CN105814627B - 有源噪声控制系统 - Google Patents

有源噪声控制系统 Download PDF

Info

Publication number
CN105814627B
CN105814627B CN201480068028.7A CN201480068028A CN105814627B CN 105814627 B CN105814627 B CN 105814627B CN 201480068028 A CN201480068028 A CN 201480068028A CN 105814627 B CN105814627 B CN 105814627B
Authority
CN
China
Prior art keywords
signal
noise
active noise
noise control
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480068028.7A
Other languages
English (en)
Other versions
CN105814627A (zh
Inventor
M.克里斯托夫
M.沃姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Becker Automotive Systems GmbH
Original Assignee
Harman Becker Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Becker Automotive Systems GmbH filed Critical Harman Becker Automotive Systems GmbH
Publication of CN105814627A publication Critical patent/CN105814627A/zh
Application granted granted Critical
Publication of CN105814627B publication Critical patent/CN105814627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3016Control strategies, e.g. energy minimization or intensity measurements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3023Estimation of noise, e.g. on error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3032Harmonics or sub-harmonics
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3046Multiple acoustic inputs, multiple acoustic outputs

Abstract

本公开是关于有源噪声控制(ANC)系统。根据本发明的一个方面,所述ANC系统包括多个麦克风和多个扬声器。每一麦克风被配置成提供表示残余噪声信号的误差信号。每一扬声器被配置成接收扬声器信号且辐射相应声学信号。所述ANC系统进一步包括自适应滤波器组,所述自适应滤波器组被供应参考信号且被配置成对所述参考信号进行滤波以提供扬声器信号作为经滤波信号。所述自适应滤波器组的滤波器特性被适配成使得成本函数最小化。所述成本函数因而表示平方误差信号的加权总和。

Description

有源噪声控制系统
技术领域
本公开涉及有源噪声控制(ANC)系统,具体来说涉及具有可调整的阻尼行为的多通道ANC系统。
背景技术
与有用的声音信号相比,干扰噪声是某一接收者(例如,收听者的耳朵)不希望遇到的声音。噪声和干扰声音信号的产生过程一般可以划分为三个子过程:噪声源产生噪声,噪声发射远离噪声源,以及噪声信号的辐射。噪声抑制可以例如借助于阻尼而直接在噪声源处进行。也可以通过阻止或阻尼噪声的发射和/或辐射来实现噪声抑制。越来越多地利用噪声控制方法和系统来借助于相消干涉,即通过将噪声信号与适当控制的补偿信号叠加,而消除或至少减少辐射到收听室中的噪声。以术语有源噪声消除或有源噪声控制(ANC)来概括这些系统和方法。
虽然已知在收听室中通过叠加补偿声音信号与待抑制的噪声信号以使得这些信号相消地干涉可以实现“静默点”,但直到开发出可以连同足够数目的合适传感器(麦克风)和致动器(扬声器)一起使用的具成本效益的高性能数字信号处理器才可以实行合理的技术实现。
当今用于有源地抑制或减少收听室中的噪声级的系统(称为“有源噪声控制”或“ANC”系统)产生的补偿声音信号具有与待抑制的噪声信号相同的振幅和相同的频率分量,但相对于噪声信号具有180°相移。补偿声音信号与噪声信号相消地干涉,且噪声信号因此至少在收听室内的某些需要的位置得到消除或阻尼。
在机动车辆的情况中,术语噪声尤其涵盖由风扇、发动机和机械耦合到发动机的组件的机械振动产生的噪声,以及风和轮胎噪声。现代机动车辆可能具有例如所谓的“后座娱乐”等特征,所述特征使用布置于机动车辆的乘客舱内的多个扬声器来呈现高保真度音频。为了改善声音再生质量,在数字音频处理中可以考虑干扰噪声。除此之外,ANC的另一目标是促进坐在后座的人与坐在前座的人之间的对话。
现代ANC系统依赖于数字信号处理和数字滤波器技术。可以采用噪声传感器(例如,麦克风)或非声学传感器(例如,耦合到机动车辆的发动机的旋转速度传感器)来获得表示由噪声源产生的干扰噪声信号的电参考信号,所述噪声源例如机动车辆的内燃机。可以将此所谓的参考信号馈送到自适应滤波器;随后将经滤波的参考信号(例如,在进一步信号处理和放大之后)供应到一个或多个声学致动器(例如,扬声器),所述致动器产生与收听室的经界定部分内的噪声相位相反的补偿声场。因此,可以消除或至少阻尼收听室的此经界定部分内的噪声。借助于一个或多个麦克风可以测量残余噪声信号。所得的麦克风输出信号可以用作“误差信号”,所述误差信号被反馈到自适应滤波器。随后可以修改自适应滤波器的滤波器系数,使得(例如,多维)误差信号的范数(例如,功率)最小化。
自适应滤波器中经常使用的已知数字信号处理方法是已知的最小均方(LMS)方法的增强,所述方法用于最小化误差信号或使误差信号的功率为精确的。这些增强型LMS方法是x滤波LMS(FXLMS)算法或其修改版本,以及例如误差滤波LMS(FELMS)算法等相关方法。使用表示从声学致动器到误差信号传感器(例如,误差麦克风)的声学路径的模型来实现FXLMS(或任何相关)算法。从扬声器到误差麦克风的此声学路径或者在多通道情况中的多个路径通常称为ANC系统的次级路径,而从噪声源到误差麦克风的声学路径通常称为ANC系统的初级路径。
ANC系统通常被设计成在整个频谱操作范围中实现最大阻尼,这是通过使用上述LMS方法使误差信号的功率最小化而实现。尤其在多通道ANC系统中,噪声(即,误差信号)的残余功率可以取决于ANC系统的操作点(例如,在汽车应用的情况中取决于汽车发动机的当前旋转速度)而变化。在汽车应用中,噪声频谱较大地取决于发动机的旋转速度(以每分钟转数或rpm测得);噪声的频谱因此通常在对应于发动机的旋转速度的基频(或相关的较高谐波)处具有最大值。在2,400rpm的旋转速度下,所述基频可以是例如40Hz(以及在3000rpm下的50Hz等等)。噪声的可实现阻尼(衰减)且因此噪声的残余功率可以取决于收听者可能感知为不愉快的基频(即,旋转速度)而变化。因此需要一种改进的ANC系统,所述系统消除或至少减轻所提到的残余噪声的变化。
发明内容
本文描述一种有源噪声控制(ANC)系统。根据一个实施方案,所述ANC系统包括多个麦克风。每一麦克风被配置成提供表示残余噪声信号的误差信号。所述ANC系统还包括多个扬声器,每一扬声器被配置成接收扬声器信号且辐射相应声学信号。自适应滤波器组被供应参考信号且被配置成对所述参考信号进行滤波。所述自适应滤波器组提供扬声器信号作为经滤波信号,其中所述自适应滤波器组的滤波器特性被适配成使得成本函数最小化。所述成本函数表示平方误差信号的加权总和。
此外,描述一种ANC方法。根据本发明的另一实施方案,所述方法包括:提供参考信号,所述参考信号表示噪声源位置处的噪声;以及测量有待减少噪声的相应多个收听位置处的多个误差信号。计算成本函数,所述成本函数表示平方误差信号的加权总和。将多个扬声器信号供应到辐射对应声学信号的相应多个扬声器,所述对应声学信号与收听位置处的噪声叠加;使用自适应滤波器组对参考信号进行滤波以提供扬声器信号作为经滤波信号,其中用于滤波的滤波器特性被适配成使得成本函数最小化。
而且,公开一种计算机程序产品。当在信号处理器上执行时,所述计算机程序产品实行ANC方法。根据本发明的另一实施方案,所述计算机控制的方法包括:提供参考信号,所述参考信号表示噪声源位置处的噪声;以及测量有待减少噪声的相应多个收听位置处的多个误差信号。计算成本函数,所述成本函数表示平方误差信号的加权总和。将多个扬声器信号供应到辐射对应声学信号的相应多个扬声器,所述对应声学信号与收听位置处的噪声叠加;使用自适应滤波器组对参考信号进行滤波以提供扬声器信号作为经滤波信号,其中用于滤波的滤波器特性被适配成使得成本函数最小化。
本领域的技术人员在检阅附图和详细说明后将明了或者将变为明了其它系统、方法、特征和优点。希望所有此类额外的系统、方法、特征和优点包含在此说明内,在本发明的范围内,并受所附权利要求书的保护。
附图简要说明
参考以下说明和附图可以更好地理解系统。附图中的组件不一定按比例绘制,而是强调说明本发明的原理。而且,在图中,相同参考标号在不同的图中始终指定对应部分。
图1是前馈结构的简化图。
图2是反馈结构的简化图。
图3是说明自适应滤波器的基本原理的框图。
图4是说明使用x滤波LMS(FXLMS)算法的单通道有源噪声控制系统的框图。
图5是更详细说明图4的单通道ANC系统的框图。
图6是说明二乘二多通道ANC系统的次级路径的框图。
图7说明汽车的内部空间中的扬声器和麦克风的布置,包含对应的次级路径传递函数。
图8针对经激活和去激活的ANC系统说明在汽车舱内的不同收听位置处的噪声级。
图9是说明用以计算由LMS算法使用的经修改成本函数的加权因数的计算的框图。
图10图示说明用以计算加权因数的示范性转换函数的框图。
优选实施方案的详细说明
有源噪声控制(ANC)系统可以通过抑制不需要的噪声以增加所呈现声学信号的质量,来改善机动车辆的内部空间中的音乐再生或语音可识度或者有源头戴式耳机的操作。此类有源噪声控制系统的基本原理是基于现存不需要的干扰信号(即,噪声)与由ANC系统产生的补偿信号的叠加。补偿信号是以与不需要的干扰噪声信号相反的相位叠加,因此产生相消干涉。在理想情况中,进而实现不需要的噪声信号的完全消除。然而,残余噪声通常仍存留,一个或多个麦克风在一个或多个收听位置会拾取到所述残余噪声。由麦克风获得的信号可以用来控制ANC系统的操作。
在前馈ANC系统中,使用与不需要的干扰噪声相关的信号(经常称为参考信号)来产生一个或多个补偿信号,所述补偿信号被供应到相应致动器,即扬声器。然而,如果补偿信号不是从与干扰噪声相关的测得参考信号导出,而是仅从系统响应导出,那么存在反馈ANC系统。实际上,系统表示从噪声源到需要噪声消除的收听位置的总体发射路径。对来自噪声源的噪声输入(由参考信号表示)的系统响应由至少一个麦克风输出信号表示,所述至少一个麦克风输出信号经由控制系统反馈到扬声器,所述扬声器产生“反噪声”以抑制所需位置中的实际噪声信号。图1和2借助于基本框图说明用以产生补偿信号以至少部分地补偿(或理想地消除)不需要的干扰噪声信号的前馈结构(图1)和反馈结构(图2)。在这些图中,以x[n]指示参考信号,其表示噪声源的位置处的噪声信号。以d[n]指示需要噪声消除的收听位置处的所得干扰噪声。以y[n]指示相消地叠加收听位置处的干扰噪声d[n]的补偿信号,且以e[n]指示所得误差信号(即,残余噪声)d[n]-y[n]。
前馈系统可以提供比反馈布置更高的有效性,具体来说是因为干扰噪声的宽带减少的可能性。这是由于以下事实:可以直接处理且使用表示干扰噪声的信号(即,参考信号x[n])来有源地抵消干扰噪声信号d[n]。图1中以示范性方式说明此前馈系统。
图1说明基本前馈结构中的信号流。输入信号x[n](例如,噪声源处的噪声信号或从其导出且与其相关的信号)供应到初级路径系统10和控制系统20。输入信号x[n]经常称为用于有源噪声控制的参考信号x[n]。初级路径系统10可以基本上例如由于来自噪声源的噪声向收听室的应当实现干扰噪声信号抑制(即,所需的“静默点”)的部分(即,收听位置)的传播而对输入信号x[n]强加延迟。经延迟输入信号是以d[n]指示,且表示在收听位置待抑制的干扰噪声。在控制系统20中,对参考信号x[n]进行滤波,使得经滤波参考信号y[n]当与干扰噪声信号d[n]叠加时由于收听室的所需部分中的相消干涉而补偿噪声。图1的前馈结构的输出信号可以视为误差信号e[n],其为包括干扰噪声信号d[n]的未通过与经滤波参考信号y[n]的叠加而被抑制的信号分量的残余信号。误差信号e[n]的信号功率(即,残余噪声的功率)可以视为所实现噪声消除的质量度量。
在反馈系统中,初始必须等待系统上的噪声干扰的影响。仅当传感器确定干扰的影响时才可以执行噪声抑制(有源噪声控制)。反馈系统的有利效果在于它们即使在与干扰噪声相关的合适信号(即,参考信号)不可用于控制ANC系统的操作的情况下也可以有效地操作。例如当在先验未知且关于噪声源的特定信息不可用的环境中应用ANC系统时情况就是如此。
图2中说明反馈结构的原理。根据图2,使用由反馈控制系统20提供的经滤波信号(补偿信号y[n])抑制作为不需要的声学噪声的信号d[n]。残余信号(误差信号e[n])用作用于反馈环路(即,控制系统20)的输入。
在实际使用中,使用自适应滤波器来实现ANC系统,因为待减少的噪声的噪声级和频谱组成也会经受由改变的环境条件造成的变化。举例来说,当在机动车辆中使用ANC系统时,不同的驾驶速度(风噪声、轮胎噪声)、不同的负载状态和发动机速度(rpm)或者一个或多个打开的窗会造成环境条件的改变。而且,初级和次级路径系统的传递函数可能随着时间改变。
可以借助于自适应滤波器反复地估计未知系统。进而修改自适应滤波器的滤波器系数,使得自适应滤波器的传递特性近似匹配于未知系统的传递特性。在ANC应用中,将数字滤波器用作自适应滤波器:举例来说,有限脉冲响应(FIR)滤波器或无限脉冲响应(IIR)滤波器,根据给定自适应算法修改它们的滤波器系数。
滤波器系数的自适应是回归过程,所述回归过程通过使误差信号最小化而永久地优化自适应滤波器的滤波器特性,所述误差信号本质上是未知系统和自适应滤波器的输出之间的差,其中所述未知系统和自适应滤波器两者被供应相同的输入信号。在误差信号的范数(例如,功率)接近零时,自适应滤波器的传递特性接近未知系统的传递特性。在ANC应用中,未知系统进而可以表示噪声信号从噪声源到应当实现噪声抑制的点的路径(初级路径)。噪声(由参考信号x[n]表示)进而通过信号路径的传递特性而“经滤波”,所述信号路径在机动车辆的情况中本质上包括乘客舱(初级路径传递函数)。初级路径可能另外包括从实际噪声源(发动机、轮胎等)到车身和乘客舱的发射路径;初级路径也可能包括所使用麦克风的传递特性。
图3一般地说明借助于自适应滤波器20对未知系统10的估计。输入信号x[n]供应到未知系统10和自适应滤波器20。未知系统的输出信号d[n]和自适应滤波器的输出信号y[n]相消地叠加。所得残余信号(误差信号e[n])反馈到在自适应滤波器20中实现的自适应算法。可以采用例如最小均方(LMS)算法来计算经修改滤波器系数,使得误差信号e[n]的范数(例如,功率)最小化。在此情况中,实现未知系统10的输出信号d[n]的最优抑制,且自适应控制系统20的传递特性匹配于未知系统10的传递特性。
LMS算法提供最小均方问题的近似解,所述最小均方问题是当利用例如在数字信号处理器中实现的自适应滤波器时经常使用的最小化任务的数学等价物。所述算法是基于最速下降(梯度下降法)的方法,且所述算法以简单方式计算梯度。所述算法进而以时间回归方式操作。也就是说,对于每一新数据集,再次运行算法且更新解。LMS算法由于其相对低复杂性及其小的存储器要求而经常用于在数字信号处理器中实现的自适应滤波器和自适应控制。可以用于相同目的的其它方法尤其包含以下各项:回归最小二乘法,QR分解最小二乘法,最小二乘格,QR分解格(或梯度自适应格),迫零,随机梯度等。在有源噪声控制布置中,x滤波LMS(FXLMS)算法及其修改和扩展经常用作LMS算法的具体实施方案。举例来说,此修改可以是经修改的x滤波LMS(MFXLMS)算法。
图4中以示范性方式说明采用FXLMS算法的ANC系统的基本结构。图4还说明数字前馈有源噪声控制系统的基本原理。为了简化问题,此处未说明实际实现所需要的例如放大器、模/数转换器和数/模转换器等组件。将所有信号表示为具有置于方括号中的时间索引n的数字信号。
图4的ANC系统的模型包括初级路径系统10,所述系统具有(离散时间)传递函数P(z);传递函数P(z)表示噪声源与收听室的应当抑制噪声的部分之间的信号路径的传递特性。所述系统进一步包括具有滤波器传递函数W(z)的自适应滤波器22,以及用以(回归地)计算自适应滤波器22的滤波器系数的最优集合wk=(w0,w1,w2,...)的自适应单元23。具有传递函数S(z)的次级路径系统21布置于自适应滤波器22的下游,且表示从辐射由自适应滤波器22提供的补偿信号y[n]的扬声器到收听室的应当抑制噪声d[n]的部分的信号路径。次级路径包括自适应滤波器21下游的所有组件的传递特性:例如,放大器、数/模转换器、模/数转换器、扬声器、声学发射路径,和麦克风。当使用FXLMS算法用于计算最优滤波器系数时,使用次级路径传递函数S(z)的估计S'(z)(系统24)。初级路径系统10和次级路径系统21是“真实”系统,本质上表示收听室的物理性质,而其它传递函数是在数字信号处理器中实现。
输入信号x[n]表示由噪声源产生的噪声信号,且因此经常称为参考信号。可以例如通过声学或非声学传感器(例如,旋转速度传感器)测量所述输入信号。输入信号x[n]经由初级路径传达到收听位置。在图4的模型中,初级路径系统10提供干扰噪声信号d[n]作为需要噪声消除的收听位置处的输出。将参考信号x[n]进一步供应到自适应滤波器22,所述自适应滤波器提供经滤波信号y[n]。将经滤波信号y[n]供应到次级路径系统21,所述次级路径系统提供经修改的经滤波信号(即,补偿信号)y'[n],所述y'[n]与所需收听位置处的干扰噪声信号d[n]相消地叠加。自适应滤波器因此必须对信号路径强加额外的180度相移。叠加的结果是称为误差信号e[n]的可测量的残余信号。此误差信号用以控制自适应单元23的自适应过程。为了计算经更新的滤波器系数wk,使用次级路径传递函数S(z)的估计模型S'(z)。在所说明实施例中,使用估计S'(z)来补偿由于沿着次级路径的信号失真所致的经滤波参考信号y[n]与补偿信号y'[n]之间的解相关。估计的次级路径传递函数S'(z)还接收输入信号x[n]且将经修改参考信号x'[n]提供到自适应单元23。
下文概述算法的功能。由于自适应过程,自适应滤波器W(z)和次级路径传递函数S(z)的串联连接的总(开环)传递函数W(z)·S(z)接近初级路径传递函数P(z),其中对自适应滤波器22的信号路径强加额外180度相移;干扰噪声信号d[n](初级路径10的输出)和补偿信号y'[n](次级路径21的输出)因此在收听室的所需部分中相消地叠加。
可由麦克风测量的残余误差信号e[n]供应到自适应单元23,且经修改输入信号x'[n]由估计次级路径传递函数S'(z)提供。自适应单元23被配置成根据经修改参考信号x'[n](x滤波)和误差信号e[k]回归地计算自适应滤波器传递函数W(z)的滤波器系数wk,使得误差信号的范数(例如,功率或L2范数)║e[k]║接近最小值。为此目的,LMS算法会是好的选择,如上文已经提到。电路块22、23和24一起形成可以在数字信号处理器中完全实现的ANC单元20。当然,x滤波LMS算法的替代方案或修改(例如e滤波LMS算法)可能是适用的。
在实际应用中,次级路径的估计传递函数S'(z)不是先验确定的估计。实时地使自身适应改变的环境条件的次级路径的动态系统识别可以用来在ANC系统的操作期间考虑实际次级路径S(z)的动态改变。
图5说明根据图4的结构的用于有源噪声控制的系统。为了使问题简单,图5说明单通道ANC系统作为实施例。然而,所说明实施例可以容易地一般化成多通道系统而不存在问题,如下文将进一步论述。除了仅展示基本原理的图4之外,图5的系统说明以下各项:产生用于ANC系统的输入噪声信号(即,参考信号x[n])的噪声源31;辐射经滤波参考信号y[n]的扬声器LS1;以及感测残余误差信号e[n](残余噪声)的麦克风M1。由噪声源31产生的噪声信号用作对初级路径的输入信号x[n]。初级路径系统10的输出d[n]表示在收听位置处待抑制的噪声信号d[n]。输入信号x[n](即,参考信号)的电学表示xe[n]可以由声学传感器32(例如,麦克风或振动传感器)提供,所述声学传感器在可听频谱中或至少在其所需频谱范围中是敏感的。将输入信号x[n]的电学表示xe[n](即,传感器信号)供应到自适应滤波器22,且将经滤波信号y[n]供应到次级路径21。次级路径21的输出信号(收听位置处)是与噪声d[n]相消地干涉的补偿信号y'[n]。用麦克风33测量残余信号(残余噪声),所述麦克风的输出信号作为误差信号e[n]供应到自适应单元23。自适应单元计算自适应滤波器22的最优滤波器系数wk[n](k=0,1,2,…,N-1,其中N是滤波器阶数)。对于此计算,如上文提到可以使用FXLMS算法。由于声学传感器32能够在可听频谱的宽频带中检测由噪声源31产生的噪声信号,因此图5的布置可以用于宽带ANC应用。
在窄带ANC应用中,声学传感器32可以被非声学传感器(例如,旋转速度传感器)和用于合成参考信号x[n]的电学表示xe[n]的信号产生器代替。所述信号产生器可以使用以非声学传感器测量的基本频率(基频)和较高阶谐波来合成参考信号xe[n]。所述非声学传感器可以是例如旋转速度传感器,其给出关于作为主要噪声源的汽车发动机的旋转速度的信息。
总次级路径传递函数S(z)包括以下各项:扬声器LS1的传递特性,所述扬声器接收自适应滤波器输出信号y[n];由传递函数S11(z)表征和表示的声学路径;麦克风M1的传递特性;以及例如放大器、模/数转换器、数/模转换器等必要电组件的传递特性。在单通道ANC系统的情况中,仅一个声学信号路径是相关的,如图5中说明,且次级路径传递函数S(z)是标量函数S11(z)。在具有L个扬声器LSi(i=1,...,L)和M个麦克风Mj(j=1,...,M)的一般多通道ANC系统中,次级路径由传递函数S(z)=Sij(z)的L×M传递矩阵表征。作为实施例,图6中说明次级路径模型,其中存在L=2个扬声器和M=2个麦克风。在多通道ANC系统中,自适应滤波器22包括用于L个通道中的每一者的一个滤波器Wi(z)。自适应滤波器Wi(z)提供L维经滤波参考信号yi[n](其中i=1,...,L),每一信号分量供应到对应扬声器LSi。M个麦克风中的每一者接收来自L个扬声器中的每一者的声学信号,从而得到总数目L×M个声学发射路径,因此图6的实施例中为四个发射路径。在多通道情况中的补偿信号y'[n]是M维向量yj'[n]。向量信号yj'[n]的每一分量与相应麦克风Mj位于的收听位置处的对应干扰噪声信号分量dj[n]叠加。叠加yj'[n]+dj[n]产生M维误差信号ej[n],其中补偿信号yj'[n]与所需收听位置处的噪声信号dj[n]至少近似反相。此外,图6中说明模/数转换器和数/模转换器。
一般来说,具有一个可变下标的函数和信号视为向量。如所提到,yi[n]是L个信号的向量yi[n]=(y1[n],…,yL[n])。具有两个可变下标的函数视为矩阵。也就是说,Sij(z)是具有L×M个标量传递函数S11(z),…,S1M(z),…,SL1(z),…,SLM(z)的传递矩阵。
图7说明在使用五个扬声器(L=5)和四个麦克风(M=4)的多通道ANC布置中的次级路径传递函数的矩阵Sij(z)。展示表示从五个扬声器L1、L2、L3、L4和L5中的每一者到第一麦克风M1的传递特性的传递函数,即,传递函数S11(z)、S21(z)、S31(z)、S41(z)和S51(z)。次级路径传递矩阵总共包含20个元素(L×M=20)。自适应滤波器22是具有滤波器传递函数W1(z)、W2(z)、W3(z)、W4(z)和W5(z)的L个滤波器的滤波器组。自适应滤波器组22提供L个对应输出信号y1[n]、y2[n]、y3[n]、y4[n]和y5[n],且在麦克风M1、M2、M3和M4的位置处分别存在M个所得补偿信号y1'[n]、y2'[n]、y3'[n]和y4'[n]。因此,存在M个对应误差信号e1[n]、e2[n]、e3[n]和e4[n],称为误差向量ej[n],或简称为(多维)误差信号ej[n]。
再次参见图4,如下计算经滤波参考信号y[n]:
y[n]=x[n]·w0[n]+x[n-1]·w1[n]+…+x[n-N+1]·wN-1[n], (1)
其中w[n]=(w0[n],w0[n],…,wN-1[n])是自适应滤波器22的滤波器系数的向量,且表示对应于滤波器传递函数W(z)的(有限)脉冲响应。在当前实施例中,滤波器阶数是N。以上等式(1)也可以写成向量积:
y[n]=xk T[n]·wk[n], (2)
其中向量xk[n]包含参考信号x[n]的N个最近样本,即xk[n]=(x[n],x[n-1],…x[n-N+1])。上标T表示转置算子(k=0,1,…,N-1)。
以上给出的实施例适用于单通道ANC系统,但也可以在较小修改的情况下适用于多通道ANC系统。等式2在多通道情况中也是有效的,其中wik[n]是具有N×L个元素的矩阵,其中L是通道的数目(对应于扬声器的数目)。矩阵wik[n](i=1,2,…,L;k=0,1,…,N-1)包含与L个相应通道相关联的L个自适应滤波器传递函数Wi(z)(i=1,…,L)的L个脉冲响应,且向量xk[n]包含参考信号的N个最近样本:
Figure BDA0001015989440000131
Figure BDA0001015989440000132
且因此,矩阵积xk T[n]·wik[n]产生向量yi[n],其包含与L个扬声器(通道)相关联的当前L个样本(y1[n],y1[n],…,yL[n])。
L个经滤波参考信号yi[n]被转换为模拟信号,放大,且使用L个相应扬声器LS1,LS2,…LSL辐射,这导致相应M个收听位置(即,麦克风M1,M2,…,MM的位置)处的M个补偿信号yj'[n]=(y1'[n],y2'[n],…,yM'[n])。L个经滤波参考信号yi[n]和M个补偿信号yj'[n]通过次级路径传递矩阵Sij(z)而联系,所述矩阵对应于滤波器系数sij[n]的矩阵。因此,M个补偿信号的向量可以如此表达:
yj'[n]=sij[n]·yi[n]。 (3)
由于yi[n]=xk T[n]·wik[n],因此可以如下计算所得M个误差信号:
ej[n]=dj[n]-yj'[n]=dj[n]-sij[n]·yi[n], (4)
这等效于下式:
ej[n]=dj[n]-sij[n]·(xk T[n]·wik[n])。 (5)
等式(5)产生M个误差信号(e1[n]),e2[n],…,eM[n])的向量ej[n],其表示M个收听位置(即,M个麦克风的位置)处的残余噪声。如所提到,ANC系统利用使成本函数ξ[n]最小化的最小均方算法,所述成本函数通常表示均方误差之和,即:
ξ[n]=ej T[n]·ej[n]=e1 2[n]+e2 2[n]+…+eM 2[n]。 (6)
从等式(6)可见,ANC系统(利用LMS算法)将使总均方误差ξ[n]最小化。这不一定暗示残余噪声在每一收听位置处是最小值,也不暗示残余噪声在每一收听位置处保持恒定。然而,当使用心理声学方法时,ANC系统的不同操作点中的噪声的均匀衰减和噪声的恒定衰减将比总均方误差的最小化更为合意。在汽车ANC系统的实施例中,这些不同的操作点可以视为不同的旋转发动机速度。当发动机速度增加时,在使总均方误差连续最小化的同时,每一收听位置处的残余噪声可能经受不均匀的波动。在总误差处于最小值时,个别误差信号ej[n]之间的残余噪声功率的分布仍可能变化。图8的四个图中说明此效应,图8说明随着汽车发动机的旋转速度而变的在四个不同收听位置(图7中展示)处的(残余)噪声的声压级(对数尺度)。可见在ANC关闭时,在发动机速度增加时在不同收听位置处的噪声级仅稍微变化(更不用说噪声级的几乎线性增加)。与此相比,在ANC接通时残余噪声级较大地波动(除了噪声级的线性增加之外),但处于比ANC关闭时低得多的绝对水平。图8的图中标记为“Ref”的线表示在ANC接通时残余噪声的所需声压级。然而,可以任意地选择这些所需声压级;图8必须仅视为实施例。
通过修改计算成本函数ξ[n]的方式(参见等式(6))可以减轻或理想地几乎消除以上提到的问题。可以使用以下公式计算此经修改的成本函数ξMOD[n]:
ξMOD[n]=(Aj[n]·ej[n])T·ej[n]=a1[n]·e1 2[n]+a2[n]·e2 2[n]+…+aM[n]·eM 2[n], (7)
其中矩阵Aj[n]是包含权重因数aj[n]的对角矩阵,所述权重因数用以对贡献于成本函数ξMOD[n]的个别误差信号ej[n](j=1,2,…,M)进行加权。
权重因数aj[n]=(a1[n],a2[n],…,aM[n])表示相应残余噪声功率(即,平方误差ej 2[n])与预定义参考功率(可以是例如旋转发动机速度的函数)之间的关系(例如,差或比率)。在特定收听位置残余噪声功率高于预定义参考功率时,权重因数高于1。在特定收听位置残余噪声功率低于预定义参考功率时,权重因数低于1。与使用不具有个别权重aj[n]的成本函数相比,残余噪声的功率因此更接近地匹配于预定义参考功率。
图9说明用于计算所提到的加权因数aj[n]的一个示范性计算方案。首先,将由相应收听位置处的麦克风拾取的误差信号ej[n]求平方,且使用平滑滤波器80(例如,移动平均滤波器)进行平滑。通过平滑参数γ来控制平滑操作,其中γ=0将意味着不提供平滑。因此,平滑滤波器可以视为任选的。平滑滤波器可以实现为简单的无限脉冲响应(IIR)低通滤波器(例如,一阶滤波器),且可以减少误差信号的过多波动,所述过多波动可能对自适应过程具有不希望的影响。将经平滑的平方误差信号表示为eFILT,j[n]。
随后可以将信号eFILT,j[n]变换为对数尺度(缩放单元81)。也就是说,以分贝(dB)计来提供信号功率,且将误差信号表示为edB,j[n]。减法单元82可以被配置成提供经平滑且平方的误差信号eFILT,j *[n](以dB计)与预定义参考功率信号refdB[n]的电平之间的功率电平差。在当前实施例中,将差cdB[n]计算为refdB[n]-edB,j[n]。随后使所得的差cdB[n]经受转换函数f(·),所述转换函数可以被设计成将差cdB[n]转换为线性尺度。所寻求的权重因数aj[n]则由aj[n]=f(cdB[n])提供。然而,图9的计算方案应当仅视为说明性实施例。本领域的技术人员将发现本质上产生相同结果的替代计算方案。图10说明可以用来将差cdB[n]转换为近似线性尺度的可能的转换函数f(·)的两个实施例。第一实施例将-6到6dB之间的区间映射到0.5到2.0的区间,这在半对数尺度中是线性关系。第二实施例说明cdB,j[n]与加权因数aj[n]之间的非线性关系。
虽然已经描述了本发明的各种实施方案,但本领域的技术人员将显而易见,更多的实施方案和实现方式在本发明的范围内是可能的。因此,除了在所附权利要求书及其等效形式方面之外,本发明将不受限制。

Claims (11)

1.一种有源噪声控制系统,包括:
多个麦克风,每一麦克风被配置成提供表示残余噪声信号的误差信号;
多个扬声器,每一扬声器被配置成接收扬声器信号且辐射相应声学信号;
自适应滤波器组,所述自适应滤波器组被供应参考信号且被配置成对所述参考信号进行滤波且提供所述扬声器信号作为经滤波信号,其中所述自适应滤波器组的滤波器特性被适配成使得成本函数最小化,
其中所述成本函数表示平方误差信号的加权总和,并且其中以加权因数对每一平方误差信号进行加权,所述加权因数取决于所述误差信号的功率电平与预定义参考电平之间的差或比率。
2.如权利要求1所述的有源噪声控制系统,
其中所述预定义参考电平取决于所述参考信号。
3.如权利要求1所述的有源噪声控制系统,
其中所述预定义参考电平取决于所述参考信号的基频。
4.如权利要求1所述的有源噪声控制系统,
其中在计算对应加权因数之前对所述平方误差信号进行平滑。
5.如权利要求1所述的有源噪声控制系统,
其中使用对数尺度计算所述差。
6.如权利要求1所述的有源噪声控制系统,
其中通过将转换函数应用于每一个个别的差而从相应的差计算所述加权因数。
7.一种有源噪声控制方法,包括以下操作:
提供参考信号,所述参考信号表示噪声源位置处的噪声;
测量有待减少噪声的相应多个收听位置处的多个误差信号;
计算成本函数,所述成本函数表示平方误差信号的加权总和,并且其中以加权因数对每一平方误差信号进行加权,所述加权因数取决于所述误差信号的功率电平与预定义参考电平之间的差或比率;
将多个扬声器信号供应到辐射对应声学信号的相应多个扬声器,所述对应声学信号与所述收听位置处的所述噪声叠加;以及
使用自适应滤波器组对所述参考信号进行滤波以提供所述扬声器信号作为经滤波信号,
其中用于滤波的滤波器特性被适配成使得所述成本函数最小化。
8.如权利要求7所述的有源噪声控制方法,
其中所述预定义参考电平取决于所述参考信号。
9.如权利要求7所述的有源噪声控制方法,其中计算所述成本函数包括:
在从所述平方误差信号计算对应加权因数之前对所述平方误差信号进行平滑。
10.如权利要求7所述的有源噪声控制方法,其中计算所述成本函数包括:
使用对数尺度计算所述误差信号的所述功率电平与所述预定义参考电平之间的所述差。
11.一种包括存储的指令的非易失性计算机可读介质,当所述指令在信号处理器上执行时实行包括以下步骤的有源噪声控制方法:
提供参考信号,所述参考信号表示噪声源位置处的噪声;
测量有待减少噪声的相应多个收听位置处的多个误差信号;
计算成本函数,所述成本函数表示平方误差信号的加权总和,并且其中以加权因数对每一平方误差信号进行加权,所述加权因数取决于所述误差信号的功率电平与预定义参考电平之间的差或比率;
将多个扬声器信号供应到辐射对应声学信号的相应多个扬声器,所述对应声学信号与所述收听位置处的所述噪声叠加;以及
使用自适应滤波器组对所述参考信号进行滤波以提供扬声器信号作为经滤波信号,
其中用于滤波的滤波器特性被适配成使得所述成本函数最小化。
CN201480068028.7A 2013-12-16 2014-12-12 有源噪声控制系统 Active CN105814627B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13197417.2A EP2884488B1 (en) 2013-12-16 2013-12-16 Active noise control system
EP13197417.2 2013-12-16
PCT/EP2014/077603 WO2015091279A1 (en) 2013-12-16 2014-12-12 Active noise control system

Publications (2)

Publication Number Publication Date
CN105814627A CN105814627A (zh) 2016-07-27
CN105814627B true CN105814627B (zh) 2020-03-17

Family

ID=49880412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480068028.7A Active CN105814627B (zh) 2013-12-16 2014-12-12 有源噪声控制系统

Country Status (5)

Country Link
US (1) US10373600B2 (zh)
EP (1) EP2884488B1 (zh)
JP (2) JP6616768B2 (zh)
CN (1) CN105814627B (zh)
WO (1) WO2015091279A1 (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884488B1 (en) * 2013-12-16 2021-03-31 Harman Becker Automotive Systems GmbH Active noise control system
CN105024771B (zh) * 2015-07-20 2017-03-08 西安电子科技大学 一种Alpha稳定分布噪声下频谱感知方法
GB201514220D0 (en) * 2015-08-12 2015-09-23 Norgren Ltd C A Cascaded adaptive filters for attenuating noise in a feedback path of a flow controller
US9773491B2 (en) * 2015-09-16 2017-09-26 Bose Corporation Estimating secondary path magnitude in active noise control
US9923550B2 (en) 2015-09-16 2018-03-20 Bose Corporation Estimating secondary path phase in active noise control
US10002601B2 (en) 2015-12-30 2018-06-19 Qualcomm Incorporated In-vehicle communication signal processing
CN106358108B (zh) * 2016-08-31 2019-11-12 菁音电子科技(上海)有限公司 补偿滤波器拟合系统、音响补偿系统及方法
CN106409278B (zh) * 2016-09-18 2019-10-08 哈尔滨工业大学(威海) 一种无人机有源噪声控制装置
US10284332B2 (en) * 2017-03-03 2019-05-07 Intel IP Corporation Spur cancelation using inverse spur injection
US10334455B2 (en) * 2017-07-01 2019-06-25 Intel Corporation Real-time co-channel interference suppression
SE541331C2 (en) 2017-11-30 2019-07-09 Creo Dynamics Ab Active noise control method and system
EP3503089B1 (en) * 2017-12-22 2023-10-18 Marelli Europe S.p.A. Apparatus for the active control of the sound of the engine of a land vehicle and corresponding method
SE1850077A1 (en) * 2018-01-24 2019-07-25 Creo Dynamics Ab Active noise control method and system using variable actuator and sensor participation
CN110675889A (zh) * 2018-07-03 2020-01-10 阿里巴巴集团控股有限公司 音频信号处理方法、客户端和电子设备
US10629183B2 (en) 2018-08-31 2020-04-21 Bose Corporation Systems and methods for noise-cancellation using microphone projection
US10410620B1 (en) 2018-08-31 2019-09-10 Bose Corporation Systems and methods for reducing acoustic artifacts in an adaptive feedforward control system
US10706834B2 (en) 2018-08-31 2020-07-07 Bose Corporation Systems and methods for disabling adaptation in an adaptive feedforward control system
US10741165B2 (en) 2018-08-31 2020-08-11 Bose Corporation Systems and methods for noise-cancellation with shaping and weighting filters
EP3850618B1 (en) * 2018-09-13 2023-01-25 Harman Becker Automotive Systems GmbH Silent zone generation
TWI695630B (zh) * 2018-09-19 2020-06-01 國立清華大學 主動式管路噪音控制系統及其方法
US10565979B1 (en) * 2018-10-16 2020-02-18 Harman International Industries, Incorporated Concurrent noise cancelation systems with harmonic filtering
CN109243482B (zh) * 2018-10-30 2022-03-18 深圳市昂思科技有限公司 改进acranc与波束形成的微型阵列语音降噪方法
US10685640B2 (en) * 2018-10-31 2020-06-16 Bose Corporation Systems and methods for recursive norm calculation
JP7123492B2 (ja) * 2018-12-26 2022-08-23 アルパイン株式会社 能動型騒音制御システム、能動型騒音制御システムの設定方法及びオーディオシステム
CN109859733A (zh) * 2019-01-02 2019-06-07 哈尔滨理工大学 基于fxlms算法的发动机噪声控制方法
CN110598278B (zh) * 2019-08-27 2023-04-07 中国舰船研究设计中心 一种船舶机械系统声学特性的评价方法
US11478211B2 (en) * 2019-12-03 2022-10-25 Shanghai United Imaging Healthcare Co., Ltd. System and method for noise reduction
CN111063334A (zh) * 2019-12-27 2020-04-24 博迈科海洋工程股份有限公司 一种建筑模块密闭空间前馈主动降噪方法
CN111951775A (zh) * 2020-07-09 2020-11-17 江苏大学 一种车内声品质优化系统及优化方法
CN112188340B (zh) * 2020-09-22 2022-08-02 泰凌微电子(上海)股份有限公司 主动降噪方法、主动降噪装置和耳机
CN116802728A (zh) * 2020-11-04 2023-09-22 拉鲁尼克斯有限公司 语音生成系统和方法
JP2022111614A (ja) * 2021-01-20 2022-08-01 本田技研工業株式会社 能動騒音制御装置及び車両
CN113395627A (zh) * 2021-06-09 2021-09-14 合肥联睿微电子科技有限公司 一种双二阶型复合主动降噪装置
CN116246607B (zh) * 2023-05-09 2023-07-18 宁波胜维德赫华翔汽车镜有限公司 一种汽车驾驶舱噪音控制系统、方法以及汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651787A (ja) * 1992-07-31 1994-02-25 Hitachi Ltd 能動型消音装置
CN101354885A (zh) * 2007-01-16 2009-01-28 哈曼贝克自动系统股份有限公司 主动噪声控制系统
US8600069B2 (en) * 2010-03-26 2013-12-03 Ford Global Technologies, Llc Multi-channel active noise control system with channel equalization

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8328997D0 (en) * 1983-10-31 1983-11-30 Secr Defence Active noise reduction
JPH05101306A (ja) * 1991-10-07 1993-04-23 Sony Corp 磁気再生装置
JP3255449B2 (ja) * 1992-04-10 2002-02-12 本田技研工業株式会社 車輌用振動騒音制御装置
JP3410129B2 (ja) 1992-12-25 2003-05-26 富士重工業株式会社 車室内騒音低減装置
JPH07234688A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd 車両走行騒音の能動消音装置
US5633795A (en) * 1995-01-06 1997-05-27 Digisonix, Inc. Adaptive tonal control system with constrained output and adaptation
JP3611165B2 (ja) * 1997-08-01 2005-01-19 東海ゴム工業株式会社 周期性信号の適応制御方法
EP2133866B1 (en) * 2008-06-13 2016-02-17 Harman Becker Automotive Systems GmbH Adaptive noise control system
US9020158B2 (en) * 2008-11-20 2015-04-28 Harman International Industries, Incorporated Quiet zone control system
EP2597638B1 (en) * 2011-11-22 2020-06-03 Harman Becker Automotive Systems GmbH Tunable active noise control
EP2884488B1 (en) * 2013-12-16 2021-03-31 Harman Becker Automotive Systems GmbH Active noise control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651787A (ja) * 1992-07-31 1994-02-25 Hitachi Ltd 能動型消音装置
CN101354885A (zh) * 2007-01-16 2009-01-28 哈曼贝克自动系统股份有限公司 主动噪声控制系统
US8600069B2 (en) * 2010-03-26 2013-12-03 Ford Global Technologies, Llc Multi-channel active noise control system with channel equalization

Also Published As

Publication number Publication date
US20160314778A1 (en) 2016-10-27
EP2884488A1 (en) 2015-06-17
JP6616768B2 (ja) 2019-12-04
CN105814627A (zh) 2016-07-27
US10373600B2 (en) 2019-08-06
WO2015091279A1 (en) 2015-06-25
JP2019139257A (ja) 2019-08-22
EP2884488B1 (en) 2021-03-31
JP2017504815A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
CN105814627B (zh) 有源噪声控制系统
CN105405438B (zh) 具有改进的鲁棒性的自适应噪声控制系统
JP5787478B2 (ja) 適合ノイズ制御システム
US9478209B2 (en) Tunable active noise control
JP5255087B2 (ja) 適応性ノイズコントロール
US8565443B2 (en) Adaptive noise control system
CN108352156B (zh) 在有源噪声控制中估计次级路径相位
US8559648B2 (en) Active noise control using bass management
EP3437090A1 (en) Adaptive modeling of secondary path in an active noise control system
EP2996111A1 (en) Scalable adaptive noise control system
US11514882B2 (en) Feedforward active noise control
JP2008137636A (ja) 能動型騒音制御装置
CN114127845A (zh) 用于消除麦克风信号中的道路噪声的系统和方法
Liu et al. Active control for vehicle interior noise using the improved iterative variable step-size and variable tap-length LMS algorithms
JP2023542007A (ja) 推定された二次経路を適応させるためのシステム及び方法
EP2257082A1 (en) Background noise estimation in a loudspeaker-room-microphone system
WO2007063467A2 (en) Noise reduction system and method
CN113519169A (zh) 用于音频啸叫衰减的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant