CN105837221A - 一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法 - Google Patents

一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法 Download PDF

Info

Publication number
CN105837221A
CN105837221A CN201610316010.5A CN201610316010A CN105837221A CN 105837221 A CN105837221 A CN 105837221A CN 201610316010 A CN201610316010 A CN 201610316010A CN 105837221 A CN105837221 A CN 105837221A
Authority
CN
China
Prior art keywords
lab
powder
plasma sintering
eutectic
lab6
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610316010.5A
Other languages
English (en)
Inventor
张久兴
王盼
杨新宇
胡可
李志�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610316010.5A priority Critical patent/CN105837221A/zh
Publication of CN105837221A publication Critical patent/CN105837221A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种采用放电等离子烧结技术制备LaB6‑VB2共晶复合材料的方法,其特征在于:首先按照共晶相图的质量百分比将LaB6粉末和VB2粉末通过高能球磨混合均匀,再预压成型,最后再在放电等离子烧结炉中烧结,即获得LaB6‑VB2共晶复合材料。本发明通过放电等离子烧结技术制备的LaB6‑VB2共晶复合材料具有较高的致密度,达97%。

Description

一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法
技术领域
本发明涉及一种LaB6-VB2共晶复合材料的制备方法,属于新材料制备技术领域。
背景技术
六硼化镧(LaB6)-二硼化物(MeB2,Me属于IVB-VB元素)共晶复合材料,具有LaB6的高熔点、低逸出功、低蒸发率和MeB2的高熔点、高硬度以及良好的高温抗氧化等特性;在外加负荷的作用下,高弹性模量的MeB2能够很好的吸收裂纹的能量,承担整个材料大部分应力,很好的改善了LaB6硼脆性、低的抗热裂性,因此关于LaB6-MeB2复合材料及其制备技术一直是人们关注的重点,这类材料在国防和民用领域具有非常广阔的应用前景。
然而目前关于烧结技术制备LaB6-MeB2共晶体系的方法还未见报道,在LaB6-MeB2体系中LaB6-VB2的功能特性最好,因此迫切需要寻找合适的烧结技术制备具有优异力学性能的LaB6-VB2共晶复合材料,这对于提高整个材料的服役寿命非常重要。
发明内容
本发明提供一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法,旨在通过精确控制加热速率、烧结温度和保温时间,从而获得高致密度的LaB6-VB2共晶复合材料。
本发明解决技术问题,采用如下技术方案:
本发明采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法,包括如下步骤:
步骤一、混料
以LaB6粉末和VB2粉末为原材料,按共晶相图的质量百分比在手套箱中混合,然后在行星式球磨机上均匀处理2h,获得LaB6-VB2混合粉末;将所述LaB6/VB2混合粉末置于真空干燥箱内干燥;
在混料前,若所用LaB6粉末和VB2粉末的粒径不同,则先将其分别进行球磨细化,使其粒径基本一致,以提高混料的效果。
步骤二、粉末预压
将干燥后LaB6-VB2混合粉末装入石墨模具,然后将石墨模具置于手动压力机上预压成型;
步骤三、放电等离子烧结制备LaB6-VB2共晶复合材料
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空至气压≤5Pa,施加20~50MPa的轴向压力;开始烧结,升温至1600~1900℃,然后保温不超过30min;保温结束后,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6-VB2共晶复合材料。
优选的,步骤一中的干燥温度为100℃、干燥时间为24h;步骤二中预压成型的压力为10MPa;步骤三中的升温速率不高于100℃/min。
与现有技术相比,本发明具有以下优点:
本发明通过放电等离子烧结技术制备LaB6/VB2共晶复合材料,方法简单,所得产品具有较高的致密度,达97.91%。
放电等离子烧结技术利用直流脉冲电流瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀地自身产生焦耳热,从而实现烧结。相比于传统烧结方法具有以下三方面的优点:
(1)加热快:由于脉冲电流瞬间、断续、高频的特点,在粉末内部快速的产生大量焦耳热,使得烧结温度迅速提高。
(2)纯度高:放电时会产生等离子,等离子的相互碰撞、冲击,使得颗粒表面的氧化膜破坏,同时放电产生的局部超高温度能使已经破坏的氧化膜迅速蒸发,从而净化粉末颗粒。
(3)性能好:放电时在颗粒连接处产生的焦耳热以及颗粒连接孔隙处产生的放电热都呈均匀弥散的分布,从而能够实现均匀加热,因而容易制备出均质、致密、高质量的烧结体。
附图说明
图1为本发明实施例1所制备的LaB6-VB2共晶复合材料的组织形貌(烧结温度为1600℃,保温时间10min);
图2为本发明实施例2所制备的LaB6-VB2共晶复合材料的组织形貌(烧结温度为1800℃,保温时间10min);
图3为本发明实施例3所制备的LaB6-VB2共晶复合材料的组织形貌(烧结温度为1900℃,保温时间10min)。
具体实施方式
实施例1
本实施例按如下步骤制备LaB6-VB2共晶复合材料:
步骤一、混料
以粒径为45μm的LaB6粉末和粒径为3-5mm的VB2粉末为原材料。将LaB6粉末和VB2粉末分别进行球磨细化,使其粒径基本一致,LaB6和VB2原料粉末细化的时间分别是2h和3h。
按共晶相图的质量百分比将LaB6粉末和VB2粉末在手套箱中混合,然后在行星式球磨机上均匀处理2h,获得LaB6-VB2混合粉末;将LaB6/VB2混合粉末置于真空干燥箱内100℃干燥10h;
步骤二、粉末预压
将干燥后LaB6-VB2混合粉末装入石墨模具,然后将石墨模具置于手动压力机上预压成型,压力为10MPa。
步骤三、放电等离子烧结制备LaB6-VB2共晶复合材料
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空至气压≤5Pa,施加30MPa的轴向压力;开始烧结,将温度以100℃/min的升温速率从室温升至1600℃,然后保温10min;保温结束后,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6-VB2共晶复合材料。
本实施例所得试样的微观组织如图1所示,可以看出在LaB6基体上出现多孔;经测试,本实施例所得试样的致密度为84.74%。
实施例2
本实施例按如下步骤制备LaB6-VB2共晶复合材料:
步骤一、混料
以粒径为45μm的LaB6粉末和粒径为3-5mm的VB2粉末为原材料。将LaB6粉末和VB2粉末分别进行球磨细化,使其粒径基本一致,LaB6和VB2原料粉末细化的时间分别是2h和3h。
按共晶相图的质量百分比将LaB6粉末和VB2粉末在手套箱中混合,然后在行星式球磨机上均匀处理2h,获得LaB6-VB2混合粉末;将LaB6/VB2混合粉末置于真空干燥箱内100℃干燥10h;
步骤二、粉末预压
将干燥后LaB6-VB2混合粉末装入石墨模具,然后将石墨模具置于手动压力机上预压成型,压力为10MPa。
步骤三、放电等离子烧结制备LaB6-VB2共晶复合材料
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空至气压≤5Pa,施加30MPa的轴向压力;开始烧结,将温度以100℃/min的升温速率从室温升至1800℃,然后保温10min;保温结束后,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6-VB2共晶复合材料。
本实施例所得试样的微观组织如图2所示,可以看出LaB6基体与VB2增强相结合更好,且基体上空隙明显减少;经测试,本实施例所得试样的致密度为96.84%。
实施例3
本实施例按如下步骤制备LaB6-VB2共晶复合材料:
步骤一、混料
以粒径为45μm的LaB6粉末和粒径为3-5mm的VB2粉末为原材料。将LaB6粉末和VB2粉末分别进行球磨细化,使其粒径基本一致,LaB6和VB2原料粉末细化的时间分别是2h和3h。
按共晶相图的质量百分比将LaB6粉末和VB2粉末在手套箱中混合,然后在行星式球磨机上均匀处理2h,获得LaB6-VB2混合粉末;将LaB6/VB2混合粉末置于真空干燥箱内100℃干燥10h;
步骤二、粉末预压
将干燥后LaB6-VB2混合粉末装入石墨模具,然后将石墨模具置于手动压力机上预压成型,压力为10MPa。
步骤三、放电等离子烧结制备LaB6-VB2共晶复合材料
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空至气压≤5Pa,施加30MPa的轴向压力;开始烧结,将温度以100℃/min的升温速率从室温升至1900℃,然后保温10min;保温结束后,切断电流,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6-VB2共晶复合材料。
本实施例所得试样的微观组织如图3所示;经测试,本实施例所得试样的致密度为97.91%,该组织较均匀致密度较高。

Claims (4)

1.一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法,其特征在于包括如下步骤:
步骤一、混料
以LaB6粉末和VB2粉末为原材料,按共晶相图的质量百分比在手套箱中混合,然后在行星式球磨机上均匀处理2h,获得LaB6-VB2混合粉末;将所述LaB6/VB2混合粉末置于真空干燥箱内干燥;
步骤二、粉末预压
将干燥后LaB6-VB2混合粉末装入石墨模具,然后将石墨模具置于手动压力机上预压成型;
步骤三、放电等离子烧结制备LaB6-VB2共晶复合材料
将预压后石墨模具置于放电等离子烧结炉的炉腔内,抽真空至气压≤5Pa,施加20~50MPa的轴向压力;开始烧结,升温至1600~1900℃,然后保温不超过30min;保温结束后,试样随炉冷却,在炉温低于50℃时取出试样,即获得LaB6-VB2共晶复合材料。
2.根据权利要求1所述的方法,其特征在于:步骤一中的干燥温度为100℃,干燥时间为24h。
3.根据权利要求1所述的方法,其特征在于:步骤二中预压成型的压力为10MPa。
4.根据权利要求1所述的方法,其特征在于:步骤三中的升温速率不高于100℃/min。
CN201610316010.5A 2016-05-11 2016-05-11 一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法 Pending CN105837221A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610316010.5A CN105837221A (zh) 2016-05-11 2016-05-11 一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610316010.5A CN105837221A (zh) 2016-05-11 2016-05-11 一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法

Publications (1)

Publication Number Publication Date
CN105837221A true CN105837221A (zh) 2016-08-10

Family

ID=56591700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610316010.5A Pending CN105837221A (zh) 2016-05-11 2016-05-11 一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法

Country Status (1)

Country Link
CN (1) CN105837221A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882966A (zh) * 2017-01-19 2017-06-23 合肥工业大学 一种通过光学区熔技术制备SiC/LaB6共晶复合材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292463A (ja) * 1991-03-16 1992-10-16 Ube Ind Ltd 超微粒子系複合材料および製造方法
CN101372340A (zh) * 2008-10-24 2009-02-25 北京工业大学 一种多元稀土硼化物(LaxRE1-x)B6阴极材料及其制备方法
CN101381085A (zh) * 2008-10-24 2009-03-11 北京工业大学 LaB6多晶块体阴极材料的快速制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292463A (ja) * 1991-03-16 1992-10-16 Ube Ind Ltd 超微粒子系複合材料および製造方法
CN101372340A (zh) * 2008-10-24 2009-02-25 北京工业大学 一种多元稀土硼化物(LaxRE1-x)B6阴极材料及其制备方法
CN101381085A (zh) * 2008-10-24 2009-03-11 北京工业大学 LaB6多晶块体阴极材料的快速制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANATOLIY TARAN等: "Review of LaB6, Re-W Dispenser, and BaHfO3-W Cathode Development", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882966A (zh) * 2017-01-19 2017-06-23 合肥工业大学 一种通过光学区熔技术制备SiC/LaB6共晶复合材料的方法

Similar Documents

Publication Publication Date Title
Vasylkiv et al. Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics
CN106915961B (zh) 一种石墨烯-氧化锆复合材料及其制备方法
CN104831100A (zh) 一种放电等离子(sps)烧结制备石墨烯增强金属基复合材料的方法
CN104961467B (zh) 一种高韧性陶瓷基复合材料及其制备方法与应用
CN104388789B (zh) 一种纳米结构钨‑碳化锆合金及其制备方法
CN105585313A (zh) 氧化铝陶瓷粉料、氧化铝陶瓷及其制备方法
CN106007727A (zh) 一种快速烧结制备LaB6/ZrB2共晶复合材料的方法
CN108409333B (zh) 一种AlMgB14-TiB2/Ti梯度功能复合材料及其制备方法
CN107326241B (zh) 一种以放电等离子烧结制备钨钼铜复合材料的方法
CN105924234A (zh) 碳/碳c/c复合材料表面低孔隙率复相陶瓷涂层及制备方法
CN107245621A (zh) 一种耐磨耐蚀钼合金及其制备方法
CN109095916A (zh) 一种sps烧结制备yag透明陶瓷的方法
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN107099687A (zh) 一种碳化硼颗粒增强纳米/超细晶铝基复合材料的制备方法
CN111778424A (zh) 一种有效可控的具有多极孔结构的骨架的制备方法
CN107937748A (zh) 一种以大电流电阻烧结制备钨钼铜复合材料的方法
Xu et al. A novel alternating current-assisted sintering method for rapid densification of Al2O3 ceramics with ultrahigh flexural strength
CN105837221A (zh) 一种采用放电等离子烧结技术制备LaB6-VB2共晶复合材料的方法
CN105702542A (zh) 铼掺杂钨基合金阴极及其制备方法
CN109721356A (zh) 热障涂层用大尺寸氧化锆陶瓷靶材的制备方法
CN105304436B (zh) 直热式阴极及其制备方法
CN104233143B (zh) 一种ZrTiAlV合金板材电场辅助热处理方法
CN107058840B (zh) 一种W-Si-C系反应体的高温制备方法
CN104529456A (zh) 一种B4C-HfB2高温共晶自生复合陶瓷的制备方法
CN101497128B (zh) 一种制备高性能等离子体点火用阴极材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160810