CN105801101A - 一种Co:ZnAl2O4透明陶瓷及其制备方法和应用 - Google Patents

一种Co:ZnAl2O4透明陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN105801101A
CN105801101A CN201610126935.3A CN201610126935A CN105801101A CN 105801101 A CN105801101 A CN 105801101A CN 201610126935 A CN201610126935 A CN 201610126935A CN 105801101 A CN105801101 A CN 105801101A
Authority
CN
China
Prior art keywords
crystalline ceramics
znal
preparation
parts
transparent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610126935.3A
Other languages
English (en)
Other versions
CN105801101B (zh
Inventor
付萍
王子颖
王戈明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Advanced Equipment of Tsinghua University
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201610126935.3A priority Critical patent/CN105801101B/zh
Publication of CN105801101A publication Critical patent/CN105801101A/zh
Application granted granted Critical
Publication of CN105801101B publication Critical patent/CN105801101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种Co:ZnAl2O4透明陶瓷,其化学组成为(Zn1‑xCox)Al2O4,其中0.0005≤x≤0.002,该透明陶瓷可用于固体激光器被动Q开关,其制备方法包括:将5‑20份NH4Al(SO4)2·12H2O、5‑20份ZnSO4·7H2O、1‑5份Co(NO3)·6H2O、5‑20份去离子水混合均匀后放入马弗炉内,在1100‑1400℃烧结1‑6h得(Zn1‑xCox)Al2O4纳米粉体,所述纳米粉体与0.1‑5份TEOS、乙醇溶剂混合均匀后经研磨、干压成型、冷等静压处理得陶瓷坯体,所述陶瓷坯体在1200‑1400℃烧结5‑30min,即得。该透明陶瓷具有优异的光学性能、物化性能、高低温稳定性以及比透明微晶玻璃更好的抗热震性和抗激光破坏性,其在被动调Q开关技术中具有良好的性能。

Description

一种Co:ZnAl2O4透明陶瓷及其制备方法和应用
技术领域
本发明涉及透明陶瓷技术领域,具体涉及一种Co:ZnAl2O4透明陶瓷及其制备方法和应用。
背景技术
掺铒激光玻璃发射的1.54μm激光,由于具有高的大气透过能力和极好的人眼安全特性,在激光测距、光通信以及医疗等领域具有广泛的应用。其中的大多数应用,均需要高峰值功率的纳米级脉冲,即需要实现调Q。被动调Q具有操作简单、高效稳定,成本较低等优点。良好的被动调Q可饱和吸收材料应具有如下性能:在激光波段具有较短的驰豫时间,较大的基态吸收截面和较小的激发态吸收截面,同时具有稳定的物化性能、良好的导热性、抗激光损伤性以及稳定的高低温特性等。
用于固体激光器的被动调Q技术是通过在谐振腔内插入可饱和吸收体材料来实现调Q运转的。目前,被动调Q技术的材料主要有有机染料、色心晶体及透明微晶玻璃等。其中,有机染料热稳定性差、易退化,导致输出的调Q脉冲极不稳定;色心晶体易褪色;掺Co2+离子的晶体(如Y3Al5Ol2,MgAl2O4和LaMgAl11O19等)制备难度大、掺杂不易均匀、成本高;掺Co2+离子的透明微晶玻璃需要在高温下熔制,制备工艺过程困难,较难获得很好的光学均匀性和较低的光学损耗。此外,包含玻璃的微晶玻璃其抗热震性和抗激光破坏性有一定的局限性,限制了其应用。
最近几年发展起来的ZnAl2O4及MgAl2O4等透明陶瓷,由于其优异的热学和力学性能、高度的透明度,在激光领域具有巨大的应用前景。Co2+在1.3-1.6μm波段具有强的吸收特性,主要用作1.34μm和1.54μm波段激光器调Q材料的激活离子。但是,目前透明陶瓷的制备条件比较苛刻,杂质和孔隙的引入会影响陶瓷的透明度。如何实现掺杂离子的引入而不破坏陶瓷的透明度及其他性能,是掺杂离子透明陶瓷制备工艺中需要解决的首要问题。
发明内容
本发明的目的在于解决现有透明陶瓷制备工艺困难、固体激光器被动调Q技术材料存在的不足,提供一种Co:ZnAl2O4透明陶瓷及其制备方法和应用。该透明陶瓷具有优异的光学性能、物化性能、高低温稳定性以及比透明微晶玻璃更好的抗热震性和抗激光破坏性,其在被动调Q开关技术中具有良好的性能。
本发明解决其技术问题的方案如下:
一种Co:ZnAl2O4透明陶瓷,其化学组成为(Zn1-xCox)Al2O4,其中x的取值范围为0.0005≤x≤0.002。
所述Co:ZnAl2O4透明陶瓷作为固体激光器被动Q开关基质材料的应用。
一种Co:ZnAl2O4透明陶瓷的制备方法,包括以下步骤:a)向烧杯中加入一定量的NH4Al(SO4)2·12H2O、ZnSO4·7H2O、Co(NO3)·6H2O和去离子水,搅拌一定时间使各物质充分溶解得到混合溶液;b)将混合溶液置于坩埚中并放进马弗炉内加热至一定温度后保温烧结,烧结完成后自然冷却至室温并过筛,得到(Zn1-xCox)Al2O4纳米粉体;c)将一定量TEOS分散于乙醇溶剂中,将其与步骤b)制得的(Zn1-xCox)Al2O4纳米粉体混合均匀,所得混合物经研磨、过筛、干压成型、冷等静压处理得陶瓷坯体;d)将陶瓷坯体置于放电等离子烧结炉中烧结得(Zn1-xCox)Al2O4透明陶瓷。
优选的,各物质的用量按重量份数计为5-20份NH4Al(SO4)2·12H2O,5-20份ZnSO4·7H2O,1-5份Co(NO3)·6H2O,5-20份去离子水,0.1-5份TEOS。
步骤a)中搅拌温度为40-100℃,搅拌速度20-1000rpm,搅拌时间0.5-6h。
步骤b)中马弗炉的升温速率为2-10℃/min,升温至1100-1400℃并保温1-6h,过筛所使用的筛网为200目。
步骤c)干压成型时压片机的压力控制在5-75MPa,冷等静压处理时的压力控制在100-500MPa。
步骤d)放电等离子烧结炉升温速率为2-20℃/min,陶瓷坯体烧结压力20-200MPa,保温温度1200-1400℃,保温时间5-30min。
本发明将TEOS引入到掺Co透明陶瓷的制备中,利用TEOS的溶胶凝胶反应生成二氧化硅胶体粒子。二氧化硅胶体粒子在高温烧结过程中具有良好的流动性,一方面可以填充Co:ZnAl2O4纳米粉体烧结过程中留下的孔洞,另一方面透明性优异的二氧化硅可以与Co离子相互作用,减弱Co对陶瓷透明性的影响。本发明提供的Co:ZnAl2O4透明陶瓷制备工艺简单、周期短、能耗低、成本低,陶瓷的透明性及力学性能没有受到掺杂离子的影响,用于固体激光器被动Q开关具有较高的经济效益和社会效益。
附图说明
图1为本发明实施例2制备的(Zn0.999Co0.001)Al2O4透明陶瓷实物照片。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图及实施例对本发明作进一步详细描述,但这些实施例均不构成对本发明的限制。
实施例1
一种Co:ZnAl2O4透明陶瓷,化学组成为(Zn0.9995Co0.0005)Al2O4,其制备方法如下:
首先按重量份数计称取5份NH4Al(SO4)2·12H2O,5份ZnSO4·7H2O和1份Co(NO3)·6H2O,将上述物质放入烧杯中,加入5份去离子水。将烧杯置于磁力搅拌器上,在40℃以20rmp的搅拌速度保温搅拌0.5h,使各物质充分溶解并分散均匀。将混合好的溶液置于坩埚中,将坩埚放入马弗炉内,以2℃/min的升温速率升温至1100℃,保温1h,然后自然冷却至室温,得到(Zn0.9995Co0.0005)Al2O4纳米粉体,粉体过200目筛备用。将0.1份的TEOS(正硅酸乙酯)分散于乙醇溶剂中,与粉体混合后研磨、过筛,在压片机上以5MPa的压力干压成型,再经100MPa冷等静压处理制成陶瓷坯体。将陶瓷坯体放入放电等离子烧结炉中烧结,升温速率为2℃/min,保温温度为1200℃,烧结压力为20MPa,烧结保温时间为5min。烧结完成后得到(Zn0.9995Co0.0005)Al2O4透明陶瓷。本发明各实施例所用的化学原料均为分析纯。
经分析测试,本实施例制备的(Zn0.9995Co0.0005)Al2O4透明陶瓷在可见光波段550nm处的直线透过率为55%,在红外波段2500nm处的直线透过率为80%。
实施例2
一种Co:ZnAl2O4透明陶瓷,化学组成为(Zn0.999Co0.001)Al2O4,其制备方法如下:
首先按重量份数计称取20份NH4Al(SO4)2·12H2O,20份ZnSO4·7H2O和5份Co(NO3)·6H2O,将上述物质放入烧杯中,加入20份去离子水。将烧杯置于磁力搅拌器上,在100℃以1000rmp的搅拌速度保温搅拌6h,使各物质充分溶解并分散均匀。将混合好的溶液置于坩埚中,将坩埚放入马弗炉内,以10℃/min的升温速率升温至1400℃,保温6h,然后自然冷却至室温,得到(Zn0.999Co0.001)Al2O4纳米粉体,粉体过200目筛备用。将5份的TEOS分散于乙醇溶剂中,与粉体混合后研磨、过筛,在压片机上以75MPa的压力干压成型,再经500MPa冷等静压处理制成陶瓷坯体。将陶瓷坯体放入放电等离子烧结炉中烧结,升温速率为20℃/min,保温温度为1400℃,烧结压力为200MPa,烧结保温时间为30min。烧结完成后得到(Zn0.999Co0.001)Al2O4透明陶瓷,实物照片如图1所示。
经分析测试,本实施例制备的(Zn0.999Co0.001)Al2O4透明陶瓷在可见光波段550nm处的直线透过率为60%,在红外波段2500nm处的直线透过率为85%。
实施例3
一种Co:ZnAl2O4透明陶瓷,化学组成为(Zn0.9985Co0.0015)Al2O4,其制备方法如下:
首先按重量份数计称取16份NH4Al(SO4)2·12H2O,8份ZnSO4·7H2O和2份Co(NO3)·6H2O,将上述物质放入烧杯中,加入15份去离子水。将烧杯置于磁力搅拌器上,在70℃以200rmp的搅拌速度保温搅拌6h,使各物质充分溶解并分散均匀。将混合好的溶液置于坩埚中,将坩埚放入马弗炉内,以10℃/min的升温速率升温至1300℃,保温3h,然后自然冷却至室温,得到(Zn0.9985Co0.0015)Al2O4纳米粉体,粉体过200目筛备用。将2份的TEOS分散于乙醇溶剂中,与粉体混合后研磨、过筛,在压片机上以50MPa的压力干压成型,再经250MPa冷等静压处理制成陶瓷坯体。将陶瓷坯体放入放电等离子烧结炉中烧结,升温速率为20℃/min,保温温度为1240℃,烧结压力为100MPa,烧结保温时间为15min。烧结完成后得到(Zn0.9985Co0.0015)Al2O4透明陶瓷。
经分析测试,本实施例制备的(Zn0.9985Co0.0015)Al2O4透明陶瓷在可见光波段550nm处的直线透过率为63%,在红外波段2500nm处的直线透过率为80%。
实施例4
一种Co:ZnAl2O4透明陶瓷,化学组成为(Zn0.998Co0.002)Al2O4,其制备方法如下:
首先按重量份数计称取20份NH4Al(SO4)2·12H2O,10份ZnSO4·7H2O和3份Co(NO3)·6H2O,将上述物质放入烧杯中,加入15份去离子水。将烧杯置于磁力搅拌器上,在80℃以250rmp的搅拌速度保温搅拌5h,使各物质充分溶解并分散均匀。将混合好的溶液置于坩埚中,将坩埚放入马弗炉内,以5℃/min的升温速率升温至1400℃,保温1h,然后自然冷却至室温,得到(Zn0.998Co0.002)Al2O4纳米粉体,粉体过200目筛备用。将1份的TEOS分散于乙醇溶剂中,与粉体混合后研磨、过筛,在压片机上以45MPa的压力干压成型,再经250MPa冷等静压处理制成陶瓷坯体。将陶瓷坯体放入放电等离子烧结炉中烧结,升温速率为8℃/min,保温温度为1260℃,烧结压力为100MPa,烧结保温时间为20min。烧结完成后得到(Zn0.998Co0.002)Al2O4透明陶瓷。
经分析测试,本实施例制备的(Zn0.998Co0.002)Al2O4透明陶瓷在可见光波段550nm处的直线透过率为58%,在红外波段2500nm处的直线透过率为82%。
本发明实施例制备的Co:ZnAl2O4透明陶瓷具有优良的光学性能,适用于制作固体激光器被动Q开关。

Claims (8)

1.一种Co:ZnAl2O4透明陶瓷,其特征在于:该透明陶瓷的化学组成为(Zn1-xCox)Al2O4,其中x的取值范围为0.0005≤x≤0.002。
2.权利要求1所述的Co:ZnAl2O4透明陶瓷作为固体激光器被动Q开关基质材料的应用。
3.一种Co:ZnAl2O4透明陶瓷的制备方法,其特征在于包括以下步骤:a)向烧杯中加入一定量的NH4Al(SO4)2·12H2O、ZnSO4·7H2O、Co(NO3)·6H2O和去离子水,搅拌一定时间使各物质充分溶解得到混合溶液;b)将混合溶液置于坩埚中并放进马弗炉内加热至一定温度后保温烧结,烧结完成后自然冷却至室温并过筛,得到(Zn1-xCox)Al2O4纳米粉体;c)将一定量TEOS分散于乙醇溶剂中,将其与步骤b)制得的(Zn1-xCox)Al2O4纳米粉体混合均匀,所得混合物经研磨、过筛、干压成型、冷等静压处理得陶瓷坯体;d)将陶瓷坯体置于放电等离子烧结炉中烧结得(Zn1-xCox)Al2O4透明陶瓷。
4.如权利要求3所述的Co:ZnAl2O4透明陶瓷的制备方法,其特征在于:各物质的用量按重量份数计为5-20份NH4Al(SO4)2·12H2O,5-20份ZnSO4·7H2O,1-5份Co(NO3)·6H2O,5-20份去离子水,0.1-5份TEOS。
5.如权利要求3所述的Co:ZnAl2O4透明陶瓷的制备方法,其特征在于:步骤a)中搅拌温度为40-100℃,搅拌速度20-1000rpm,搅拌时间0.5-6h。
6.如权利要求3所述的Co:ZnAl2O4透明陶瓷的制备方法,其特征在于:步骤b)中马弗炉的升温速率为2-10℃/min,升温至1100-1400℃并保温1-6h,过筛所使用的筛网为200目。
7.如权利要求3所述的Co:ZnAl2O4透明陶瓷的制备方法,其特征在于:步骤c)干压成型时压片机的压力控制在5-75MPa,冷等静压处理时的压力控制在100-500MPa。
8.如权利要求3所述的Co:ZnAl2O4透明陶瓷的制备方法,其特征在于:步骤d)放电等离子烧结炉升温速率为2-20℃/min,陶瓷坯体烧结压力20-200MPa,保温温度1200-1400℃,保温时间5-30min。
CN201610126935.3A 2016-03-07 2016-03-07 一种Co:ZnAl2O4透明陶瓷及其制备方法和应用 Active CN105801101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610126935.3A CN105801101B (zh) 2016-03-07 2016-03-07 一种Co:ZnAl2O4透明陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610126935.3A CN105801101B (zh) 2016-03-07 2016-03-07 一种Co:ZnAl2O4透明陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105801101A true CN105801101A (zh) 2016-07-27
CN105801101B CN105801101B (zh) 2018-08-24

Family

ID=56466771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610126935.3A Active CN105801101B (zh) 2016-03-07 2016-03-07 一种Co:ZnAl2O4透明陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105801101B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106799783A (zh) * 2017-02-10 2017-06-06 广东工业大学 一种适用于光学陶瓷的冷等静压方法和光学陶瓷的制备方法
CN106986624A (zh) * 2017-03-31 2017-07-28 武汉工程大学 一种碳纳米管‑铝酸镁复合材料的制备方法及制得的材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180662A (zh) * 2009-11-20 2011-09-14 肖特股份公司 有色尖晶石电光陶瓷
CN102610993A (zh) * 2012-02-28 2012-07-25 长春理工大学 一种铒镱共掺上转换透明陶瓷激光器
CN104557013A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180662A (zh) * 2009-11-20 2011-09-14 肖特股份公司 有色尖晶石电光陶瓷
CN102610993A (zh) * 2012-02-28 2012-07-25 长春理工大学 一种铒镱共掺上转换透明陶瓷激光器
CN104557013A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAYUKI NAKANE等: "Spectroscopic and crystallographic anomalies of (Co1−xZnx)Al2O4 spinel oxide", 《DALTON TRANSACTIONS》 *
XIULAN DUAN等: "Effects of Annealing Temperature and SiO2 Matrix on the Structure and Optical Properties of Co-Doped ZnAl2O4/SiO2 Nanoglass Ceramic Composites", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106799783A (zh) * 2017-02-10 2017-06-06 广东工业大学 一种适用于光学陶瓷的冷等静压方法和光学陶瓷的制备方法
CN106799783B (zh) * 2017-02-10 2019-01-01 广东工业大学 一种适用于光学陶瓷的冷等静压方法和光学陶瓷的制备方法
CN106986624A (zh) * 2017-03-31 2017-07-28 武汉工程大学 一种碳纳米管‑铝酸镁复合材料的制备方法及制得的材料
CN106986624B (zh) * 2017-03-31 2020-01-14 武汉工程大学 一种碳纳米管-铝酸镁复合材料的制备方法及制得的材料

Also Published As

Publication number Publication date
CN105801101B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN106396414B (zh) 一种低温共烧陶瓷材料及其制备方法
CN1326790C (zh) 稀土离子掺杂的yag微晶玻璃及其制备方法
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
US10179749B2 (en) Low-temperature co-fired ceramic material and preparation method thereof
CN102311258B (zh) 激活离子受控掺杂的钇铝石榴石基激光透明陶瓷材料及其制备方法
WO2022095098A1 (zh) 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
CN105801101A (zh) 一种Co:ZnAl2O4透明陶瓷及其制备方法和应用
Jiang et al. A Co2+-doped alumina-rich Mg0. 4Al2. 4O4 spinel crystal as saturable absorber for a LD pumped Er: glass microchip laser at 1535 nm
Di et al. CW laser properties of Nd: GdYAG, Nd: LuYAG, and Nd: GdLuAG mixed crystals
CN105565810A (zh) 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
Qin et al. Fabrication and Optical Properties of Highly Transparent Er: YAG Polycrystalline Ceramics for Eye‐Safe Solid‐State Lasers “
CN103319093B (zh) 掺镱氟磷酸锶微晶掺镱氟磷酸盐玻璃复合材料及制备方法
CN101148357A (zh) 掺Yb3+的氧化镧钇上转换发光透明激光陶瓷的制备方法
CN106830935A (zh) 一种Nd敏化的氧化钇基激光陶瓷及其制备方法
RU2697561C1 (ru) Способ получения прозрачной высоколегированной Er:ИАГ - керамики
Liu et al. Influence of annealing on microstructures and properties of Yb: Lu2O3 transparent ceramics
CN114108072A (zh) 稀土离子掺杂的GdScO3激光晶体制备及其应用
Zhao et al. High single-pulse energy passively Q-switched laser based on Yb, Gd: SrF 2 crystal
CN101864620A (zh) 一种氮化硅晶须的制备方法
CN104150904A (zh) 用于中红外激光的Er3+单掺氧化镧钇透明陶瓷的制备方法
CN102211941A (zh) Er,Yb双掺杂YAG多晶透明陶瓷材料制备方法
Jiang et al. Synthesis and properties of Yb: Sc2O3 transparent ceramics
CN106631022A (zh) 一种Tm敏化的氧化钇基激光陶瓷及其制备方法
CN103073295A (zh) Er3+和Tm3+共掺的氧化镧钇闪烁透明陶瓷材料的制备方法
CN114685158A (zh) 一种磁光陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201224

Address after: 8319 Yanshan Road, Bengbu City, Anhui Province

Patentee after: Bengbu Lichao Information Technology Co.,Ltd.

Address before: 430074, No. 693 Xiong Chu street, Hongshan District, Hubei, Wuhan

Patentee before: WUHAN INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220110

Address after: 300300 No. 2002, building 4, block B, No. 6, Huafeng Road, Huaming high tech Industrial Zone, Dongli District, Tianjin

Patentee after: Power intellectual property (Tianjin) Co.,Ltd.

Address before: 8319 Yanshan Road, Bengbu City, Anhui Province

Patentee before: Bengbu Lichao Information Technology Co.,Ltd.

Effective date of registration: 20220110

Address after: 300304 building 4, Huiguyuan, Dongli District, Tianjin

Patentee after: TIANJIN INSTITUTE OF ADVANCED EQUIPMENT, TSINGHUA University

Address before: 300300 No. 2002, building 4, block B, No. 6, Huafeng Road, Huaming high tech Industrial Zone, Dongli District, Tianjin

Patentee before: Power intellectual property (Tianjin) Co.,Ltd.