177.6%,离子交换容量为0.21mmol/g,OH-渗析系数UOH为0.013m/h,分离系数为37.3。
实施例2:
本实施例按实施例1相同的条件制备介孔氧化硅和扩散渗析用阳离子膜,并对其进行相同的性能测试,区别在于本实施例中磺化聚苯醚与介孔氧化硅的质量比为1:0.04。
经测试,本实施例所获得的扩散渗析用阳离子膜的性能参数为:膜的水含量(WR)为193.66%,离子交换容量为0.20mmol/g,OH-渗析系数UOH为0.009m/h,分离系数为31.0。
实施例3:
本实施例按实施例1相同的条件制备介孔氧化硅和扩散渗析用阳离子膜,并对其进行相同的性能测试,区别在于本实施例中磺化聚苯醚与介孔氧化硅的质量比为1:0.06。
经测试,本实施例所获得的扩散渗析用阳离子膜的性能参数为:膜的水含量(WR)为160%,离子交换容量为0.20mmol/g,OH-渗析系数UOH为0.012m/h,分离系数为40.4。
实施例4:
本实施例按实施例1相同的条件制备介孔氧化硅和扩散渗析用阳离子膜,并对其进行相同的性能测试,区别在于本实施例中磺化聚苯醚与介孔氧化硅的质量比为1:0.08。
经测试,本实施例所获得的扩散渗析用阳离子膜的性能参数为:膜的水含量(WR)为130.4%,离子交换容量为0.20mmol/g,OH-渗析系数UOH为0.011m/h,分离系数为27.1。

Claims (4)

1.一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法,其特征在于包括如下步骤:
(1)将介孔氧化硅加入DMF中,超声分散均匀,得到介孔氧化硅悬浮液;
(2)将磺化聚苯醚溶于DMF中,离心除去杂质,收集上层澄清液;
(3)将介孔氧化硅悬浮液滴加至步骤(2)的澄清液中,滴加完毕后室温下继续搅拌30min,获得膜液;
(4)将步骤(3)所得膜液在玻璃板上流延成膜,并于55℃下真空干燥,即得扩散渗析用阳离子膜;
所述介孔氧化硅是通过如下方法制备得到的:
将1-5g三嵌段共聚物P123溶于盐酸溶液中,加入正硅酸乙酯,预水解后再加入硅烷偶联剂KH550,于40℃下反应20h,得到悬浮液;将所述悬浮液在100℃下静置24h,抽滤得到白色固体,干燥后经过索氏提取除去模板剂P123,即得到氨基修饰的介孔氧化硅;
所述盐酸溶液的浓度为2mol/L,所述盐酸溶液的体积为100~150mL;
所述KH550与正硅酸乙酯的摩尔比为1:9。
2.根据权利要求1所述的方法,其特征在于:
膜液中磺化聚苯醚的质量分数为10%,膜液中磺化聚苯醚与介孔氧化硅的质量比为1:0.01~0.2。
3.根据权利要求1所述的方法,其特征在于:
正硅酸乙酯的预水解温度为40℃,预水解时间为1.5h。
4.根据权利要求1所述的方法,其特征在于所述索氏提取的具体参数为:
将1g干燥后的白色固体置于150mL无水乙醇以及1.5mL浓盐酸的混合溶液中,85℃下提取48小时。
CN201610165323.5A 2016-03-21 2016-03-21 一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法 Active CN105837842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610165323.5A CN105837842B (zh) 2016-03-21 2016-03-21 一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610165323.5A CN105837842B (zh) 2016-03-21 2016-03-21 一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法

Publications (2)

Publication Number Publication Date
CN105837842A CN105837842A (zh) 2016-08-10
CN105837842B true CN105837842B (zh) 2018-12-21

Family

ID=56588126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610165323.5A Active CN105837842B (zh) 2016-03-21 2016-03-21 一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法

Country Status (1)

Country Link
CN (1) CN105837842B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106744991B (zh) * 2017-01-24 2019-03-19 东南大学 一种有机功能介孔氧化硅的合成方法
CN108456413A (zh) * 2018-03-06 2018-08-28 查公祥 一种纳米耐热璜化质子膜及其制备方法
CN108440936A (zh) * 2018-03-12 2018-08-24 巢湖学院 一种SPPO/TiO2杂化离子膜的制备方法
CN113041849B (zh) * 2021-04-07 2023-02-03 合肥星邦新材料科技有限公司 利用半互穿网络聚合法制备氢化丁腈橡胶/介孔氧化硅复合阳离子交换膜的方法及其应用
CN114367202B (zh) * 2022-01-12 2023-01-31 安徽大学 一种碱式扩散渗析用磺化聚醚醚酮/磺化介孔氧化硅复合膜材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247765A (zh) * 2011-07-25 2011-11-23 复旦大学 中空介孔二氧化硅球-聚合物杂化超滤膜及其制备方法
CN103030826A (zh) * 2013-01-10 2013-04-10 复旦大学 一种咪唑型杂化阴离子交换膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247765A (zh) * 2011-07-25 2011-11-23 复旦大学 中空介孔二氧化硅球-聚合物杂化超滤膜及其制备方法
CN103030826A (zh) * 2013-01-10 2013-04-10 复旦大学 一种咪唑型杂化阴离子交换膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Miao jibin等.Sulfonated poly(2,6-dimethyl-1,4-phenyleneoxide)/nano silica hybrid membranes for alkali recovery via diffusion dialysis.《Separation and Purification Technology》.2014,(第141期),307-313. *

Also Published As

Publication number Publication date
CN105837842A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105837842B (zh) 一种利用介孔氧化硅制备扩散渗析用阳离子膜的方法
Zhang et al. Adjust the arrangement of imidazole on the metal-organic framework to obtain hybrid proton exchange membrane with long-term stable high proton conductivity
Lei et al. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace
Zhang et al. Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly (arylene ether ketone sulfone) s
CA2717354C (en) Hybrid membrane comprising chitosan, hydroxy ethyl cellulose, and montmorillonite
Wang et al. Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC
Neelakandan et al. Improving the performance of sulfonated polymer membrane by using sulfonic acid functionalized hetero‐metallic metal‐organic framework for DMFC applications
CN101440167B (zh) SiO2/有机聚合物复合质子交换膜的制备方法
McKeen et al. Proton conductivity in sulfonic acid-functionalized zeolite beta: effect of hydroxyl group
CN110756059B (zh) 一种以多孔离子聚合物为分散相的混合基质膜的制备方法及其气体分离的应用
Wang et al. Preparation and properties of polyvinyl alcohol (PVA)/mesoporous silica supported phosphotungstic acid (MS-HPW) hybrid membranes for alkali recovery
Bakangura et al. Hierarchically structured porous anion exchange membranes containing zwetterionic pores for ion separation
CN102532572B (zh) 一种掺杂带正电聚苯乙烯乳液的季铵化壳聚糖阴离子复合膜的制备方法
US20240030474A1 (en) Composite high-temperature proton exchange membrane for fuel cell, preparation method therefor and use thereof
Sharma et al. Devising ultra-robust mixed-matrix membrane separators using functionalized MOF–poly (phenylene oxide) for high-performance vanadium redox flow batteries
CN112237852A (zh) 一种仿生材料Bio-ZIF填充的嵌段聚醚酰胺混合基质膜及其制备方法和应用
CN100448081C (zh) 经矿物纤维保湿的燃料电池质子交换膜及其制备方法
Zeng et al. Construction of ordered OH− migration channels in anion exchange membrane by synergizes of cationic metal‐organic framework and quaternary ammonium groups
Zanchet et al. Improving Nafion/zeolite nanocomposite with a CF 3 SO 3-CF _3 SO _3^-based ionic liquid for PEMFC application
Xiao et al. Usability of unstable metal organic framework enabled by carbonization within flow battery membrane under harsh environment
KR20130060159A (ko) 레독스 흐름전지용 이온교환막
Lavorgna et al. Transport Properties of Zeolite Na‐X–Nafion Membranes: Effect of Zeolite Loadings and Particle Size
CN115411292B (zh) 一种分子交联分子筛纳米片杂化膜、制备方法和在液流电池中的应用
CN114471177A (zh) 阴离子交换驱动的阳离子选择性分离杂化膜及制备和应用
Reinholdt et al. Silicalite-1/SPEEK composite membranes: influence of the zeolite particles loading or size on proton conductivity and water uptake

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant