CN105810778B - MOCVD高温生长高质量GaInNAs子电池的方法 - Google Patents

MOCVD高温生长高质量GaInNAs子电池的方法 Download PDF

Info

Publication number
CN105810778B
CN105810778B CN201610192093.1A CN201610192093A CN105810778B CN 105810778 B CN105810778 B CN 105810778B CN 201610192093 A CN201610192093 A CN 201610192093A CN 105810778 B CN105810778 B CN 105810778B
Authority
CN
China
Prior art keywords
growth
gainnas
sub
batteries
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610192093.1A
Other languages
English (en)
Other versions
CN105810778A (zh
Inventor
杨鹏
杨翠柏
张小宾
张杨
方聪
刘向平
靳恺
王雷
高熙隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201610192093.1A priority Critical patent/CN105810778B/zh
Publication of CN105810778A publication Critical patent/CN105810778A/zh
Application granted granted Critical
Publication of CN105810778B publication Critical patent/CN105810778B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种MOCVD高温生长高质量GaInNAs子电池的方法,在MOCVD高温生长GaAs叠层电池的GaInNAs子电池时,通过载气的快速切换,能够降低高温生长GaInNAs子电池时氮元素的掺杂难度,从而生长出所需的高质量GaInNAs子电池,而载气的快速切换则由互锁装置完成;此外,生长GaInNAs子电池前后需生长隧道结GaAs/AlGaAs,而生长GaInNAs子电池前后的隧道结GaAs/AlGaAs使用的载气为H2,生长GaInNAs子电池使用的载气为N2,GaInNAs子电池掺杂氮源为二甲基肼。通过本发明方法能生长出高质量的GaInNAs子电池,最终提高GaAs叠层电池的整体性能。

Description

MOCVD高温生长高质量GaInNAs子电池的方法
技术领域
本发明涉及半导体设备设计领域,尤其是指一种MOCVD高温生长高质量GaInNAs子电池的方法。
背景技术
能源是人类社会发展的重要基础资源。由于世界能源资源产地与能源消费中心相距较远,特别是随着世界经济的发展、世界人口的剧增和人民生活水平的不断提高,世界能源需求量持续增大。由此导致对能源资源的争夺日趋激烈、环境污染加重和环保压力加大,使得能源问题成为当今国际政治、经济、军事、外交关注的焦点。发展可再生能源已成为全球实现低碳能源转型的战略目标,也成为我国可持续生态化发展的重大需求。同时,化石能源对环境的污染和全球气候的影响将日趋严重。面对以上挑战,世界能源供应和消费将向多元化、清洁化、高效化、全球化和市场化趋势发展。
鉴于国情,我国应特别注意依靠科技进步和政策引导,提高能源利用效率,寻求能源的清洁化利用,积极倡导能源、环境和经济的可持续发展,并积极借鉴国际先进经验,建立和完善我国能源安全体系。
光伏发电以太阳能电池技术为核心,目前太阳能电池从技术上主要分为3类:以晶硅电池为代表的第一代太阳能电池,以硅基薄膜、CdTe、CICS电池等为代表的第二代薄膜电池和以GaAs叠层电池为代表的第三代太阳能电池。光伏市场主要以第一代和第二代电池为主。然而,晶硅电池成本较高,且由于硅材料本身性质的限制,其光电转换效率很难再有提高,薄膜电池本身效率偏低,投资成本较高,因此,开发高效低成本的第三代太阳能电池不仅必要而且迫切。
目前GaAs基系高效多结叠层太阳电池主要采用三结或四结叠层结构。GaInP/Ga(In)As/Ge三结太阳电池的理论效率值在AM(大气质量)0 1sun条件下为35%,GaInP/Ga(In)As/GaInNAs/Ge四结电池在AM(大气质量)0 1sun的条件下理论转换效率值高达41%以上,可见存在巨大潜在优势。
GaAs叠层电池的GaInNAs子电池适宜生长温度较低,但MOCVD技术在低温环境下生长出来的子电池表面缺陷和杂质比较严重;通过提高温度可以改善GaInNAs子电池表面,但随环境温度升高,GaInNAs子电池氮元素掺杂难度将变大,氮源利用率极低。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提出一种MOCVD高温生长高质量GaInNAs子电池的方法,可有效降低高温生长GaInNAs子电池时氮元素的掺杂难度,从而生长出高质量的GaInNAs子电池。
为实现上述目的,本发明所提供的技术方案为:MOCVD高温生长高质量GaInNAs子电池的方法,在MOCVD高温生长GaAs叠层电池的GaInNAs子电池时,通过载气的快速切换,能够降低高温生长GaInNAs子电池时氮元素的掺杂难度,从而生长出所需的高质量GaInNAs子电池,而载气的快速切换则由互锁装置完成;此外,生长GaInNAs子电池前后需生长隧道结GaAs/AlGaAs,而生长GaInNAs子电池前后的隧道结GaAs/AlGaAs使用的载气为H2,生长GaInNAs子电池使用的载气为N2,GaInNAs子电池掺杂氮源为二甲基肼;其包括以下步骤:
1)生长GaInNAs子电池前,载气为H2,生长一层隧道结GaAs/AlGaAs来连接Ge衬底和GaInNAs子电池,H2流量为80-90L/min,生长温度为540-550℃,生长压力为30Torr,隧道结GaAs/AlGaAs的生长厚度为24-26nm,生长时间为90s;
2)生长GaInNAs子电池时,载气快速切换为N2,载气通过互锁装置自动快速切换,N2的流量为2.8-3L/min,生长温度为590-600℃,生长压力为39Torr,GaInNAs子电池的生长厚度为0.98-1um,生长时间为30min;
3)生长GaInNAs子电池后,载气快速切换为H2,生长一层隧道结GaAs/AlGaAs来连接两个子电池,H2流量为80-90L/min,生长温度为540-550℃,生长压力为30Torr,隧道结GaAs/AlGaAs的生长厚度为24-26nm,生长时间为90s。
H2的纯度即体积百分数大于99.99999%,N2的纯度即体积百分数大于99.999%。
氮气和氢气的进气管路安装互锁装置,互锁装置的开启由生长程序自动控制,当生长GaInNAs子电池时,生长程序输出信号给PLC,PLC控制互锁装置,载气通过互锁装置自动快速切换。
本发明与现有技术相比,具有如下优点与有益效果:
通过将氢气和氮气按照需求进行快速切换,具体是在生长GaInNAs子电池过程中,通过将载气由氢气换成氮气的措施,可以很好地降低在高温环境二甲基肼掺杂源氮元素的掺杂难度,明显减少生长GaInNAs子电池高温环境对惨氮元素的不良影响;GaInNAs子电池半高宽变窄,生长质量变好,从而生长出高质量的GaInNAs子电池,最终提高GaAs叠层电池的整体性能。
附图说明
图1为MOCVD高温生长高质量GaInNAs子电池的结构示意图。
图2为GaAs基四结电池结构示意图。
具体实施方式
下面结合两个具体实施例对本发明作进一步说明。
实施例1
原材料准备如下:
Ga源:三甲基稼(TMGa),饱和蒸汽压113.64Torr;
In源:三甲基铟(TMIn),饱和蒸汽压2.58Torr;
C源:四溴化碳(CBr4),饱和蒸汽压0.82Torr;
Te源:三乙基碲(DeTe),饱和蒸汽压9.33Torr;
N源:二甲基阱(DMHy),饱和蒸汽压165.9Torr;
氮气(N2)纯度:纯度及体积百分数大于99.999%;
氢气(H2)纯度:纯度及体积百分数大于99.99999%;
砷烷(AsH3)纯度:纯度及体积百分数大于99.9999%;
硅烷(Si2H6)纯度:纯度及体积百分数大于99.9999%;
将上述不同原材料按照设定程序进入MOCVD反应腔,进行GaAs基四结电池的GaInNAs子电池的高温生长,具体步骤如下:
1)在生长GaInNAs子电池前,载气为氢气,需生长一层隧道结GaAs/AlGaAs来连接Ge衬底和GaInNAs子电池,此隧道结生长压力为30Torr,厚度为26nm,生长温度为550℃,氢气使用量为90L/min,生长时间为90s。
2)当生长GaInNAs子电池时,载气快速切换为氮气,使用量为3L/min,生长压力为39Torr,GaInNAs子电池的生长厚度为1um,生长温度为600℃,生长时间30min。
3)在生长GaInNAs子电池后,载气快速切换为氢气,需生长一层隧道结GaAs/AlGaAs来连接两个子电池,此隧道生长压力为30Torr,厚度为26nm,生长温度为550℃,氢气使用量为90L/min,生长时间为90s。
如图1所示,本实施例的氮气和氢气的进气管路安装有互锁装置,而互锁装置的开启则由生长程序自动控制,当生长GaInNAs子电池时,生长程序输出信号给PLC,PLC控制互锁装置,载气通过互锁装置实现自动快速切换。
实施例2
1)在生长GaInNAs子电池前,载气为氢气,需生长一层隧道结GaAs/AlGaAs来连接Ge衬底和GaInNAs子电池,此隧道结生长压力为30Torr,厚度为24nm,生长温度为540℃,氢气使用量为80L/min,生长时间为90s。
2)当生长GaInNAs子电池时,载气快速切换为氮气,使用量为2.8L/min。生长GaInNAs子电池时,生长压力为39Torr,厚度为0.98um,生长温度为590℃,生长时间30min。
3)在生长GaInNAs子电池后,载气快速切换为氢气,需生长一层隧道结GaAs/AlGaAs来连接两个子电池,此隧道生长压力为30Torr,厚度为24nm,生长温度为540℃,氢气使用量为80L/min,生长时间为90s。
实施例3
1)在生长GaInNAs子电池前,载气为氢气,需生长一层隧道结GaAs/AlGaAs来连接Ge衬底和GaInNAs子电池,此隧道结生长压力为30Torr,厚度为26nm,生长温度为550℃,氢气使用量为90L/min,生长时间为90s。
2)当生长GaInNAs子电池时,载气为氢气,使用量为3L/min。生长GaInNAs子电池时,生长压力为39Torr,厚度为1um,生长温度为600℃,生长时间30min。
3)在生长GaInNAs子电池后,载气为氢气,需生长一层隧道结GaAs/AlGaAs来连接两个子电池,此隧道生长压力为30Torr,厚度为26nm,生长温度为550℃,氢气使用量为90L/min,生长时间为90s。
实施例4
1)在生长GaInNAs子电池前,载气为氢气,需生长一层隧道结GaAs/AlGaAs来连接Ge衬底和GaInNAs子电池,此隧道结生长压力为30Torr,厚度为24nm,生长温度为540℃,氢气使用量为80L/min,生长时间为90s。
2)当生长GaInNAs子电池时,载气为氢气,使用量为2.8L/min。生长GaInNAs子电池时,生长压力为39Torr,厚度为0.98um,生长温度为590℃,生长时间30min。
3)在生长GaInNAs子电池后,载气为氢气,需生长一层隧道结GaAs/AlGaAs来连接两个子电池,此隧道生长压力为30Torr,厚度为24nm,生长温度为540℃,氢气使用量为80L/min,生长时间为90s。
实施结果
从下表1所示的测试结果可以得到以下结论:
通过测试结果可以看出,相比于实施例3和实施例4(没有使用载气快速切换生长GaInNAs子电池),实施例1和实施例2(使用载气快速切换生长GaInNAs子电池),PL中心波长变大,GaInNAs禁带宽度变窄,证明掺入的氮元素变多;半高宽可以反映晶体的质量,数值越小,说明生长质量越好,因此可以看出使用载气快速切换生长GaInNAs子电池材料质量更好,最终能提高GaAs基四结电池的整体性能,该GaAs基四结电池的结构具体见附图2。
表1:GaInNAs子电池性能测试结果
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (3)

1.MOCVD高温生长高质量GaInNAs子电池的方法,其特征在于:在MOCVD高温生长GaAs叠层电池的GaInNAs子电池时,通过载气的快速切换,能够降低高温生长GaInNAs子电池时氮元素的掺杂难度,从而生长出所需的高质量GaInNAs子电池,而载气的快速切换则由互锁装置完成;此外,生长GaInNAs子电池前后需生长隧道结GaAs/AlGaAs,而生长GaInNAs子电池前后的隧道结GaAs/AlGaAs使用的载气为H2,生长GaInNAs子电池使用的载气为N2,GaInNAs子电池掺杂氮源为二甲基肼;其包括以下步骤:
1)生长GaInNAs子电池前,载气为H2,生长一层隧道结GaAs/AlGaAs来连接Ge衬底和GaInNAs子电池,H2流量为80-90L/min,生长温度为540-550℃,生长压力为30Torr,隧道结GaAs/AlGaAs的生长厚度为24-26nm,生长时间为90s;
2)生长GaInNAs子电池时,载气快速切换为N2,载气通过互锁装置自动快速切换,N2的流量为2.8-3L/min,生长温度为590-600℃,生长压力为39Torr,GaInNAs子电池的生长厚度为0.98-1um,生长时间为30min;
3)生长GaInNAs子电池后,载气快速切换为H2,生长一层隧道结GaAs/AlGaAs来连接两个子电池,H2流量为80-90L/min,生长温度为540-550℃,生长压力为30Torr,隧道结GaAs/AlGaAs的生长厚度为24-26nm,生长时间为90s。
2.根据权利要求1所述的MOCVD高温生长高质量GaInNAs子电池的方法,其特征在于:H2的纯度即体积百分数大于99.99999%,N2的纯度即体积百分数大于99.999%。
3.根据权利要求1所述的MOCVD高温生长高质量GaInNAs子电池的方法,其特征在于:氮气和氢气的进气管路安装互锁装置,互锁装置的开启由生长程序自动控制,当生长GaInNAs子电池时,生长程序输出信号给PLC,PLC控制互锁装置,载气通过互锁装置自动快速切换。
CN201610192093.1A 2016-03-30 2016-03-30 MOCVD高温生长高质量GaInNAs子电池的方法 Active CN105810778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610192093.1A CN105810778B (zh) 2016-03-30 2016-03-30 MOCVD高温生长高质量GaInNAs子电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610192093.1A CN105810778B (zh) 2016-03-30 2016-03-30 MOCVD高温生长高质量GaInNAs子电池的方法

Publications (2)

Publication Number Publication Date
CN105810778A CN105810778A (zh) 2016-07-27
CN105810778B true CN105810778B (zh) 2017-08-11

Family

ID=56459204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610192093.1A Active CN105810778B (zh) 2016-03-30 2016-03-30 MOCVD高温生长高质量GaInNAs子电池的方法

Country Status (1)

Country Link
CN (1) CN105810778B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252448B (zh) * 2016-08-24 2017-08-25 中山德华芯片技术有限公司 一种含GaInNAs材料的多结太阳能电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
CN102751389A (zh) * 2012-07-19 2012-10-24 厦门市三安光电科技有限公司 一种高效多结太阳能电池的制备方法
CN102790117A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN105405928A (zh) * 2015-12-08 2016-03-16 中国电子科技集团公司第十八研究所 一种基于GaInNAs材料的四结太阳能电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
CN102751389A (zh) * 2012-07-19 2012-10-24 厦门市三安光电科技有限公司 一种高效多结太阳能电池的制备方法
CN102790117A (zh) * 2012-07-19 2012-11-21 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN105405928A (zh) * 2015-12-08 2016-03-16 中国电子科技集团公司第十八研究所 一种基于GaInNAs材料的四结太阳能电池的制备方法

Also Published As

Publication number Publication date
CN105810778A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
CN104465843B (zh) 一种双面生长的GaAs四结太阳电池
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN100573923C (zh) 硅基高效多结太阳电池及其制备方法
CN105826420A (zh) 一种具有反射层的双面生长四结太阳能电池及其制备方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN105355680A (zh) 一种晶格匹配的六结太阳能电池
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN102983203A (zh) 三结级联太阳能电池及其制作方法
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN109326674A (zh) 含多个双异质结子电池的五结太阳能电池及其制备方法
CN105810778B (zh) MOCVD高温生长高质量GaInNAs子电池的方法
CN103077983A (zh) 多结太阳能电池及其制备方法
CN104157725B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN104282795B (zh) GaInP/GaAs/InGaAs/Ge太阳能电池的制备方法
CN104241416B (zh) 一种含量子阱结构的三结太阳能电池
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN204315590U (zh) 一种双面生长的硅基四结太阳电池
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN104465809B (zh) 一种双面生长的硅基四结太阳电池
CN102790119A (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN106252448B (zh) 一种含GaInNAs材料的多结太阳能电池及其制备方法
CN205385027U (zh) 一种含dbr结构的五结太阳能电池
CN205194710U (zh) 一种具有反射层的四结太阳能电池
CN205385028U (zh) 一种晶格匹配的六结太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Method for growing high quality GaInNAs sub cell at high temperature by MOCVD

Effective date of registration: 20210929

Granted publication date: 20170811

Pledgee: Industrial Bank Limited by Share Ltd. Zhongshan branch

Pledgor: ZHONGSHAN DEHUA CHIP TECHNOLOGY Co.,Ltd.

Registration number: Y2021980010236

PE01 Entry into force of the registration of the contract for pledge of patent right