CN105826577A - 一种超长枝芽形Te-Pt复合纳米线的制备方法 - Google Patents

一种超长枝芽形Te-Pt复合纳米线的制备方法 Download PDF

Info

Publication number
CN105826577A
CN105826577A CN201610149838.6A CN201610149838A CN105826577A CN 105826577 A CN105826577 A CN 105826577A CN 201610149838 A CN201610149838 A CN 201610149838A CN 105826577 A CN105826577 A CN 105826577A
Authority
CN
China
Prior art keywords
preparation
nanowire
tellurium
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610149838.6A
Other languages
English (en)
Inventor
王騊
王晟
欧阳申珅
彭美灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610149838.6A priority Critical patent/CN105826577A/zh
Publication of CN105826577A publication Critical patent/CN105826577A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Te‑Pt复合纳米线的制备方法,具体涉及一种超长枝芽形Te‑Pt复合纳米线的制备方法,包括以下步骤:1)使用碲源制备出碲纳米线,按质量份数,称取10‑15份的碲纳米线加入到含有25‑50份无水乙醇的烧杯中,磁力搅拌30‑50分钟使得分散均匀;2)按质量份数,取步骤1)中的分散溶液0.5‑1.5份分散到8‑12份甲醇与超纯水体积比为1∶1的混合溶液中,加入1‑3份H2PtCl6氯铂酸溶液,分散到超纯水中,N2曝气10‑30分钟,高压汞灯照射反应3‑5小时,即得成品。本发明制备过程简单,条件易于控制,便于规模生产,通过加入铂前驱体,在紫外灯下在碲纳米线表面长出枝芽形铂,然后经过冷冻干燥后即可得到直径为10纳米左右的超长枝芽形Te‑Pt复合纳米线,该复合纳米线交织成网,具有高的催化活性。

Description

一种超长枝芽形Te-Pt复合纳米线的制备方法
技术领域
本发明涉及一种Te-Pt复合纳米线的制备方法,具体涉及一种超长枝芽形Te-Pt复合纳米线的制备方法。
背景技术
当前,人们日常生活、工业生产所需要的能源主要来自于煤、石油、天然气等传统不可再生化石能源。但其不可再生且地球储存量有限,同时对于能源的利用率比较低,并且对环境污染严重。燃料电池技术因其低污染、高效率、用途广、燃料来源广泛等优点在寻求用于替代传统化石燃料的新技术过程中,日益得到关注。目前用于燃料电池使用的催化剂是商用的铂催化剂。而Te-Pt复合纳米线材料既降低了铂的用量,又提高了铂的活性表面积,可应用于燃料电池催化方面。
发明内容
本发明的目的在于提供一种超长枝芽形Te-Pt复合纳米线的制备方法,该方法通过光催化法在碲纳米线的表面长出类枝芽形的铂,随后经过冷冻干燥后,即可得到了尺寸均一的Te-Pt复合纳米线。
一种超长枝芽形Te-Pt复合纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取10-15份的碲纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;
2)按质量份数,取步骤1)中的分散溶液0.5-1.5份分散到8-12份甲醇与超纯水体积比为1:1的混合溶液中,加入1-3份H2PtCl6氯铂酸溶液,分散到超纯水中,N2曝气10-30分钟,高压汞灯照射反应3-5小时,即得到超长枝芽形Te-Pt复合纳米线。
与现有技术相比,本发明具有以下有益效果:
(1)本发明通过加入铂前驱体,在紫外灯下在碲纳米线表面长出枝芽形铂,然后经过冷冻干燥后即可得到直径为10纳米左右的超长枝芽形Te-Pt复合纳米线,该复合纳米线交织成网,具有高的催化活性;
(2)本发明制备出超长枝芽形Te-Pt复合纳米线,铂负载均匀,电催化活性高;
(3)本发明制备过程简单,条件易于控制,便于规模生产。
附图说明
图1是本发明的超长枝芽形Te-Pt复合纳米线放大1.5万倍的扫描电镜图。
图2是本发明的超长枝芽形Te-Pt复合纳米线放大12万倍的透射电镜图。
具体实施方式
下面结合实施例对本发明做进一步阐述,而不是要以此对本发明进行限制。
实施例1:
一种超长枝芽形Te-Pt复合纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取10份的碲纳米线加入到含有25份无水乙醇的烧杯中,磁力搅拌30分钟使得分散均匀;
2)按质量份数,取步骤1)中的分散溶液0.5份分散到8份甲醇与超纯水体积比为1:1的混合溶液中,加入1份H2PtCl6氯铂酸溶液,分散到超纯水中,N2曝气10分钟,高压汞灯照射反应3小时,即得到超长枝芽形Te-Pt复合纳米线。
如此,便可制备出直径为直径为10纳米左右的超长枝芽形Te-Pt复合纳米线,该复合纳米线交织成网,具有高的催化活性。
实施例2:
一种超长枝芽形Te-Pt复合纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取13份的碲纳米线加入到含有35份无水乙醇的烧杯中,磁力搅拌40分钟使得分散均匀;
2)按质量份数,取步骤1)中的分散溶液1份分散到10份甲醇与超纯水体积比为1:1的混合溶液中,加入2份H2PtCl6氯铂酸溶液,分散到超纯水中,N2曝气20分钟,高压汞灯照射反应4小时,即得到超长枝芽形Te-Pt复合纳米线。
实施例3:
一种超长枝芽形Te-Pt复合纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取15份的碲纳米线加入到含有50份无水乙醇的烧杯中,磁力搅拌50分钟使得分散均匀;
2)按质量份数,取步骤1)中的分散溶液1.5份分散到12份甲醇与超纯水体积比为1:1的混合溶液中,加入3份H2PtCl6氯铂酸溶液,分散到超纯水中,N2曝气30分钟,高压汞灯照射反应5小时,即得到超长枝芽形Te-Pt复合纳米线。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (1)

1.一种超长枝芽形Te-Pt复合纳米线的制备方法,其特征在于包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取10-15份的碲纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;
2)按质量份数,取步骤1)中的分散溶液0.5-1.5份分散到8-12份甲醇与超纯水体积比为1:1的混合溶液中,加入1-3份H2PtCl6氯铂酸溶液,分散到超纯水中,N2曝气10-30分钟,高压汞灯照射反应3-5小时,即得到超长枝芽形Te-Pt复合纳米线。
CN201610149838.6A 2016-03-16 2016-03-16 一种超长枝芽形Te-Pt复合纳米线的制备方法 Pending CN105826577A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610149838.6A CN105826577A (zh) 2016-03-16 2016-03-16 一种超长枝芽形Te-Pt复合纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610149838.6A CN105826577A (zh) 2016-03-16 2016-03-16 一种超长枝芽形Te-Pt复合纳米线的制备方法

Publications (1)

Publication Number Publication Date
CN105826577A true CN105826577A (zh) 2016-08-03

Family

ID=56523476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610149838.6A Pending CN105826577A (zh) 2016-03-16 2016-03-16 一种超长枝芽形Te-Pt复合纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN105826577A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321402A (zh) * 2018-03-29 2018-07-24 江苏师范大学 一种低温甲醇燃料电池用纳米多枝型合金催化剂的制备方法
CN109453793A (zh) * 2018-10-22 2019-03-12 浙江工业大学 一种超长铂碲介孔纳米管电催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872886A (zh) * 2012-09-21 2013-01-16 中国科学技术大学 一种碲基贵金属合金纳米线催化剂的制备方法及其应用
CN104248954A (zh) * 2014-09-23 2014-12-31 苏州禹净环境科技有限责任公司 一种原位光还原的氧化亚铜/二氧化钛复合物的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872886A (zh) * 2012-09-21 2013-01-16 中国科学技术大学 一种碲基贵金属合金纳米线催化剂的制备方法及其应用
CN104248954A (zh) * 2014-09-23 2014-12-31 苏州禹净环境科技有限责任公司 一种原位光还原的氧化亚铜/二氧化钛复合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHAOJUN GUO等: ""Novel Te/Pt Hybrid Nanowire with Nanoporous Surface:A Catalytically Active Nanoelectrocatalyst"", 《J.PHYS.CHEM.C》 *
刘阳等: ""紫外光原位还原法制备Pt/TiO2及其光催化性能研究"", 《浙江理工大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321402A (zh) * 2018-03-29 2018-07-24 江苏师范大学 一种低温甲醇燃料电池用纳米多枝型合金催化剂的制备方法
CN109453793A (zh) * 2018-10-22 2019-03-12 浙江工业大学 一种超长铂碲介孔纳米管电催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. 2D CoP supported 0D WO3 constructed S-scheme for efficient photocatalytic hydrogen evolution
Li et al. Pt catalysts supported on lignin-based carbon dots for methanol electro-oxidation
CN105642321B (zh) 一种纳米红磷/石墨烯复合光催化剂及其制备方法
CN106732734B (zh) 一种Z型g-C3N4@Ag@Ag3PO4复合光催化剂的制备方法
Zuo et al. Z‐scheme modulated charge transfer on InVO4@ ZnIn2S4 for durable overall water splitting
CN102671676A (zh) 一种SnO2/SnS2异质结光催化剂的制备方法
CN104959153A (zh) 光催化产氢助剂、光催化剂及光催化剂的制备方法和应用
CN109023416A (zh) NiCoP@石墨烯气凝胶高效析氢复合材料的制备方法
CN106784880B (zh) 水溶性一维金钯合金纳米线的合成方法
Wang et al. Synthesis of Ni-silicate superficially modified CdS and its highly improved photocatalytic hydrogen production
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
Xiang et al. Co2P/CoP quantum dots surface heterojunction derived from amorphous Co3O4 quantum dots for efficient photocatalytic H2 production
CN105826577A (zh) 一种超长枝芽形Te-Pt复合纳米线的制备方法
CN109225265A (zh) 一种全固态z型异质结光催化剂的制备方法
Yu et al. Carbon dots-based nanocomposites for heterogeneous photocatalysis
CN113522363B (zh) 水凝胶中金属离子改性mof微/纳结构的制备方法及应用
CN108543541B (zh) 一种镍钴磷/氨基碳纳米管催化剂及其制备方法和应用
CN112237839B (zh) 一种过渡金属介导的半人工光合系统的构建方法及应用
CN103466689A (zh) 一种采用自模板法制备纳米环状硫化镉光催化材料的方法
CN111659430B (zh) 一种用于酸性电解水制氢的低铂复合材料的制备方法
CN112588324A (zh) 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN109382118B (zh) 一种网络结构Pt-Ni合金纳米材料
CN110694655A (zh) 一种硫化银/磷酸银/氧化石墨烯复合光催化剂的制备方法
CN110124696A (zh) 一种硫化镉与二硫化钴异质结光催化剂的制备方法
CN103111294A (zh) 贵金属-Mn3O4-碳纳米管复合材料及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160803