CN105833914B - 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢 - Google Patents

一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢 Download PDF

Info

Publication number
CN105833914B
CN105833914B CN201610227252.7A CN201610227252A CN105833914B CN 105833914 B CN105833914 B CN 105833914B CN 201610227252 A CN201610227252 A CN 201610227252A CN 105833914 B CN105833914 B CN 105833914B
Authority
CN
China
Prior art keywords
pph
catalyst
hco
binuclear complex
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610227252.7A
Other languages
English (en)
Other versions
CN105833914A (zh
Inventor
王万辉
包明
李桂平
刘胜先
戚妙
韩东
王宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610227252.7A priority Critical patent/CN105833914B/zh
Publication of CN105833914A publication Critical patent/CN105833914A/zh
Application granted granted Critical
Publication of CN105833914B publication Critical patent/CN105833914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢。合成的双核型配合物催化剂两侧的中心金属离子为同一种金属离子,与两侧金属离子配位的配体各有两个三苯基膦和1‑2个氯离子,桥联配体为联二咪唑或联二嘧啶;采用该双核型配合物催化剂催化甲酸分解制氢。本发明的有益效果为:该双核型配合物催化剂在甲酸/三乙胺的有机溶剂体系中具有良好的溶解性,展示出优异的催化性能,较长的使用寿命。该方法为催化甲酸分解制氢提供了一种易制备、性能优良的新型高效过渡金属催化剂。

Description

一类双核配合物催化剂、制备方法及其应用于催化甲酸分解 制氢
技术领域
本发明涉及一类双核配合物催化剂及其制备方法,特别涉及到采用该类双核配合物催化剂催化甲酸分解制氢的方法。
背景技术
氢气具有环境友好、来源丰富、热值高、燃烧性能好、潜在经济效益高等特点,被认为是非常理想的清洁燃料。然而,由于氢在常规条件下以气态形式存在,且易燃、易爆、易扩散,具有很低的体积能量密度,安全、高效地储存和运输氢气成为推广氢能应用、发展氢经济的关键。
在众多储氢材料中,甲酸具有放氢温度适中、安全无毒和具有较高含氢密度(4.4wt%)的特点。而且它在室温下呈液态,便于安全地储存和运输。更重要的是,甲酸可以通过催化二氧化碳加氢方法制得,从而具有良好的可再生性(Grasemann,M.;Laurenczy,G.Energy Environ.Sci.2012,5,8171-8181)。因此,设计合成高效催化剂用于催化甲酸分解放氢是利用甲酸作为储氢材料的关键,具有非常重要的研究意义和实际应用价值。当前研究的过渡金属配合物催化剂多为单核配合物,表现出的催化性能差异也很大。其中Pidko,Xiao和Himeda等人开发的催化剂展示出优异的催化活性(Wang,W.-H.;Himeda,Y.;Muckerman,J.T.;Manbeck,G.F.;Fujita,E.;Chem.Rev.2015,115,12936-12973)。但是,Xiao和Himeda等人的半夹心型配合物及Pidko的PNP三齿配合物制备过程复杂、催化剂成本高。与单核配合物相比较,双核配合物内含有两个金属中心,双核配合物内的两个金属中心存在潜在的协同效应,使双核配合物表现出与单核催化剂不同的性质,从而提高催化活性和稳定性。Fukuzumi等人开发了一类杂二金属双核催化剂[IrIII(Cp*)(H2O)(bpym)RuII(bpy)2](SO4)2,在HCO2H/HCO2Na水溶液中催化甲酸分解制氢,室温条件下催化甲酸分解的TOF值为426h-1,是当时水溶液中甲酸分解制氢活性最高的催化剂(S.Fukuzumi,T.Kobayashi and T.Suenobu,J.Am.Chem.Soc.,2010,132,1496-1497)。但是,该类催化剂也存在制备过程复杂、催化剂成本高的问题。因此,开发研究制备简单、性能稳定的双核过渡金属配合物用于催化甲酸分解制氢,对于促进氢能源的推广利用具有重要的实际意义。
发明内容
为了克服现有技术中上述单核催化剂存在的问题,本发明提供一类双核配合物催化剂与其制备方法,及应用该类双核配合物催化剂催化甲酸分解制氢。
本发明的技术方案是:
一类双核型配合物催化剂包括三苯基膦氯化钌联二咪唑双核配合物[Ru2Cl2(PPh3)4(μ-biim)]催化剂和三苯基膦氯化钌联二嘧啶双核配合物[Ru2Cl4(PPh3)4(μ-bpym)]催化剂,其中biim为脱去两个质子的联二咪唑离子,bpym为联二嘧啶;所述的双核配合物催化剂两侧的中心金属离子为同一种金属离子,与两侧金属离子配位的配体各有两个三苯基膦和1-2个氯离子,桥联配体为联二咪唑或联二嘧啶,其结构式如下:
式中:M=Ru,Rh或Ir;m=1或2;n=1或2。
本发明所述的一类双核型配合物催化剂包含RuCl2(H2biim)(PPh3)2双核配合物催化剂和Ru2Cl4(PPh3)4(μ-bpym)双核配合物催化剂。
桥联配体为联二咪唑时,Ru2Cl2(PPh3)4(μ-biim)双核配合物催化剂的制备方法,步骤如下:
(1)氮气保护条件下,将三苯基膦氯化钌[RuCl2(PPh3)3]和联二咪唑按照摩尔比为1:1.0-1.1加入体积比为1:1的CH2Cl2/CH3OH溶液中,其中三苯基膦氯化钌浓度为4-6mmol/L,在20℃-30℃搅拌反应2h-4h后,将溶液减压旋转蒸发去除溶剂,将固体用正己烷洗涤、干燥后得墨绿色固体产物三苯基膦氯化钌联二咪唑单核配合物[RuCl2(H2biim)(PPh3)2]。
(2)氮气保护条件下,将上述的RuCl2(H2biim)(PPh3)2和KOH固体按照摩尔比1:1加入体积比为1:1的CH2Cl2/CH3OH溶液中,其中RuCl2(H2biim)(PPh3)2浓度为4-6mmol/L,在20℃-30℃搅拌反应2h-4h,减压抽滤,将滤液减压旋转蒸发去除溶剂后,将残余固体用CH2Cl2溶解,减压抽滤,将滤液减压旋转蒸发去除溶剂,真空干燥,得墨绿色固体Ru2Cl2(PPh3)4(μ-biim)双核配合物催化剂。
桥联配体为联二嘧啶,Ru2Cl4(PPh3)4(μ-bpym)双核配合物催化剂的制备方法,步骤如下:
氮气保护条件下,将RuCl2(PPh3)3和联二嘧啶按照摩尔比为1:0.5加入到20mL无水甲醇中,在20℃-30℃搅拌反应2h-4h;待反应结束后,减压抽滤收集固体,用乙醚洗涤固体,再次减压抽滤收集固体,真空干燥,得砖红色固体产物Ru2Cl4(PPh3)4(μ-bpym)双核配合物催化剂。
将上述双核型配合物催化剂应用于催化甲酸分解制氢,步骤如下:
(1)制备甲酸/三乙胺(HCO2H/NEt3)体系
三乙胺、无水HCO2H和DMF按体积比为3:2:1-3配制HCO2H/NEt3—DMF溶液;在氮气保护下,将配制HCO2H/NEt3—DMF溶液在液氮中完全冷冻为固体;利用水浴加热使上述固体缓慢升温解冻,并在抽真空条件下,脱除HCO2H/NEt3—DMF溶液中溶解的气体,待HCO2H/NEt3-DMF溶液彻底解冻后向体系内充满氮气;然后再次液氮冷冻—抽真空—充氮气,重复该步骤3次,得到处理好的HCO2H/NEt3—DMF溶液,保证HCO2H/NEt3—DMF溶液内溶解的氧气完全脱除;最后将处理好的HCO2H/NEt3—DMF溶液置于氮气保护下存储备用;
(2)氮气保护下,步骤(1)得到的HCO2H/NEt3—DMF溶液加热升温至60-90℃后,加入双核配合物催化剂催化反应;所述的1mL HCO2H/NEt3—DMF溶液中加入0.2-1μmol双核配合物催化剂。
(3)排水法收集产生的氢气,记录放氢体积和反应时间,根据放氢量计算催化反应的转化频率(TOF)和转化数(TON)。
本发明的有益效果为:此类型配合物在甲酸/三乙胺的有机溶剂体系中具有良好的溶解性,展示出优异的催化性能,较长的使用寿命。该方法为催化甲酸分解制氢提供了一种制备简单、性能优良的新型高效过渡金属催化剂,对甲酸有效资源化利用提供了理论基础。该种催化剂开发了制备过程简单、性能稳定的双核配合物催化剂,并应用于催化甲酸分解制氢。
附图说明
图1是Ru2Cl4(PPh3)4(μ-bpym)的1H NMR谱图;
图2是Ru2Cl2(PPh3)4(μ-biim)的1H NMR谱图;
图3是不同温度下Ru2Cl2(PPh3)4(μ-biim)(2.6μmol)催化甲酸分解放氢图;
图4是不同浓度Ru2Cl4(PPh3)4(μ-bpym)在70℃条件下,催化甲酸分解放氢图。
具体实施方式
实施例1:
Ru2Cl2(PPh3)4(μ-biim)的制备并催化HCO2H分解制氢:
(1)将RuCl2(PPh3)3(96.6mg,100.0μmol))和联二咪唑(14.2mg,106.0μmol)加入到体积比为1:1的CH2Cl2/CH3OH溶液(20mL)中,氮气保护下,25℃搅拌反应3h;反应结束后,将溶液真空旋转蒸发去除溶剂,用正己烷洗涤,减压抽滤,收集固体,真空干燥,得墨绿色固体RuCl2(H2biim)(PPh3)2产物53.6mg,产率65%;
(2)将RuCl2(H2biim)(PPh3)2(53.6mg,64.5μmol)加入体积比为1:1的CH2Cl2/CH3OH溶液(20mL)中,向其中加入KOH固体(3.6mg,64.5μmol),氮气保护下,25℃搅拌反应2h;反应结束后,减压过滤,将滤液减压旋转蒸发去除溶剂;将残余固体用CH2Cl2(10mL)溶解,减压抽滤,将滤液减压旋转蒸发去除溶剂,真空干燥,收集墨绿色固体为Ru2Cl2(PPh3)4(μ-biim)产物91.9mg,产率98%;
(3)HCO2H/NEt3体系制备:量取3mL NEt3、2mL无水HCO2H、2mL DMF配制HCO2H/NEt3溶液;氮气保护下,将HCO2H/NEt3—DMF溶液在液氮中冷冻直到完全为固体;抽真空条件下,缓慢升温脱除HCO2H/NEt3—DMF溶液中溶解的气体,然后充满氮气;重复该步骤3次;然后将处理好的HCO2H/NEt3—DMF溶液置于氮气保护下存储备用;
(4)氮气保护下,在50mL两口瓶中中加入步骤(3)处理后的HCO2H/NEt3—DMF溶液,加热升温至反应温度80℃;将Ru2Cl2(PPh3)4(μ-biim)(3.8mg,2.6μmol)加入两口瓶中催化反应;
(5)排水法收集产生的氢气,记录放氢体积和反应时间,根据所记录数据,在34-35h的最大TOF值为1,360h-1。反应45h,催化反应的TON值达到15,150,甲酸转化率为74%。
实施例2:
Ru2Cl4(PPh3)4(μ-bpym)的制备并催化甲酸分解制氢:
(1)称取RuCl2(PPh3)3(104.0mg,108.5μmol),联二嘧啶(8.6mg,54.2μmol),加入20mL无水甲醇中;用油泵抽真空,补入氮气,循环三次此气体置换步骤。氮气保护下,20℃搅拌反应3h,溶液变墨绿色;反应结束后,冷却至室温,减压抽滤,收集固体;用乙醚洗涤固体,减压抽滤,收集固体,真空干燥,得砖红色固体Ru2Cl4(PPh3)4(μ-bpym)产物56.4mg,产率为67%。
(2)HCO2H/NEt3体系制备:量取3mL NEt3、2mL无水HCO2H、2mL DMF配制HCO2H/NEt3溶液;氮气保护下,将HCO2H/NEt3—DMF溶液在液氮中冷冻直到完全为固体;抽真空条件下,缓慢升温脱除HCO2H/NEt3—DMF溶液中溶解的气体,然后充满氮气;重复该步骤3次;然后将处理好的HCO2H/NEt3—DMF溶液置于氮气保护下存储备用;
(3)氮气保护下,在50mL两口瓶中加入步骤(2)处理后的HCO2H/NEt3—DMF溶液,加热升温至反应温度70℃;将Ru2Cl4(PPh3)4(μ-bpym)(1.6mg,1.0μmol)加入反应瓶中催化反应;
(4)排水法收集产生的氢气,记录放氢体积和反应时间,根据所记录数据,初始1h的TOF值为2,110h-1。反应128h,催化反应的TON达到34,440,甲酸转化率为66%。

Claims (4)

1.一类双核型配合物催化剂,其特征在于,所述的双核配合物催化剂的两侧中心金属离子为同一种金属离子,与两侧金属离子配位的配体各有两个三苯基膦和1-2个氯离子;桥联配体为联二咪唑时,双核型配合物催化剂为三苯基膦氯化钌联二咪唑双核配合物催化剂Ru2Cl2(PPh3)4(μ-biim)、三苯基膦氯化铑联二咪唑双核配合物催化剂Rh2Cl2(PPh3)4(μ-biim)或三苯基膦氯化铱联二咪唑双核配合物催化剂Ir2Cl2(PPh3)4(μ-biim);桥联配体为联二嘧啶时,双核型配合物催化剂为三苯基膦氯化钌联二嘧啶双核配合物催化剂Ru2Cl4(PPh3)4(μ-bpym)、三苯基膦氯化铑联二嘧啶双核配合物催化剂Rh2Cl4(PPh3)4(μ-bpym)或三苯基膦氯化铱联二嘧啶双核配合物催化剂Ir2Cl4(PPh3)4(μ-bpym);结构式如下:
其中:M=Ru,Rh或Ir;m=1或2;n=1或2。
2.一种权利要求1所述的一类双核型配合物催化剂的制备方法,其特征在于,桥联配体为联二咪唑时,Ru2Cl2(PPh3)4(μ-biim)双核型配合物催化剂的制备过程为:
(1)氮气保护条件下,将三苯基膦氯化钌RuCl2(PPh3)3和联二咪唑按照摩尔比为1:1.0-1.1加入体积比为1:1的CH2Cl2/CH3OH溶液中,其中三苯基膦氯化钌浓度为4-6mmol/L,在20℃-30℃搅拌反应2h-4h后,将溶液减压旋转蒸发去除溶剂,固体用正己烷洗涤、干燥后得到墨绿色固体产物三苯基膦氯化钌联二咪唑单核配合物RuCl2(H2biim)(PPh3)2
(2)氮气保护条件下,将上述的RuCl2(H2biim)(PPh3)2和KOH固体按照摩尔比1:1加入体积比为1:1的CH2Cl2/CH3OH溶液中,其中RuCl2(H2biim)(PPh3)2浓度为4-6mmol/L,在20℃-30℃搅拌反应2h-4h,减压抽滤、去除溶剂后,残余固体用CH2Cl2溶解,再减压抽滤、去除溶剂、真空干燥,得到墨绿色固体Ru2Cl2(PPh3)4(μ-biim)双核配合物催化剂。
3.一种权利要求1所述的一类双核型配合物催化剂的制备方法,其特征在于,桥联配体为联二嘧啶时,Ru2Cl4(PPh3)4(μ-bpym)双核型配合物催化剂的制备过程为:氮气保护条件下,将RuCl2(PPh3)3和联二嘧啶按1:0.5的摩尔比加入到20mL无水甲醇中,在20℃-30℃搅拌反应2h-4h后,减压抽滤,固体用乙醚洗涤后,再次减压抽滤、真空干燥得到砖红色固体产物Ru2Cl4(PPh3)4(μ-bpym)双核配合物催化剂。
4.权利要求1所述的一类双核配合物催化剂应用于催化甲酸分解制氢,其特征在于,具体过程为:
(1)制备甲酸/三乙胺HCO2H/NEt3体系
三乙胺NEt3、无水HCO2H和DMF按体积比为3:2:1-3配制HCO2H/NEt3—DMF溶液;在氮气保护下,将HCO2H/NEt3—DMF溶液在液氮中完全冷冻为固体;利用水浴加热使上述固体缓慢升温解冻,并在抽真空条件下,脱除HCO2H/NEt3—DMF溶液中溶解的气体,待HCO2H/NEt3—DMF溶液彻底解冻后向体系内充满氮气;重复液氮冷冻-抽真空-充氮气步骤3-5次,得到处理好的HCO2H/NEt3—DMF溶液;
(2)氮气保护下,步骤(1)得到的HCO2H/NEt3—DMF溶液加热升温至60-90℃后,加入双核配合物催化剂催化反应;所述的1mL HCO2H/NEt3—DMF溶液中加入0.2-1μmol双核配合物催化剂;
(3)排水法收集产生的氢气,记录放氢体积和反应时间,根据放氢量计算催化反应的TOF和TON。
CN201610227252.7A 2016-04-13 2016-04-13 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢 Active CN105833914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610227252.7A CN105833914B (zh) 2016-04-13 2016-04-13 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610227252.7A CN105833914B (zh) 2016-04-13 2016-04-13 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢

Publications (2)

Publication Number Publication Date
CN105833914A CN105833914A (zh) 2016-08-10
CN105833914B true CN105833914B (zh) 2018-02-16

Family

ID=56597448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610227252.7A Active CN105833914B (zh) 2016-04-13 2016-04-13 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢

Country Status (1)

Country Link
CN (1) CN105833914B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944124B (zh) * 2017-04-06 2019-06-21 江西师范大学 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法
EP3441137B1 (de) * 2017-08-08 2019-12-25 Evonik Operations GmbH Pd-katalysierten zersetzung von ameisensäure
CN108774265B (zh) * 2018-05-23 2020-06-12 河南师范大学 具有催化氨硼烷脱氢活性的锇双齿二胺配合物及其制备方法
CN108822152B (zh) * 2018-05-23 2020-06-12 河南师范大学 具有催化氨硼烷脱氢活性的锇双齿n基配合物及其制备方法
CN110451457A (zh) * 2019-08-05 2019-11-15 大连理工大学 一种纳米多孔金属催化甲酸分解放氢的方法
WO2024077554A1 (zh) * 2022-10-13 2024-04-18 金宏气体股份有限公司 配体及其制备方法、金属配合物、催化制氢体系及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918247A1 (en) * 2006-10-18 2008-05-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Hydrogen production from formic acid
CN102389795A (zh) * 2011-09-29 2012-03-28 复旦大学 用于甲酸分解制氢的纳米金催化剂及其制备方法
CN102468506A (zh) * 2010-11-16 2012-05-23 中国科学院兰州化学物理研究所 功能化离子液体中催化甲酸分解制氢的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918247A1 (en) * 2006-10-18 2008-05-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Hydrogen production from formic acid
CN102468506A (zh) * 2010-11-16 2012-05-23 中国科学院兰州化学物理研究所 功能化离子液体中催化甲酸分解制氢的方法
CN102389795A (zh) * 2011-09-29 2012-03-28 复旦大学 用于甲酸分解制氢的纳米金催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH;Wan-Hui Wang et al.;《ACS Catal.》;20150730;第5卷;第5496−5504页 *
Selective catalytic formic acid decomposition for hydrogen generation in ionic liquids;LI Xue-li et al.;《燃料化学学报》;20101031;第38卷(第5期);第544-553页 *

Also Published As

Publication number Publication date
CN105833914A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105833914B (zh) 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢
Tu et al. Rational design of catalytic centers in crystalline frameworks
Mondol et al. Molybdenum nitride@ porous carbon, derived from phosphomolybdic acid loaded metal-azolate framework-6: A highly effective catalyst for oxidative desulfurization
Gunasekar et al. Design strategy toward recyclable and highly efficient heterogeneous catalysts for the hydrogenation of CO2 to formate
Gunasekar et al. A covalent triazine framework, functionalized with Ir/N-heterocyclic carbene sites, for the efficient hydrogenation of CO2 to formate
Nasalevich et al. Co@ NH 2-MIL-125 (Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H 2 production
Liu et al. Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst
Yu et al. Photocatalytic metal–organic frameworks for the aerobic oxidation of arylboronic acids
Abdinejad et al. Electrocatalytic reduction of CO2 to CH4 and CO in aqueous solution using pyridine-porphyrins immobilized onto carbon nanotubes
KR101459599B1 (ko) 신규한 Cu-MOF 화합물, 이를 포함하는 선택적 CO2 흡착체 및 불균일 에스터 교환 반응 촉매
Liu et al. Catalytic space engineering of porphyrin metal–organic frameworks for combined CO2 capture and conversion at a low concentration
CN104891435B (zh) 一种用质子响应型铱配合物催化氨硼烷水解制氢的方法
CN101252991B (zh) 过氧化物分解催化剂
JP5422159B2 (ja) 環状化合物、その金属錯体及び変性金属錯体
CN108298499B (zh) 一种水溶性金属配合物催化甲酸分解放氢的方法
WO2007091616A1 (ja) 金属錯体及びその用途
EP2133336B1 (en) Modified metal complexes and use thereof
JP2008255106A (ja) 金属錯体
JP2007238601A (ja) 多核金属錯体変性物及びその用途
CN104069883A (zh) 一种用于醇氧化生成酯的钴基催化剂及其制备方法与应用
JP2008258150A (ja) 燃料電池用電極触媒
CN107175133A (zh) 一种二氧化硅负载的铜‑联吡啶催化剂及其制备方法
CN102516222A (zh) 利用碳负载型钌催化剂催化加氢制备环己基冠醚的方法
WO2010123046A1 (ja) 変性金属錯体
Yang et al. Gridlike 3d-4f heterometallic macrocycles for highly efficient conversion of CO2 into cyclic carbonates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant