CN105820749B - 一种微滴可自输运的楔形非均匀润湿性表面及其制备方法 - Google Patents

一种微滴可自输运的楔形非均匀润湿性表面及其制备方法 Download PDF

Info

Publication number
CN105820749B
CN105820749B CN201610200984.7A CN201610200984A CN105820749B CN 105820749 B CN105820749 B CN 105820749B CN 201610200984 A CN201610200984 A CN 201610200984A CN 105820749 B CN105820749 B CN 105820749B
Authority
CN
China
Prior art keywords
super
wedge shape
droplet
homogeneous
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610200984.7A
Other languages
English (en)
Other versions
CN105820749A (zh
Inventor
张友法
安力佳
余新泉
陈锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610200984.7A priority Critical patent/CN105820749B/zh
Publication of CN105820749A publication Critical patent/CN105820749A/zh
Application granted granted Critical
Publication of CN105820749B publication Critical patent/CN105820749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种微滴可自输运的楔形非均匀超浸润性表面及其制备方法。采用涂料喷涂或水热氧化法,在基片表面构建含有二氧化钛或氧化锌纳米材料的超疏水表面,并利用模板法,通过紫外光催化或氧等离子体选区改性,获得楔形超亲水区域,也可先利用模板法,获得楔形覆盖区,再利用涂料喷涂或水热氧化法,选区构建超疏水表面,从而获得楔形非均匀超浸润性表面。最后,再用聚乙烯醇对楔形区进一步改性,获得平滑超亲水楔形区凸起,从而使得微滴可在楔形区自发输运,无需外力驱动。通过模板的选区,可在超疏水表面获得阵列排布的楔形超亲水区,一次实现多个微滴的自驱运动,在强化冷凝传热或蒸发传热、雾气集水、微流体等领域有广阔应用前景。

Description

一种微滴可自输运的楔形非均匀润湿性表面及其制备方法
技术领域
本发明涉及一种微滴可自输运的楔形非均匀润湿性表面制备方法。
背景技术
在很多重要的应用中,例如热量的传递、海水淡化、集水等,水蒸气的凝结都是非常重要的一个过程。在固体表面,冷凝过程包括滴状冷凝和膜状冷凝,冷凝方式取决于冷凝表面的润湿性。滴状冷凝能够大幅提高热传导的效率,研究显示,相对于膜状冷凝,滴状冷凝的传热效率可以提高10倍以上。
微纳复合的超疏水表面,液滴在这种表面以超疏水的Cassie态存在,这种状态下,水滴在很小的倾斜角下就容易脱附,可以保持表面的滴状冷凝特性,避免膜状冷凝状态的发生。但是,随着时间的推移,液滴在表面的凝结也能够引起Cassie态到Wenzel态的转变。在超疏水表面粗糙结构的顶端和粗糙结构之间,形核是随机发生的。这样一来,超疏水表面就可能失去超疏水性,并且液滴最终也会润湿表面而形成膜状冷凝。微米级的冷凝水滴可破坏超疏水表面微米结构捕获空气形成“空气垫”,从而使其失去超疏水性
为了保证滴状冷凝过程,可以提高液滴的移动性和冷凝过程的稳定性。Xiao等[Xiao,R.;Miljkovic,N.;Enright,R.;Wang,E.N.Sci.Rep.2013,3,1988.]研究了润滑油处理的微纳复合结构表面,相比于现在的滴状冷凝表面,润滑油处理的微纳复合CuO表面的热传导系数有将近100%的提高,这是因为大大提高了形核率和液滴的脱附。虽然这种表面有着提高液滴脱附的潜在可能,但是随着时间的推移,润滑油的失效会影响这种表面的长期稳定性。
构建像沙漠甲虫一样的表面,也可以保持滴状冷凝的特性。水滴在上面可以向特定的区域移动。这种自然界中的疏水亲水表面展示了一种提高集水效率的途径:通过增加亲水区域来提高滴状冷凝。在金属、陶瓷、聚合物等多种基底上运用喷涂超疏水涂料或水热氧化法构建楔形图案的亲水疏水区域未见报道。
发明内容
本发明提供一种微滴可自输运的楔形非均匀润湿性表面及其制备方法,具有操作简单,工艺简单的优点。
本发明采用如下技术方案:一种微滴可自输运的楔形非均匀超浸润性表面,在基底表面设有超疏水区,在超疏水区中分布楔形非超疏水区域,所述的楔形非超疏水区域为凸起的平滑超亲水聚乙烯醇形成的楔形区,比超疏水区高出0.05-0.5mm,楔形夹角1-10°,楔形非超疏水区域长度10μm–30mm,直径0.1-5mm的微滴能够在楔形非超疏水区域自发输运。
所述的楔形非超疏水区域为单个楔形,或呈阵列排布的多个楔形。
所述基底包括金属、陶瓷或聚合物中的任意一种。
所述的微滴可自输运的楔形非均匀超浸润性表面的方法,所述方法包括如下过程:
(1)先在洁净基底表面直接喷涂超疏水涂料,或是先构建氧化锌纳米阵列再氟硅烷改性,获得超疏水表面;
(2)基于标准光刻法,在超疏水表面旋涂光刻胶,选区曝光获得凹孔暴露区,或是直接采用具有楔形通孔的聚二甲基硅氧烷软模板,再继续用紫外光照射,或采用氧等离子体处理,选择性地去除暴露区的疏水性有机物;
(3)采用丙酮浸泡去除残余光刻胶,或采用直接剥离法,去除软模板;
(4)再放入聚乙烯醇水溶液中处理,取出晾干后,即获得微滴可自输运的楔形非均匀超浸润性表面。
所述的微滴可自输运的楔形非均匀超浸润性表面的方法,也可采用下列方法构:
(1)先在洁净的基底表面旋涂光刻胶,选区曝光获得楔形凸起覆盖区;
(2)喷涂超疏水涂料,或先构建氧化锌纳米阵列再氟硅烷改性,获得超疏水表面;
(3)采用丙酮浸泡去除光刻胶;
(4)再放入聚乙烯醇水溶液中处理,取出晾干后,获得楔形非均匀超浸润性表面。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的超疏水涂料为含有1-5mg/mL二氧化钛或氧化锌纳米颗粒,2-20mg/mL二氧化硅纳米链状颗粒,1-10mg/mL疏水性有机硅或氟树脂,0.1-1mg/mL碳链长5-10的三甲氧基含氟硅烷,在有机溶剂存在下混合均匀获得。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的有机溶剂包括乙醇、丙酮、乙酸丁酯、甲苯中任意一种。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的水热氧化法是将基底倒扣或垂直插入用KOH和Zn(NO3)2配制的Zn(OH)4 2-水溶液反应,在基底表面构建氧化锌纳米粗糙结构,再采用十七氟癸基三乙氧基硅烷的乙醇溶液修饰改性,即获得具有阵列氧化锌纳米锥状结构的超疏水表面。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述聚乙烯醇水溶液的质量百分比浓度为1-10%。
所述的微滴可自输运的楔形非均匀超浸润性表面在强化冷凝传热或蒸发传热、雾气集水、微流体、生物检测、芯片领域的应用。
有益效果:
(1)采用喷涂法,可在任意基底构建超疏水表面,不受材质、形状和面积的限制。铜、镍等材质表面可采用水热法生长氧化锌纳米阵列结构超疏水表面。这些表面超疏水性能优异,接触角在160°以上,滚动角在4°以下,液滴粘附性非常小,极易滚落。
(2)喷涂法获得的纳米多孔结构超疏水表面,和水热法制备的纳米锥阵列结构超疏水表面,在冷凝结露10min后的稳定条件下,表面露滴生长尺寸均小于50μm,面积覆盖率维持在20-30%,液滴密度为1.1×109-1.4×109个/m2。显示出优异的滴状冷凝特点。
(3)超疏水涂料中含有一定量的二氧化钛和氧化锌,具有光催化功能,在紫外光照射下,可分解涂层中的有机物,使照射区域的涂层转变成超亲水性。
(4)由于采用光刻模板,所以本发明提出的光催化法制备的楔形区域尺寸能精确调控,精度可达1μm,并可制备阵列排布的楔形超亲水区。
(5)可单独或结合使用氧等离子处理技术,对曝光区域的超疏水涂层进行超亲水化处理,获得非均匀润湿性表面。
(6)采用本发明制备方法获得非均匀超浸润性表面,在楔形超亲水区域的顶端滴加液滴后,液滴会在楔形产生的拉普拉斯压力驱动下,自动朝楔形底部快速运动,即自驱输运。
(7)冷凝结露条件下,采用本发明制备方法获得非均匀超浸润性表面,超疏水区域基本看不到露滴,具有优异的抗结露效果,超亲水区域露滴形核多且快,具有明显的结露现象,且在楔形产生的拉普拉斯压力驱动下,露滴朝楔形底部运动,可促进露滴的快速脱附。这对冷凝传热效率、集水效率和微流控效率的提高,具有重要意义。
附图说明:
图1为实施例1中制备的超疏水表面的扫描电镜图片。
图2为实施例1中制备的超疏水表面水滴接触角图片。
图3为实施例1中制备的超亲水区域水滴接触角图片。
图4为实施例1中制备的超疏水表面冷凝结露时光学照片。
图5为实施例1中水滴在楔形超亲水区开始时照片。
图6为实施例1中水滴在楔形超亲水区运动10mm时照片。
图7为实施例1中水滴在楔形超亲水区运动20mm时的照片。
图8为实施例2中制备的超疏水表面的扫描电镜图片。
图9为实施例2中制备的楔形非均匀润湿表面的光学显微照片。
图10实施例2中制备的楔形非均匀润湿性表面冷凝时光学显微图片。
具体实施方式
一种微滴可自输运的楔形非均匀超浸润性表面,在基底表面设有超疏水区,在超疏水区中分布楔形非超疏水区域,所述的楔形非超疏水区域为凸起的平滑超亲水聚乙烯醇形成的楔形区,比超疏水区高出0.05-0.5mm,楔形夹角1-10°,楔形非超疏水区域长度10μm–30mm,直径0.1-5mm的微滴能够在楔形非超疏水区域自发输运。
所述的楔形非超疏水区域为单个楔形,或呈阵列排布的多个楔形。
所述基底包括金属、陶瓷或聚合物中的任意一种。
所述的微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述方法包括如下过程:
(1)先在洁净基底表面直接喷涂超疏水涂料,或是先构建氧化锌纳米阵列再氟硅烷改性,获得超疏水表面;
(2)基于标准光刻法,在超疏水表面旋涂光刻胶,选区曝光获得凹孔暴露区,或是直接采用具有楔形通孔的聚二甲基硅氧烷软模板,再继续用紫外光照射,或采用氧等离子体处理,选择性地去除暴露区的疏水性有机物;
(3)采用丙酮浸泡去除残余光刻胶,或采用直接剥离法,去除软模板;
(4)将样品放入聚乙烯醇水溶液5-10min,取出晾干后,即可获得微滴可自输运的楔形非均匀超浸润性表面。
所述的微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,也可采用下列任一方法构建楔形非均匀超浸润性表面:
(1)先在洁净的基底表面旋涂光刻胶,选区曝光获得楔形凸起覆盖区;
(2)喷涂超疏水涂料,或先构建氧化锌纳米阵列再氟硅烷改性,获得超疏水表面;
(3)采用丙酮浸泡去除光刻胶;
(4)将样品放入聚乙烯醇水溶液5-10min,取出晾干后,获得楔形非均匀超浸润性表面;
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的超疏水涂料为含有1-5mg/mL二氧化钛或氧化锌纳米颗粒,2-20mg/mL二氧化硅纳米链状颗粒,1-10mg/mL疏水性有机硅或氟树脂,0.1-1mg/mL碳链长5-10的三甲氧基含氟硅烷,在有机溶剂存在下混合均匀获得。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的有机溶剂包括乙醇、丙酮、乙酸丁酯、甲苯中任意一种。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的水热氧化法是将基底倒扣或垂直插入用KOH和Zn(NO3)2配制的Zn(OH)4 2-水溶液反应,在基底表面构建氧化锌纳米粗糙结构,再采用十七氟癸基三乙氧基硅烷的乙醇溶液修饰改性,即获得具有阵列氧化锌纳米锥状结构的超疏水表面。
所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述聚乙烯醇水溶液的质量百分比浓度为1-10%。
所述的微滴可自输运的楔形非均匀超浸润性表面在强化冷凝传热或蒸发传热、雾气集水、微流体、生物检测、芯片领域的应用。
实施例1
(1)前处理:将玻片依次用丙酮、无水乙醇和去离子水超声清洗15min,去除表面的油污和粉尘,随后用无水乙醇淋洗,冷风吹干,备用。
(2)超疏水涂料配制:该涂料含有5mg/mL二氧化钛或氧化锌纳米颗粒,10mg/mL疏水性二氧化硅纳米链状颗粒,4mg/mL疏水性有机硅或氟树脂,1mg/mL碳链长10的三甲氧基含氟硅烷,以乙醇、丙酮、乙酸丁酯、甲苯等易挥发的相溶液体为溶剂,混合超声或机械搅拌5h。使用时将超疏水涂料喷涂在基底表面,晾干、吹干或烘干后,获得超疏水表面。
(3)楔形非均匀润湿表面构建:在基底通过光刻胶曝光,获得夹角4°,长度30mm的楔形覆盖区,接着喷涂超疏水涂料,最后去除掩模光刻胶,即可获得楔形超亲水阵列。
(4)将获得的样品放入重量比7%的聚乙烯醇水溶液中8min,取出室温晾干后,在楔形区域获得凸起的平滑超亲水聚乙烯醇楔形区,凸起高度0.5mm。
该方案喷涂后获得的超疏水表面具有均匀的纳米多孔结构,如图1所示,超疏水性能优异,接触角在160°以上,滚动角小于4°,如图2所示。在冷凝结露10min后的稳定条件下,这种超疏水表面露滴生长尺寸均小于50μm,面积覆盖率维持在20-30%,液滴密度为1.1×109-1.4×109个/m2,显示出优异的滴状冷凝特点,如图3所示。构建楔形非均匀润湿表面后,楔形区呈超亲水性,接触角小于10°,如图4所示。直径3mm的液滴可在楔形区自驱高速运动,如图5、图6和图7所示。
该方案的基底还可以是金属、陶瓷或聚合物中任意一种。
实施例2
(1)前处理:将1mm厚铜片(25mm*25mm,铜元素含量为99.5%)依次用丙酮、无水乙醇和去离子水超声清洗15min,去除表面的油污和粉尘,随后用无水乙醇淋洗,冷风吹干,备用;
(2)超疏水表面制备:采用水热氧化法,将铜片倒扣或垂直插入用KOH和Zn(NO3)2配制的浓度为0.1M Zn(OH)4 2-水溶液,90℃恒温水浴30min,在铜片表面生长氧化锌纳米阵列,如图8所示,氟硅烷修饰改性后获得超疏水表面;
(3)楔形超亲水区构建:将具有楔形通孔的聚二甲基硅氧烷软模板放置于基底超疏水表面,500w功率紫外光照射10h,进行选区催化分解,即可在楔形区域获得超亲水性。
(4)将软模板剥离后,把样品放入重量比10%的聚乙烯醇水溶液中5min,取出室温晾干后,在楔形区域获得凸起的平滑超亲水聚乙烯醇楔形区,凸起高度0.5mm。
最终获得的楔形非超疏水区域,夹角2°,区域长度344μm,呈阵列排布,左右间距60μm,上下间距0μm,如图9所示。在冷凝条件下,直径小于1mm的冷凝露滴会自驱超楔形底部运动集中,无需外力驱动,如图10所示。
实施例3
(1)前处理:将1mm厚玻璃片(25mm*25mm)依次用丙酮、无水乙醇和去离子水超声清洗15min,去除表面的油污和粉尘,随后用无水乙醇淋洗,冷风吹干,备用;
(2)超疏水涂料的配制:2mg/mL二氧化钛或氧化锌纳米颗粒,1mg/mL二氧化硅纳米颗粒,1mg/mL疏水性有机硅或氟树脂,以乙醇、丙酮、乙酸丁酯、甲苯等相溶液体为溶剂,混合超声或机械搅拌1h后即可喷涂。
(3)将超疏水涂料喷涂在基底表面,晾干、吹干或烘干后,获得超疏水表面;
(4)楔形超亲水区构建:将具有楔形通孔的聚二甲基硅氧烷软模板放置于基底超疏水表面,500w功率紫外光照射2h,进行选区催化分解,即可在楔形区域获得超亲水性。
(5)软模板剥离后,将获得的样品放入重量比1%的聚乙烯醇水溶液中10min,取出室温晾干后,在楔形区域获得凸起的平滑超亲水聚乙烯醇楔形区,凸起高度0.1mm。
(6)最终获得的楔形非超疏水区域,夹角1°,区域长度10μm,呈阵列排布,左右间距30μm,上下间距0μm。
实施例4
(1)将1mm厚铜片(25mm*25mm,铜元素含量为99.5%)依次用丙酮、无水乙醇和去离子水超声清洗15min,去除表面的油污和粉尘,随后用无水乙醇淋洗,冷风吹干,备用;
(2)在基底通过光刻胶曝光,获得夹角10°,区域长度10μm的楔形覆盖区;
(3)采用水热氧化法,将铜片倒扣或垂直插入用KOH和Zn(NO3)2配制的浓度为0.1MZn(OH)4 2-水溶液,90℃恒温水浴30min,在铜片表面生长氧化锌纳米阵列,如图8所示,氟硅烷修饰改性后获得超疏水表面;
(4)将样品放入丙酮溶液,直至光刻胶全部溶解后取出晾干;
(5)把样品放入重量比9%的聚乙烯醇水溶液中6min,取出室温晾干后,获得微滴可自输运的非均匀润湿性表面,凸起高度0.7mm。
(6)最终获得的楔形非超疏水区域,夹角10°,长度10mm,呈阵列排布,左右间距10mm,上下间距1mm。

Claims (14)

1.一种微滴可自输运的楔形非均匀超浸润性表面,其特征在于,在基底表面设有超疏水区,在超疏水区中分布楔形非超疏水区域,所述的楔形非超疏水区域为凸起的平滑超亲水聚乙烯醇形成的楔形区,比超疏水区高出0.05-0.5 mm,楔形夹角1-10°,楔形非超疏水区域长度10 μm – 30 mm,直径0.01-5 mm的微滴能够在楔形非超疏水区域自发输运。
2.如权利要求1所述的微滴可自输运的楔形非均匀超浸润性表面,其特征在于,所述的楔形非超疏水区域为单个楔形,或呈阵列排布的多个楔形。
3.如权利要求1所述的微滴可自输运的楔形非均匀超浸润性表面,其特征在于,所述基底为金属、陶瓷或聚合物中的任意一种。
4.制备权利要求1~3任一所述的微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述方法包括如下过程:
(1)先在洁净基底表面直接喷涂超疏水涂料,或是先构建氧化锌纳米阵列再氟硅烷改性,获得超疏水表面;
(2)基于标准光刻法,在超疏水表面旋涂光刻胶,选区曝光获得凹孔暴露区,或是直接采用具有楔形通孔的聚二甲基硅氧烷软模板,再继续用紫外光照射,或采用氧等离子体处理,选择性地去除暴露区的疏水性有机物;
(3)采用丙酮浸泡去除残余光刻胶,或采用直接剥离法,去除软模板;
(4)再放入聚乙烯醇水溶液中处理,取出晾干后,即获得微滴可自输运的楔形非均匀超浸润性表面。
5.如权利要求4所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的超疏水涂料为含有1-5 mg/mL二氧化钛或氧化锌纳米颗粒,2-20 mg/mL二氧化硅纳米链状颗粒,1-10 mg/mL疏水性有机硅或氟树脂,0.1-1 mg/mL碳链长5-10的三甲氧基含氟硅烷,在有机溶剂存在下混合均匀获得。
6.如权利要求5所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的有机溶剂为乙醇、丙酮、乙酸丁酯、甲苯中任意一种。
7.如权利要求4所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的构建氧化锌纳米阵列是采用水热氧化法构建,具体是将基底倒扣或垂直插入用KOH和Zn(NO3)2配制的Zn(OH)4 2-水溶液反应,在基底表面构建氧化锌纳米粗糙结构,再采用十七氟癸基三乙氧基硅烷的乙醇溶液修饰改性,即获得具有阵列氧化锌纳米锥状结构的超疏水表面。
8.如权利要求4所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述聚乙烯醇水溶液的质量百分比浓度为1-10 %。
9.制备权利要求1~3任一所述的微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,步骤为:
(1)先在洁净的基底表面旋涂光刻胶,选区曝光获得楔形凸起覆盖区;
(2)喷涂超疏水涂料,或先构建氧化锌纳米阵列再氟硅烷改性,获得超疏水表面;
(3)采用丙酮浸泡去除光刻胶;
(4)再放入聚乙烯醇水溶液中处理,取出晾干后,获得楔形非均匀超浸润性表面。
10.如权利要求9所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的超疏水涂料为含有1-5 mg/mL二氧化钛或氧化锌纳米颗粒,2-20 mg/mL二氧化硅纳米链状颗粒,1-10 mg/mL疏水性有机硅或氟树脂,0.1-1 mg/mL碳链长5-10的三甲氧基含氟硅烷,在有机溶剂存在下混合均匀获得。
11.如权利要求10所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的有机溶剂为乙醇、丙酮、乙酸丁酯、甲苯中任意一种。
12.如权利要求9所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述的构建氧化锌纳米阵列是采用水热氧化法构建,具体是将基底倒扣或垂直插入用KOH和Zn(NO3)2配制的Zn(OH)4 2-水溶液反应,在基底表面构建氧化锌纳米粗糙结构,再采用十七氟癸基三乙氧基硅烷的乙醇溶液修饰改性,即获得具有阵列氧化锌纳米锥状结构的超疏水表面。
13.如权利要求9所述的制备微滴可自输运的楔形非均匀超浸润性表面的方法,其特征在于,所述聚乙烯醇水溶液的质量百分比浓度为1-10 %。
14.权利要求1~3任一所述的微滴可自输运的楔形非均匀超浸润性表面在强化冷凝传热或蒸发传热、雾气集水、微流体、生物检测、芯片领域的应用。
CN201610200984.7A 2016-03-31 2016-03-31 一种微滴可自输运的楔形非均匀润湿性表面及其制备方法 Active CN105820749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610200984.7A CN105820749B (zh) 2016-03-31 2016-03-31 一种微滴可自输运的楔形非均匀润湿性表面及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610200984.7A CN105820749B (zh) 2016-03-31 2016-03-31 一种微滴可自输运的楔形非均匀润湿性表面及其制备方法

Publications (2)

Publication Number Publication Date
CN105820749A CN105820749A (zh) 2016-08-03
CN105820749B true CN105820749B (zh) 2018-07-06

Family

ID=56525440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610200984.7A Active CN105820749B (zh) 2016-03-31 2016-03-31 一种微滴可自输运的楔形非均匀润湿性表面及其制备方法

Country Status (1)

Country Link
CN (1) CN105820749B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646175B (zh) * 2016-10-19 2019-06-25 东南大学 基于硅基微纳米机械加工技术的可嵌入式测试芯片及其制备与使用方法
CN107191796B (zh) * 2017-06-15 2023-09-19 华南理工大学 一种大功率led散热灯及一种非均匀润湿性图案化表面的制备方法
CN108659794B (zh) * 2018-04-03 2020-08-21 北京航空航天大学 电场响应微纳米材料控制表面浸润性的器件及其制备方法
CN108823569A (zh) * 2018-07-03 2018-11-16 哈尔滨工业大学 液滴定向输运的特殊浸润性表面的制备方法
CN109278228B (zh) * 2018-10-09 2021-01-26 北京航空航天大学 电场响应弹性体微结构表面液体输运器件及其制备方法
CN110082063A (zh) * 2019-03-04 2019-08-02 中国科学院化学研究所 一种控制液滴碰撞后旋转运动的方法及用途
CN110075934B (zh) * 2019-03-25 2021-06-01 绍兴钠钇光电有限公司 一种3d打印微流控器件及其大通量制备单分散乳液的方法
CN111841083A (zh) * 2019-04-28 2020-10-30 中国科学院宁波材料技术与工程研究所 一种pdms与氢氧化铜复合材料、其制备方法及应用
CN110372225B (zh) * 2019-07-24 2020-10-23 北京科技大学 具有多尺度结构的高效冷凝亲水疏水薄膜涂层的制备方法
CN110724954A (zh) * 2019-10-30 2020-01-24 华南理工大学 亲水性润湿梯度复合楔形图化表面及制备方法与应用
CN110898865A (zh) * 2019-11-08 2020-03-24 南京航空航天大学 一种新型通用无泵定向输运液体表面及其制备方法
CN111039347B (zh) * 2019-12-09 2022-05-20 中国科学院理化技术研究所 一种浸润性可调控的光催化气-固-液三相界面及其制备方法和应用
CN111139517A (zh) * 2020-01-03 2020-05-12 浙江工业大学 一种阵列式液滴晶体制备方法及装置
CN111301651B (zh) * 2020-02-10 2021-08-10 大连理工大学 一种持续自驱动微型船
CN111379767B (zh) * 2020-02-17 2021-12-07 常熟理工学院 一种用于无落差定向输运液体的表面结构
CN112504014B (zh) * 2020-11-09 2022-09-16 昆明理工大学 一种磁控微针椎阵列捕雾集水头盔及捕雾集水方法
CN113019484B (zh) * 2021-03-29 2022-04-19 南京航空航天大学 一种水下油运输功能性结构及其制备方法和应用
CN113105263A (zh) * 2021-04-09 2021-07-13 电子科技大学 一种具有纳米级亲水位点的超疏水表面的制备方法
CN116283250B (zh) * 2021-12-21 2024-01-23 北京航空航天大学 一种具有仿叶脉状交叉层结构陶瓷材料的制备方法
CN114235921A (zh) * 2022-02-23 2022-03-25 捷仪科技(北京)有限公司 一种用于生物检测的电极载片
CN115057673B (zh) * 2022-05-27 2023-10-31 上海建工建材科技集团股份有限公司 一种高效率自清洁光催化混凝土及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173832A (zh) * 2013-04-25 2013-06-26 中国科学院苏州纳米技术与纳米仿生研究所 具有微尺度自驱动滴状冷凝功能的新型铝材及其制备方法
WO2015112635A1 (en) * 2014-01-21 2015-07-30 The Board Of Trustees Of The University Of Illinois Wettability patterned substrates for pumpless liquid transport and drainage
CN104846369A (zh) * 2015-03-30 2015-08-19 陕西科技大学 一种制备超亲疏水复合纳米阵列界面材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047772A2 (en) * 2008-10-21 2010-04-29 Massachusetts Institute Of Technology Deposition of nanowires and other nanoscale objects on surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173832A (zh) * 2013-04-25 2013-06-26 中国科学院苏州纳米技术与纳米仿生研究所 具有微尺度自驱动滴状冷凝功能的新型铝材及其制备方法
WO2015112635A1 (en) * 2014-01-21 2015-07-30 The Board Of Trustees Of The University Of Illinois Wettability patterned substrates for pumpless liquid transport and drainage
CN104846369A (zh) * 2015-03-30 2015-08-19 陕西科技大学 一种制备超亲疏水复合纳米阵列界面材料的方法

Also Published As

Publication number Publication date
CN105820749A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CN105820749B (zh) 一种微滴可自输运的楔形非均匀润湿性表面及其制备方法
KR102624344B1 (ko) 저반사율 코팅, 및 기판을 코팅하기 위한 방법 및 시스템
CN106189832B (zh) 有机聚硅氮烷/无机纳米材料超疏水涂层及其制备方法
CN101270260B (zh) 一种超疏水表面涂层材料及其制备方法
Lee et al. Coating BaTiO3 nanolayers on spherical Ni powders for multilayer ceramic capacitors
CN105776125B (zh) 一种楔形图案化超浸润性表面及其制备方法
CN104231916B (zh) 一种透明超疏水纳米涂层及其喷涂制备方法
CN103191855A (zh) 一种超疏水复合多孔膜及其制备方法
CN102257345A (zh) 具有提高的疏水性的冷凝器管及其制造方法和应用
US20100326956A1 (en) Method for manufacturing substrate for mass spectrometry
US20200101420A1 (en) Superhydrophobic coated micro-porous carbon foam membrane and method for solar-thermal driven desalination
JP2010189212A (ja) 多孔質シリカ膜およびその製造方法
Nakayama et al. Rapid and Repeatable Self‐Healing Superoleophobic Porous Aluminum Surface Using Infiltrated Liquid Healing Agent
CN101190435A (zh) 在硅表面上制备超疏水性薄膜的方法
Yuan et al. Water motion and movement without sticking, weight loss and cross-contaminant in superhydrophobic glass tube
CN108409155A (zh) 一种玻璃基板上二氧化硅纳米阵列的制备方法
KR101168250B1 (ko) 나노구조물 패터닝 방법
JP5147307B2 (ja) 質量分析用基板及び質量分析用基板の製造方法
KR20090012567A (ko) 계층적 기공구조물 및 계층적 기공구조물을 이용한초소수성 및 초친수성 표면 제조방법
Zacharatos et al. Highly ordered hexagonally arranged nanostructures on silicon through a self-assembled silicon-integrated porous anodic alumina masking layer
CN105031950A (zh) 一种基于多孔复合材料的可控蒸发表面温度的方法
CN102502485A (zh) 一种纳米材料的图形化工艺方法
KR101207841B1 (ko) 초소수성 표면구조를 갖는 미세입자의 제조방법 및 이를 기판에 코팅하는 방법
US10315177B2 (en) Oxide shell structures and methods of making oxide shell structures
Jin et al. Fabrication of a superhydrophobic poly (vinylidene fluoride) hollow fibre membrane by spray deposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant