CN105789691A - 钠离子电池及制备方法 - Google Patents

钠离子电池及制备方法 Download PDF

Info

Publication number
CN105789691A
CN105789691A CN201610244678.3A CN201610244678A CN105789691A CN 105789691 A CN105789691 A CN 105789691A CN 201610244678 A CN201610244678 A CN 201610244678A CN 105789691 A CN105789691 A CN 105789691A
Authority
CN
China
Prior art keywords
sodium
nacl
deionized water
ion battery
nav
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610244678.3A
Other languages
English (en)
Inventor
王银娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610244678.3A priority Critical patent/CN105789691A/zh
Publication of CN105789691A publication Critical patent/CN105789691A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种钠离子电池及制备方法。该钠离子电池包括正极、金属钠的对电极、玻璃纤维的隔膜及电解液,该正极由NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合后,滴加适量的N‑甲基‑2‑吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于金属棒上,真空干燥制成;其中,NaV6O15的晶体结构为尺寸均匀纳米棒状结构,由质量比NH4VO3:NaCl:表面活性剂:去离子水=1:(1.5~2.5):(0.1~0.3):100的NH4VO3、NaCl、表面活性剂和去离子水在强酸性的水热条件下制备而成。本发明具有较佳的电化学性能,实现成本较低,且有巨大的应用发展前景。

Description

钠离子电池及制备方法
技术领域
本发明涉及一种电池,尤其是涉及一种钠离子电池及制备方法。
背景技术
随着以特斯拉为代表的新能源汽车的火爆,锂离子电池得到飞速快递。但锂离子电池受限于锂矿资源的开发及加工,从2014年下半年至今碳酸锂价格不断暴涨就是最好的证明。为此,有必要开发与锂离子电池工作原理相似的钠离子电池作为替代品,钠离子电子具有成本低及电化学性能优良的特点,相信在未来也巨大的发展前景。
发明内容
本发明提出一种制备工艺简单、实现成本较低且具有优良电化学性能的钠离子电池及制备方法。
一种钠离子电池,包括正极、金属钠的对电极、玻璃纤维的隔膜及电解液,该正极由NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合后,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于金属棒上,真空干燥制成;其中,NaV6O15的晶体结构为尺寸均匀纳米棒状结构,由质量比NH4VO3:NaCl:表面活性剂:去离子水=1:(1.5~2.5):(0.1~0.3):100的NH4VO3、NaCl、表面活性剂和去离子水在强酸性的水热条件下制备而成。
其中,NH4VO3:NaCl:表面活性剂:去离子水=1:2:0.2:100。
一种钠离子正极材料的制备方法,其包括:
步骤一、按质量比NH4VO3:NaCl:表面活性剂:去离子水=1:(1.5~2.5):(0.1~0.3):100取NH4VO3、NaCl和去离子水,将NH4VO3、NaCl和表面活性剂溶于去离子水中,在60℃下不断搅拌至完全溶解,加入适量的盐酸调节混合容易的pH值至不超过2;
步骤二、将所得混合溶液倒入不锈钢高压釜,200℃-300℃条件下水热反应12-24小时,NH4VO3中的VO3-会与盐酸的H+结合生成HVO3,HVO3进一步水解生成具有层状结构的V2O5,随着水热反应的进行,体系温度升高压强增大,NaCl中的Na离子会逐步嵌入V2O5的层状结构中,最终生成NaV6O15,然后自然冷却至室温并进行真空抽滤,用去离子水和乙醇各洗涤两遍,真空干燥后,再放入高温炉中400℃-600℃煅烧6-12小时,制备得到为棕色粉末的NaV6O15
步骤三、将制备的NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于金属棒上,真空干燥即制作成正极;
步骤四、以金属钠作为上述正极的对电极,以玻璃纤维作为隔膜,加入电解液即制备得到钠离子电池。
其中,金属棒为铝棒或铜棒。
与现有技术相比,本发明具有如下有益效果:
本发明确定制备NaV6O15电极材料中表面活性剂的恰当含量,制备得到NaV6O15的晶体结构为尺寸均匀纳米棒状结构,由NaV6O15制备的电极材料具有较佳的电化学性能,进而制备得到的电池的电化学性能也较佳,故本发明实现成本较低,且有巨大的应用发展前景。
具体实施方式
步骤一、按质量比NH4VO3:NaCl:表面活性剂:去离子水=1:(1.5~2.5):(0.1~0.3):100取NH4VO3、NaCl、表面活性剂和去离子水,将NH4VO3、NaCl和表面活性剂溶于去离子水中,在60℃下不断搅拌至完全溶解,加入适量的强酸溶液(比如盐酸、硫酸等)调节混合容易的pH值至不超过2。
步骤二、将所得混合溶液倒入聚四氟乙烯衬里不锈钢高压釜,200℃-300℃条件下水热反应12-24小时,然后自然冷却至室温,将反应得产物进行真空抽滤,用去离子水和乙醇各洗涤两遍,真空干燥后,再放入高温炉中400℃-600℃煅烧6-12小时,制备得到为棕色粉末的NaV6O15
以强酸为盐酸为例。水热反应过程中,在酸性条件下,NH4VO3中的VO3-会与盐酸的H+结合生成HVO3,HVO3进一步水解生成具有层状结构的V2O5,即使随着水热反应的进行,体系温度升高压强增大,NaCl中的Na离子会逐步嵌入V2O5的层状结构中,最终生成NaV6O15
上述步骤一中,如果添加过量或少量的表面活性剂,都不利于最终生成的生成NaV6O15的晶体结构。实验证明,当添加过量或少量的表面活性剂,最后生成的NaV6O15的晶体结构为长短差异大且无序堆砌的片状结构,这种晶体结构的NaV6O15的用于制备正极时,在充放电过程中会出现比较严重的极化现象,对其电化学性能产生非常不利的影响。而本发明确定了表面活性剂的添加比例,表面活性剂可以有效降低原有的界面张力,同时还可能对材料不同晶面产生不同的选择性吸附,利用空间位阻效应降低产物团聚并且改变形貌,实现对产物形貌的可控合成,故本发明通过确定了表面活性剂的添加比例,使制备得到的NaV6O15的晶体结构为尺寸均匀纳米棒状结构。
步骤三、将制备的NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于金属棒(比如铝、铜等)上,真空干燥即制作成正极。
实施例1
按质量比NH4VO3:NaCl:表面活性剂:去离子水=1:1.5:0.1:100取NH4VO3、NaCl和去离子水,将NH4VO3、NaCl和表面活性剂溶于去离子水中,加入适量的盐酸调节混合容易的pH值至2。将所得混合溶液倒入聚四氟乙烯衬里不锈钢高压釜,200℃条件下水热反应24小时,然后自然冷却至室温,将反应得产物进行真空抽滤,用去离子水和乙醇各洗涤两遍,真空干燥后,再放入高温炉中400℃煅烧12小时,制备得到为棕色粉末的NaV6O15。经场发射透射电子显微镜检测发现该制备得到的NaV6O15的晶体结构长度均约1.35um且颗粒大小均匀的纳米棒状结构。
将制备的NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于铝棒上,真空干燥即制作成正极。以金属钠作对电极,玻璃纤维作隔膜,加入电解液即构成电池。经测试,在电压3.5V的情况下,当电流密度分别为20、50、100和150mAg-1时,此电池首次放电容量分别为147、128、118和107mAhg-1,30次充放电循环后的容量保有率为64.3%、68.7%、71.9%和74.1%。
实施例2
质量比NH4VO3:NaCl:表面活性剂:去离子水=1:2:0.2:100取NH4VO3、NaCl和去离子水,将NH4VO3、NaCl和表面活性剂溶于去离子水中,在60℃下不断搅拌至完全溶解,加入适量的强酸溶液(比如盐酸、硫酸等)调节混合容易的pH值至为1。将所得混合溶液倒入聚四氟乙烯衬里不锈钢高压釜,300℃条件下水热反应12小时,然后自然冷却至室温,将反应得产物进行真空抽滤,用去离子水和乙醇各洗涤两遍,真空干燥后,再放入高温炉中600℃煅烧6小时,制备得到为棕色粉末的NaV6O15。经场发射透射电子显微镜检测发现该制备得到的NaV6O15的晶体结构为长度均约1.5um且颗粒大小均匀的纳米棒状结构。
将制备的NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于铝棒上,真空干燥即制作成正极。以金属钠作对电极,玻璃纤维作隔膜,加入电解液即构成电池。经测试,在电压3.5V的情况下,当电流密度分别为20、50、100和150mAg-1时,此电池首次放电容量分别为167、158、142和124mAhg-1,30次充放电循环后的容量保有率为66.1%、69.5%、73.2%和76.4%。
实施例3
质量比NH4VO3:NaCl:表面活性剂:去离子水=1:2.5:0.3:100取NH4VO3、NaCl和去离子水,将NH4VO3、NaCl和表面活性剂溶于去离子水中,在60℃下不断搅拌至完全溶解,加入适量的强酸溶液(比如盐酸、硫酸等)调节混合容易的pH值至为1。将所得混合溶液倒入聚四氟乙烯衬里不锈钢高压釜,300℃条件下水热反应12小时,然后自然冷却至室温,将反应得产物进行真空抽滤,用去离子水和乙醇各洗涤两遍,真空干燥后,再放入高温炉中600℃煅烧6小时,制备得到为棕色粉末的NaV6O15。经场发射透射电子显微镜检测发现该制备得到的NaV6O15的晶体结构为长度均约1.4um且颗粒大小均匀的纳米棒状结构。
将制备的NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于铝棒上,真空干燥即制作成正极。以金属钠作对电极,玻璃纤维作隔膜,加入电解液即构成电池。经测试,在电压3.5V的情况下,当电流密度分别为20、50、100和150mAg-1时,此电池首次放电容量分别为159、151、134和114mAhg-1,30次充放电循环后的容量保有率为63.4%、65.7%、71.9%和75.8%。
通过上述对电池的测试证明,表面活性剂的添加量的多寡能够有效提高NaV6O15电极材料的电化学性能,这与合成NaV6O15为尺寸均匀的纳米棒状的形貌有关,不仅可以降低充放电过程中钠离子扩散以及电子传输的距离,而且增加电极材料与电解液之间的接触面积,有利于电解液的浸润,从而提高电化学性能。但是,过量的表面活性剂反而会使为NaV6O15的形貌为不规则的形状,反而降低电极材料的电化学性能,故本发明确定制备NaV6O15电极材料中表面活性剂的恰当含量,可以确保电极材料具有最佳的电化学性能,制备得到的电池的性能也最佳。
另外,本发明提到的表面活性剂为现有技术中制备钠离子电池所用到的任何一种表面活性剂,在此不一一详细描述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种钠离子电池,包括正极、金属钠的对电极、玻璃纤维的隔膜及电解液,其特征在于,该正极由NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合后,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于金属棒上,真空干燥制成;
其中,NaV6O15的晶体结构为尺寸均匀纳米棒状结构,由质量比NH4VO3:NaCl:表面活性剂:去离子水=1:(1.5~2.5):(0.1~0.3):100的NH4VO3、NaCl、表面活性剂和去离子水在强酸性的水热条件下制备而成。
2.根据权利要求1所述钠离子正极材料,其特征在于,NH4VO3:NaCl:表面活性剂:去离子水=1:2:0.2:100。
3.一种钠离子电池的制备方法,其特征在于,包括:
步骤一、按质量比NH4VO3:NaCl:表面活性剂:去离子水=1:(1.5~2.5):(0.1~0.3):100取NH4VO3、NaCl和去离子水,将NH4VO3、NaCl和表面活性剂溶于去离子水中,在60℃下不断搅拌至完全溶解,加入适量的盐酸调节混合容易的pH值至不超过2;
步骤二、将所得混合溶液倒入不锈钢高压釜,200℃-300℃条件下水热反应12-24小时,NH4VO3中的VO3-会与盐酸的H+结合生成HVO3,HVO3进一步水解生成具有层状结构的V2O5,随着水热反应的进行,体系温度升高压强增大,NaCl中的Na离子会逐步嵌入V2O5的层状结构中,最终生成NaV6O15,然后自然冷却至室温并进行真空抽滤,用去离子水和乙醇各洗涤两遍,真空干燥后,再放入高温炉中400℃-600℃煅烧6-12小时,制备得到为棕色粉末的NaV6O15
步骤三、将制备的NaV6O15、乙炔黑及粘结剂按质量比75:15:10混合,滴加适量的N-甲基-2-吡咯烷酮,不断研磨搅拌至均匀糊状后涂布于金属棒上,真空干燥即制作成正极;
步骤四、以金属钠作为上述正极的对电极,以玻璃纤维作为隔膜,加入电解液即制备得到钠离子电池。
4.根据权利要求3所述的钠离子电池的制备方法,其特征在于,NH4VO3:NaCl:表面活性剂:去离子水=1:2:0.2:100。
5.根据权利要求3所述的钠离子电池的制备方法,金属棒为铝棒或铜棒。
CN201610244678.3A 2016-04-18 2016-04-18 钠离子电池及制备方法 Withdrawn CN105789691A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610244678.3A CN105789691A (zh) 2016-04-18 2016-04-18 钠离子电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610244678.3A CN105789691A (zh) 2016-04-18 2016-04-18 钠离子电池及制备方法

Publications (1)

Publication Number Publication Date
CN105789691A true CN105789691A (zh) 2016-07-20

Family

ID=56397810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610244678.3A Withdrawn CN105789691A (zh) 2016-04-18 2016-04-18 钠离子电池及制备方法

Country Status (1)

Country Link
CN (1) CN105789691A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524661A (zh) * 2018-11-06 2019-03-26 武汉理工大学 锰离子预嵌入的层状Mn0.04V2O5·1.17H2O纳米带材料及制备方法和应用
CN111153436A (zh) * 2019-12-31 2020-05-15 中国地质大学(武汉) 一种自组装NaV6O15纳米片微球及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110108760A1 (en) * 2009-11-10 2011-05-12 Fuji Jukogyo Kabushiki Kaisha Electrode material, production method of same and lithium ion secondary battery
CN103130276A (zh) * 2013-02-28 2013-06-05 安徽工业大学 一种钒酸镉纳米棒的制备方法
CN103268964A (zh) * 2013-05-09 2013-08-28 西安交通大学 一种钒酸钠组装水溶液锂离子电池体系的方法
CN104779382A (zh) * 2015-02-06 2015-07-15 武汉理工大学 三维分级异质结构纳米材料及其梯度水热制备方法和应用
CN104966813A (zh) * 2015-05-08 2015-10-07 中国科学院青岛生物能源与过程研究所 一种钠离子电池负极片及钠离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110108760A1 (en) * 2009-11-10 2011-05-12 Fuji Jukogyo Kabushiki Kaisha Electrode material, production method of same and lithium ion secondary battery
CN103130276A (zh) * 2013-02-28 2013-06-05 安徽工业大学 一种钒酸镉纳米棒的制备方法
CN103268964A (zh) * 2013-05-09 2013-08-28 西安交通大学 一种钒酸钠组装水溶液锂离子电池体系的方法
CN104779382A (zh) * 2015-02-06 2015-07-15 武汉理工大学 三维分级异质结构纳米材料及其梯度水热制备方法和应用
CN104966813A (zh) * 2015-05-08 2015-10-07 中国科学院青岛生物能源与过程研究所 一种钠离子电池负极片及钠离子电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DANLU JIANG ET AL.: "Self-Combustion Synthesis and Ion Diffusion Performance of NaV6O15 Nanoplates as Cathode Materials for Sodium-Ion Batteries", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *
EUGENE KHOO ET AL: "Electrochemical energy storage in a β-Na0.33V2O5 nanobelt network and its application for supercapacitors", 《JOURNAL OF MATERIALS CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524661A (zh) * 2018-11-06 2019-03-26 武汉理工大学 锰离子预嵌入的层状Mn0.04V2O5·1.17H2O纳米带材料及制备方法和应用
CN111153436A (zh) * 2019-12-31 2020-05-15 中国地质大学(武汉) 一种自组装NaV6O15纳米片微球及其制备方法和应用

Similar Documents

Publication Publication Date Title
Liu et al. One‐step synthesis of single‐layer MnO2 nanosheets with multi‐role sodium dodecyl sulfate for high‐performance pseudocapacitors
Jung et al. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries
Li et al. Spinel LiNi0. 5Mn1. 5O4 as superior electrode materials for lithium-ion batteries: Ionic liquid assisted synthesis and the effect of CuO coating
CN104979105B (zh) 一种氮掺杂多孔碳材料、制备方法及其应用
CN106986387B (zh) 一种三维二硫化钼花球及其制备方法
Zhang et al. Scalable Spray Drying Production of Amorphous V2O5–EGO 2D Heterostructured Xerogels for High‐Rate and High‐Capacity Aqueous Zinc Ion Batteries
CN106947994B (zh) 一种基于氧化铜纳米线的金属保护层
CN102764897A (zh) 一种用于导电浆料的亚微米级银粉的制备方法
Heli et al. Low-temperature synthesis of LiV3O8 nanosheets as an anode material with high power density for aqueous lithium-ion batteries
Liu et al. High energy density LiFePO4/C cathode material synthesized by wet ball milling combined with spray drying method
Liu et al. Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery
Wang et al. A facile route for PbO@ C nanocomposites: An electrode candidate for lead-acid batteries with enhanced capacitance
CN108807964A (zh) 一种镍钴铝三元正极材料的包覆方法及应用
CN110615438A (zh) 一种Ti3C2粉体的制备方法
CN105655561A (zh) 一种磷酸锰锂纳米片的合成方法
Guo et al. Novel porous Si–Cu3Si–Cu microsphere composites with excellent electrochemical lithium storage
CN104282894B (zh) 一种多孔Si/C复合微球的制备方法
CN105788882A (zh) 四氧化三钴纳米立方的水热制备方法及制备电极片的应用
Wang et al. Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries
Fu et al. Lithium pre‐cycling induced fast kinetics of commercial Sb2S3 anode for advanced sodium storage
Sui et al. Salt solution etching to construct micro-gullies on the surface of Zn anodes enhances anodes performance in aqueous zinc-ion batteries
Chen et al. Designing of carbon cloth@ Co-MOF@ SiO2 as superior flexible anode for lithium-ion battery
Tripathi et al. Ecofriendly approach to making graphene–tin/tin oxide nanocomposite electrodes for energy storage
Wu et al. Quantitative resolution of complex stoichiometric changes during electrochemical cycling by density functional theory-assisted electrochemical quartz crystal microbalance
CN105789691A (zh) 钠离子电池及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20160720

WW01 Invention patent application withdrawn after publication