CN105800680A - 一种过渡金属掺杂的二氧化钛纳米管的制备方法 - Google Patents

一种过渡金属掺杂的二氧化钛纳米管的制备方法 Download PDF

Info

Publication number
CN105800680A
CN105800680A CN201610143166.8A CN201610143166A CN105800680A CN 105800680 A CN105800680 A CN 105800680A CN 201610143166 A CN201610143166 A CN 201610143166A CN 105800680 A CN105800680 A CN 105800680A
Authority
CN
China
Prior art keywords
transition metal
preparation
titania nanotube
titanium dioxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610143166.8A
Other languages
English (en)
Other versions
CN105800680B (zh
Inventor
张海宁
刘奥顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610143166.8A priority Critical patent/CN105800680B/zh
Publication of CN105800680A publication Critical patent/CN105800680A/zh
Application granted granted Critical
Publication of CN105800680B publication Critical patent/CN105800680B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

本发明公开了一种过渡金属掺杂的二氧化钛纳米管的制备方法。所述制备方法包括以下步骤:1)过渡金属氧化物与二氧化钛的混合处理;2)过渡金属氧化物与二氧化钛粉末的水热化反应;3)过渡金属氧化物与二氧化钛的水热化产物的后处理。该制备方法无污染,生产效率高,适用范围广,形成的纳米管管状结构完整,比表面积大。

Description

一种过渡金属掺杂的二氧化钛纳米管的制备方法
技术领域
本发明涉及新能源材料领域,具体涉及一种过渡金属掺杂的二氧化钛纳米管的制备方法。
背景技术
目前,锂-氧电池空气阴极催化剂主要有多孔碳基材料、过渡金属氧化物、贵金属及其合金三类。近年来的研究发现,以锰氧化物、钴氧化物为代表的过渡金属氧化物表现出了良好的氧析出和氧还原催化性能。然而过渡金属氧化物较低的电子电导率使得该类催化剂必须与电子导体/导电性电催化剂复合而应用到锂-氧电池中。因此,通过将具有氧析出催化活性的过渡金属氧化物与杂原子掺杂的碳基氧还原催化材料耦合,有望获得同时具有氧还原/氧析出催化能力的高效双功能催化剂应用于锂-氧电池的空气阴极。
具有氧析出催化活性的过渡金属氧化物与杂原子掺杂的碳基氧还原催化材料耦合需要一种基体材料,TiO2纳米管作为基体材料具有以下几方面的优势:1)纳米管的内外表面有大量的羟基,方便接枝碳基氧还原催化材料;2)TiO2纳米管阵列具有纳米尺寸的内径,这种特殊的微观结构会有较强的毛细作用,从而可以增加材料的保水能力;3)通过原位接枝引发聚合,可以在二氧化钛纳米管的管内填充聚电解质。
传统的过渡金属氧化物掺杂的二氧化钛纳米管制备采用对应的过渡金属的醋酸盐或硝酸盐作为前驱体,经过干燥,焙烧,在弱碱性氨水的存在下,与二氧化钛反应生成过渡金属氧化物掺杂的二氧化钛纳米管。这种方法会产生二氧化氮,一氧化碳等污染气体,对大气环境产生破坏。
发明内容
本发明为解决上述技术问题提供了一种清洁的且可大规模生产的过渡金属掺杂的二氧化钛纳米管的制备方法。
本发明为解决上述技术问题所采取的技术方案为:
一种过渡金属掺杂的二氧化钛纳米管的制备方法,包括以下步骤:
1)在氢氧化钠溶液中依次加入二氧化钛纳米粉末和过渡金属氧化物纳米粉末,常温搅拌,超声,得到过渡金属氧化物与二氧化钛的混合溶液,所述过渡金属氧化物与二氧化钛的质量比为1:(1-20);
2)步骤1)得到的混合溶液倒入反应釜中,反应釜放入烘箱中反应48h,反应温度为130℃~150℃,待反应釜冷却至室温后,打开反应釜,倒掉上层清液,下层沉淀物为得到的过渡金属氧化物与二氧化钛的水热化产物;
3)将步骤2)所制备的水热化产物转移到离心管中,用去离子水洗涤至上层清液为中性,再将下层沉淀物倒入盐酸溶液中,常温搅拌,搅拌好的溶液倒入离心管中,用去离子水洗涤至上层清液为中性,最后将沉淀物倒入表面皿中,放入烘箱中烘干,将烘干后的沉淀物放入研钵中研磨,即得到过渡金属掺杂的二氧化钛纳米管。
上述方案中,所述步骤1)中氢氧化钠溶液的浓度为8mol/L~10mol/L。
上述方案中,所述过渡金属为Co、Mn、Fe或Ni。
上述方案中,所述过渡金属氧化物为四氧化三钴、二氧化锰、四氧化三铁或氧化镍。
上述方案中,所述步骤3)中的盐酸溶液的浓度为0.1mol/L。
上述方案中,所述步骤3)中的烘箱温度为75℃,烘干时间为12h。
本发明通过水热法让过渡金属氧化物与二氧化钛反应,利用二氧化钛纳米管内外表面含有的大量羟基,使得过渡金属可以掺杂在二氧化钛纳米管中,形成过渡金属掺杂的二氧化钛纳米管。
与现有技术相比,本发明具有以下有益效果:
(1)本发明采用过渡金属氧化物与二氧化钛的混合物在密闭容器进行,不会产生有害气体,对环境无污染。水热法成本低,效率高,可以进行大规模生产。
(2)本发明适用性广,Co、Mn、Fe、Ni等多种过渡金属元素都可以用本发明方法掺杂到二氧化钛纳米管中。
(3)本发明制备出的过渡金属掺杂的二氧化钛纳米管粒径在180nm左右,内径5nm,管壁厚度为1.4nm。
附图说明
图1是实施例1所制备的四氧化三钴掺杂的二氧化钛纳米管的透射电镜(TEM)照片;
图2是实施例1所制备的四氧化三钴掺杂的二氧化钛纳米管的X射线光电子能谱(XPS)图;
图3是实施例1所制备的四氧化三钴掺杂的二氧化钛纳米管的红外光谱(FTIR)图;
图4是实施例1所制备的四氧化三钴掺杂的二氧化钛纳米管的X射线衍射(XRD)图;
图5是实施例1所制备的四氧化三钴掺杂的二氧化钛纳米管的氧析出电催化性能;
图6是实施例3所制备的三氧化二锰掺杂的二氧化钛纳米管的透射电镜(TEM)照片;
图7是实施例3所制备的三氧化二锰掺杂的二氧化钛纳米管的氮吸附谱和计算的管径分布图(插图);
图8是实施例3所制备的三氧化二锰掺杂的二氧化钛纳米管的光降解罗丹明B的性能图。
具体实施方式
下面举出几个实施例对本发明做进一步说明,而不是限定本发明。
实施例1
一种过渡金属掺杂的二氧化钛纳米管的制备方法,包括以下步骤:
1)过渡金属氧化物与二氧化钛的混合处理:称取0.026gCo3O4粉末和0.5gTiO2粉末(P25),依次缓慢倒入装有50ml,8mol/L氢氧化钠溶液的烧杯中,常温搅拌30min,然后超声10min,得到四氧化三钴与二氧化钛的混合溶液;
2)过渡金属氧化物与二氧化钛粉末的水热化反应:将步骤(1)处理的混合溶液倒入100ml的反应釜中,反应釜放入130℃的烘箱中反应48h,待反应釜冷却至室温后,打开反应釜,倒掉上层清液,下层沉淀物为得到的四氧化三钴与二氧化钛的水热化产物;
3)过渡金属氧化物与二氧化钛的水热化产物的后处理:将步骤(2)所制备的水热化产物转移到100ml的离心管中,用去离子水洗涤至上层清液为中性,再将下层沉淀物倒入70ml0.1M盐酸溶液中,常温搅拌30min。搅拌好的溶液倒入100ml的离心管中,用去离子水洗涤至上层清液为中性。最后将沉淀物倒入表面皿中,放入75℃烘箱中12h。将烘干后的沉淀物放入研钵中研磨,得到四氧化三钴掺杂的二氧化钛纳米管。从样品的透射电镜照片(图1)可以清晰的看出所制备样品的管状结构,其内径约为5nm,管壁厚约为2nm;光电子能谱(图2)中的780eV的吸收峰与红外光谱图(图3)中666cm-1处吸收峰证实钴元素的存在;X-射线衍射图(图4)进一步证实了钴元素以四氧化三钴的形式存在;经原子吸收光谱证实了四氧化三钴在样品中的质量含量为4.36%。该样品在碱性条件下氧析出起始电位在1.28V左右,具有较好的氧析出性能(图5)。
实施例2
本实施例与实施例1大致相同,不同之处在于步骤(1)中称取0.5gCo3O4粉末和0.5gTiO2粉末(P25)。所得到的样品经原子吸收光谱证实四氧化三钴的质量比约为46.7%。
实施例3
本实施例与实施例1大致相同,不同之处在于步骤(1)中选择不同的过渡金属氧化物MnO2作为反应物,称取0.056gMnO2粉末和0.5gTiO2粉末(P25),所制备的样品即为二氧化锰掺杂的二氧化钛纳米管。经透射电镜照片(图6)证实具有管状结构;样品的氮吸附曲线(图7)也进一步证实了样品的管状结构以及较大的比表面积(273m2g-1);经原子吸收光谱计算二氧化锰的含量为4.86%;图8是所制备的样品对罗丹明B的光催化降解性能,可以清晰看出,在60min内,罗丹明B的浓度降低到30%以下。
实施例4
本实施例与实施例1大致相同,不同之处在于:步骤(1)中选择不同的过渡金属氧化物Fe3O4作为反应物,称取0.125gFe3O4粉末和0.5gTiO2粉末(P25);步骤(2)中反应温度为150℃。经原子吸收光谱测试四氧化三铁在样品中的质量百分比为19.87%。
实施例5
本实施例与实施例1大致相同,不同之处在于:步骤(1)中选择不同的过渡金属氧化物Fe3O4作为反应物,氢氧化钠溶液浓度为10mol/L;步骤(2)中反应温度为150℃。经原子吸收光谱测试四氧化三铁在样品中的质量百分比为18.03%。
实施例6
本实施例与实施例1大致相同,不同之处在于:步骤(1)中选择不同的过渡金属氧化物NiO作为反应物,称取0.214gNiO粉末和0.5gTiO2粉末(P25)(质量比30:70);步骤(2)中反应温度为150℃。原子吸收光谱测试结果表明氧化镍的质量百分比为25.46%。

Claims (6)

1.一种过渡金属掺杂的二氧化钛纳米管的制备方法,其特征在于,包括以下步骤:
1)在氢氧化钠溶液中依次加入二氧化钛纳米粉末和过渡金属氧化物纳米粉末,常温搅拌,超声,得到过渡金属氧化物与二氧化钛的混合溶液,所述过渡金属氧化物与二氧化钛的质量比为1:(1-20);
2)步骤1)得到的混合溶液倒入反应釜中,反应釜放入烘箱中反应48h,反应温度为130℃~150℃,待反应釜冷却至室温后,打开反应釜,倒掉上层清液,下层沉淀物为得到的过渡金属氧化物与二氧化钛的水热化产物;
3)将步骤2)所制备的水热化产物转移到离心管中,用去离子水洗涤至上层清液为中性,再将下层沉淀物倒入盐酸溶液中,常温搅拌,搅拌好的溶液倒入离心管中,用去离子水洗涤至上层清液为中性,最后将沉淀物倒入表面皿中,放入烘箱中烘干,将烘干后的沉淀物放入研钵中研磨,即得到过渡金属掺杂的二氧化钛纳米管。
2.根据权利要求1所述的过渡金属掺杂的二氧化钛纳米管的制备方法,其特征在于,所述步骤1)中氢氧化钠溶液的浓度为8mol/L~10mol/L。
3.根据权利要求1所述的过渡金属掺杂的二氧化钛纳米管的制备方法,其特征在于,所述过渡金属为Co、Mn、Fe或Ni。
4.根据权利要求1所述的过渡金属掺杂的二氧化钛纳米管的制备方法,其特征在于,所述过渡金属氧化物为四氧化三钴、二氧化锰、四氧化三铁或氧化镍。
5.根据权利要求1所述的过渡金属掺杂的二氧化钛纳米管的制备方法,其特征在于,所述步骤3)中的盐酸溶液的浓度为0.1mol/L。
6.根据权利要求1所述的过渡金属掺杂的二氧化钛纳米管的制备方法,其特征在于,所述步骤3)中的烘箱温度为75℃,烘干时间为12h。
CN201610143166.8A 2016-03-14 2016-03-14 一种过渡金属掺杂的二氧化钛纳米管的制备方法 Expired - Fee Related CN105800680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610143166.8A CN105800680B (zh) 2016-03-14 2016-03-14 一种过渡金属掺杂的二氧化钛纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610143166.8A CN105800680B (zh) 2016-03-14 2016-03-14 一种过渡金属掺杂的二氧化钛纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN105800680A true CN105800680A (zh) 2016-07-27
CN105800680B CN105800680B (zh) 2017-09-29

Family

ID=56467232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610143166.8A Expired - Fee Related CN105800680B (zh) 2016-03-14 2016-03-14 一种过渡金属掺杂的二氧化钛纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN105800680B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106629855A (zh) * 2016-09-18 2017-05-10 岭南师范学院 一种二氧化钛和二氧化锰纳米复合材料的制备方法及应用
CN108114719A (zh) * 2017-12-19 2018-06-05 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN112430351A (zh) * 2020-11-24 2021-03-02 中国地质大学(武汉) 一种膨胀型自组装层改性的金属掺杂TiO2纳米管的制备方法
CN112742414A (zh) * 2019-10-29 2021-05-04 中国石油化工股份有限公司 一种耐水耐硫的低温scr脱硝催化剂及其制备方法和应用
CN112742413A (zh) * 2019-10-29 2021-05-04 中国石油化工股份有限公司 一种低温scr脱硝催化剂及其制备方法和应用
CN114433123A (zh) * 2020-11-05 2022-05-06 中国石油化工股份有限公司 一种用于低温scr脱硝的整体蜂窝催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302036A (zh) * 2008-07-03 2008-11-12 南开大学 一种掺杂二氧化钛纳米管的制备方法
CN101319405A (zh) * 2007-06-08 2008-12-10 苏州纳米技术与纳米仿生研究所 TiO2纳米管和/或TiO2纳米须的制造方法
WO2013139174A1 (en) * 2012-03-19 2013-09-26 The Hong Kong University Of Science And Technology Incorporating metals, metal oxides and compounds on the inner and outer surfaces of nanotubes and between the walls of the nanotubes and preparation thereof
CN103833076A (zh) * 2012-11-27 2014-06-04 王泰林 一种氧化镍-二氧化钛纳米复合材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319405A (zh) * 2007-06-08 2008-12-10 苏州纳米技术与纳米仿生研究所 TiO2纳米管和/或TiO2纳米须的制造方法
CN101302036A (zh) * 2008-07-03 2008-11-12 南开大学 一种掺杂二氧化钛纳米管的制备方法
WO2013139174A1 (en) * 2012-03-19 2013-09-26 The Hong Kong University Of Science And Technology Incorporating metals, metal oxides and compounds on the inner and outer surfaces of nanotubes and between the walls of the nanotubes and preparation thereof
CN103833076A (zh) * 2012-11-27 2014-06-04 王泰林 一种氧化镍-二氧化钛纳米复合材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
L.P.AN等: "Electrochemical lithium storage of titania nanotubes modified with NiO nanoparticles", 《ELECTROCHIMICA ACTA》 *
吴树新等: "过渡金属掺杂二氧化钛光催化性能的研究", 《感光科学与光化学》 *
江芳等: "TiO2纳米管的制备及光催化降解亚甲基蓝研究", 《功能材料》 *
汤佳等: "ZnO/TiO2纳米管的制备及光降解性能研究", 《化工新型材料》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106629855A (zh) * 2016-09-18 2017-05-10 岭南师范学院 一种二氧化钛和二氧化锰纳米复合材料的制备方法及应用
CN108114719A (zh) * 2017-12-19 2018-06-05 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN109382108A (zh) * 2017-12-19 2019-02-26 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN109382108B (zh) * 2017-12-19 2021-09-21 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN112742414A (zh) * 2019-10-29 2021-05-04 中国石油化工股份有限公司 一种耐水耐硫的低温scr脱硝催化剂及其制备方法和应用
CN112742413A (zh) * 2019-10-29 2021-05-04 中国石油化工股份有限公司 一种低温scr脱硝催化剂及其制备方法和应用
CN112742413B (zh) * 2019-10-29 2022-10-21 中国石油化工股份有限公司 一种低温scr脱硝催化剂及其制备方法和应用
CN112742414B (zh) * 2019-10-29 2022-10-21 中国石油化工股份有限公司 一种耐水耐硫的低温scr脱硝催化剂及其制备方法和应用
CN114433123A (zh) * 2020-11-05 2022-05-06 中国石油化工股份有限公司 一种用于低温scr脱硝的整体蜂窝催化剂及其制备方法和应用
CN114433123B (zh) * 2020-11-05 2024-02-20 中国石油化工股份有限公司 一种用于低温scr脱硝的整体蜂窝催化剂及其制备方法和应用
CN112430351A (zh) * 2020-11-24 2021-03-02 中国地质大学(武汉) 一种膨胀型自组装层改性的金属掺杂TiO2纳米管的制备方法

Also Published As

Publication number Publication date
CN105800680B (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
CN105800680A (zh) 一种过渡金属掺杂的二氧化钛纳米管的制备方法
Fang et al. N-and S-doped porous carbon decorated with in-situ synthesized Co–Ni bimetallic sulfides particles: a cathode catalyst of rechargeable Zn-air batteries
Kong et al. Microwave hydrothermal synthesis of Ni-based metal–organic frameworks and their derived yolk–shell NiO for Li-ion storage and supported ammonia borane for hydrogen desorption
CN110201702A (zh) 碳载单原子金属含氮复合物氧还原催化剂制备方法及所得催化剂
Qian et al. Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure
Zhang et al. Mesoporous NiCo2O4 micro/nanospheres with hierarchical structures for supercapacitors and methanol electro–oxidation
Shaheen et al. Modified sol-gel synthesis of Co3O4 nanoparticles using organic template for electrochemical energy storage
Li et al. Controllable synthesis of graphene/NiCo2O4 three-dimensional mesoporous electrocatalysts for efficient methanol oxidation reaction
Ren et al. Photoactive g-C3N4/CuZIF-67 bifunctional electrocatalyst with staggered pn heterojunction for rechargeable Zn-air batteries
Yewale et al. Electrochemical supercapacitor performance of NiCo2O4 nanoballs structured electrodes prepared via hydrothermal route with varying reaction time
Razavi et al. Barium cobaltite nanoparticles: Sol-gel synthesis and characterization and their electrochemical hydrogen storage properties
Lu et al. Robust Photoelectrochemical Oxygen Evolution with N, Fe–CoS2 Nanorod Arrays
Xu et al. Delicate control of multishelled Zn–Mn–O hollow microspheres as a high-performance anode for lithium-ion batteries
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
Liu et al. Constructing MoS2@ Co1. 11Te2/Co-NCD with Te nanorods for efficient hydrogen evolution reaction and triiodide reduction
Luo et al. Dysprosium-induced FeN0. 0324-Dy2O3 sites with efficient bifunctional oxygen electrocatalytic reactions for Zn-air batteries
Dhileepan et al. Interface engineering of 0D–1D Cu2NiSnS4/TiO2 (B) p–n heterojunction nanowires for efficient photocatalytic hydrogen evolution
CN110212204A (zh) 一种高效的碳纳米片支撑型燃料电池正极材料及其制备方法和应用
Zhang et al. Efficiently catalyzed sea urchin-like mixed phase SmMn2O5/MnO2 for oxygen reduction reaction in zinc-air battery
Zhou et al. Confined covalent organic framework anchored Fe sites derived highly uniform electrocatalysts for rechargeable aqueous and solid-state Zn-air batteries
Munawar et al. Electrochemical behavior of V/Ce co-doped carbon shell-coated NiO nanocomposite for alkaline OER and supercapacitor applications
Zhang et al. Ketjen Black@ Ce-MOF derived KB@ CeO2-C as separator coating for lithium sulfur batteries
Chen et al. Cobalt‐incorporated tellurium‐nanostructured electrocatalysts for hydrogen evolution reaction in acidic electrolyte
Dhamodharan et al. Highly performed electrochemical activities of hybrid supercapacitors based on CeO2-Sm2O3 nanocomposites
JP5757884B2 (ja) 燃料電池用電極触媒の製造方法ならびにその用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170929

Termination date: 20180314

CF01 Termination of patent right due to non-payment of annual fee