CN105784820B - 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法 - Google Patents
一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法 Download PDFInfo
- Publication number
- CN105784820B CN105784820B CN201610138381.9A CN201610138381A CN105784820B CN 105784820 B CN105784820 B CN 105784820B CN 201610138381 A CN201610138381 A CN 201610138381A CN 105784820 B CN105784820 B CN 105784820B
- Authority
- CN
- China
- Prior art keywords
- spe
- nano material
- graphene hydrogel
- screen printing
- bipyridyl ruthenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Plasma & Fusion (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明属于农产品安全检测领域,涉及一种基于丝网印刷碳电极的适配体传感器制备方法并将其应用于微囊藻毒素的检测。首先利用物理吸附法制备了硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料。然后将其修饰到丝网印刷碳电极表面,进一步以此作为固定适配体的载体构建电化学发光传感平台,进而将其应用于微囊藻毒素的检测。本发明旨在发明一种制备工艺简单,选择性好,灵敏度高、易于产业化的丝网印刷碳电极适配体传感电极的制备方法。
Description
技术领域
本发明具体涉及一种基于丝网印刷碳电极(SPE)的适配体传感器制备及检测方法,属于农产品安全检测领域。
背景技术
微囊藻毒素(MCs) 是一种由产毒水华蓝藻释放的环七肽毒素,具有强烈的肝毒性。随着工业化的发展,水体中存在着大量含氮、磷的污染物,大量MCs由于富营养化而存在。MCs不仅能直接导致一些水生生物如鱼类及贝类的患病及死亡,而且能促使一些饮用了含有MCs的水的野生动植物及家禽、家畜中毒甚至死亡。更值得一提的是,MCs可通过食物链的生物富集危害人类的健康。因此,微囊藻毒素成为水质控制和环境检测的一个很重要指标。由于其急性毒性强,世界卫生组织规定饮用水中微囊藻毒素的最高含量仅为lμg/L。MCs分布较广,化学性质稳定,不易分解,最主要的危害是具有较强的肝毒性和肿瘤促进作用。目前所发现的微囊藻毒素中,具有毒性效应的有70多种,其中以MC-LR的毒性最强,所以一般都是以MC-LR的值限定饮用水中藻毒素的限值,世界卫生组织推荐以MC-LR为作为饮用水中藻毒素的标准值,并推荐人体最大可耐受日摄入量(tolerable daily intake,TDI)为每千克体重0.04μg。
目前存在很多检测方法,如气相色谱法、酶联分析、蛋白磷酸酶抑制分析法等,但是这些检测方法需要大量的工作人员,操作复杂,费用高,所以我们急需要找到一种灵敏、操作简单的检测方法。
电化学传感器因其灵敏度高、响应时间短等优点,近年来受到广泛地关注。然而电化学传感器在实际应用中,因实际样品的复杂性,常常伴随着传感器表面受到破坏的“电极中毒”现象。因此,近年来,研究一次性传感器成为一种有效的手段用于消除检测过程中电极本身污染。本发明采用的丝网印刷碳电极具有制作简单、能够实现批量生产、电极集成、成本低且一次性使用便携可抛弃的优点,避免了共用同一电极检测多个样本时的交叉干扰问题,很好地解决了当前电极预处理的繁琐程序,且同批次电极具有很好的同一性,可以批量生产,实现商品化。为生物传感器走向低廉、大规模应用提供了一种具有前景的途径。
发明内容
本发明的目的在于解决现有技术工艺繁琐、成本昂贵、难以产业化生产等缺点,提供一种操作简单、成本低廉,选择性好,易于产业化的丝网印刷碳电极的适配体传感器的制备方法及其用途。
一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法,包括如下步骤:
步骤一、丝网印刷碳电极SPE的预处理:清洗、活化SPE;
步骤二、硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料BNGHs/Ru(NH3)6Cl3的制备:将氧化石墨和五硼酸铵按比例混合,所得的混合物超声后转移至反应釜中,140~200℃水热反应12 h后,自组装得到硼氮同杂石墨烯水凝胶BNGHs;然后浸入一定浓度的联吡啶钌的溶液中浸泡3~6 h,取出用超纯水淋洗,得BNGHs/Ru(NH3)6Cl3,冷冻干燥备用;
步骤三、BNGHs/Ru(NH3)6Cl3/SPE的制备:将2~10 mg步骤二制备的BNGHs/Ru(NH3)6Cl3纳米材料分散于1 mL超纯水中,制成BNGHs/Ru(NH3)6Cl3溶液;然后在经过预处理的SPE电极表面滴涂10~20 μL的BNGHs/Ru(NH3)6Cl3溶液,在室温下干燥,用超纯水淋洗电极表面,冲洗掉未固定的纳米材料,得到BNGHs/Ru(NH3)6Cl3/SPE;
步骤四、BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体/SPE的制备:在BNGHs/Ru(NH3)6Cl3/SPE电极表面滴涂10~20μL的5 mol/L的MC-LR适配体的溶液,室温下干燥,超纯水淋洗,干燥备用,得BNGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE;
步骤五、NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE用于MC-LR的检测:将步骤四制备的NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE置于5 mL浓度为10~20 mmol/L三乙醇胺的PBS缓冲溶液中(pH=7~8),设置光电倍增管高压为800 V,以铂丝电极为对电极,Ag/AgCl电极为参比电极进行循环伏安法电位扫描至信号稳定;再将NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE依次浸入1×10-13~1×10-6 mol/L的不同浓度的MC-LR温育0.5 h,收集电化学发光(ECL)信号,根据不同浓度的MC-LR对应的ECL信号强度建立标准曲线。
步骤一中,所述丝网印刷碳电极SPE的预处理的步骤为:将SPE依次置于NaOH溶液超声,超纯水冲洗,氮气吹干;接着,将其置于5mol/L的HCl溶液中超声,依次用超纯水、无水乙醇冲洗,氮气吹干;最后在磷酸盐缓冲溶液中扫描电流-时间曲线直至曲线趋于稳定。
步骤二中,所述氧化石墨和五硼酸铵的用量比为3 mL:50~250 mg;所述的氧化石墨是采用经典的Hummers方法合成的,其浓度为1~5 mg/mL;所述混合物超声时间为0.5 h;所述的联吡啶钌溶液的浓度为1~20 mM/L。
步骤四中,所述MC-LR适配体的溶液是用Tris-HCl结合缓冲液配制的,所述Tris-HCl结合缓冲液的成分为:50 mM的三(羟甲基)氨基甲烷,0.1 M的HCl,0.1 M NaCl, 5 mMMgCl2 , 0.2 M KCl及1.0 mM 乙二胺四乙酸二钠水溶液。
步骤五中,所述循环伏安法电位扫描范围为0.2~1.2 V,扫描速度为100 mV/s。
所述的PBS为磷酸盐缓冲溶液;
所述的MC-LR适配体的碱基序列为:
5′-GGC GCC AAA CAG GAC CAC CAT GAC AATTAC CCA TAC CAC CTC ATT ATG CCCCAT CTC CGC-3′。
本发明的有益效果为:
(1)本发明提供了一种NGHs/Ru(NH3)6Cl3电极材料的制备方法,合成工艺简单,并基于此提供了一种NGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体的丝网印刷碳电极的制备方法;
(2)本发明提供的丝网印刷电极制作方法简单,具有能够实现批量生产、电极集成、样品用量少、成本低且一次性使用可抛弃的优点,为生物传感器走向产业化提供了一种具有广泛前景的途径;
(3)本发明制备的丝网印刷碳电极适配体传感器可用于MC-LR的选择性检测,该传感器制备工艺低,简单快捷,灵敏度高,为农产品的安全生产与消费提供强有力的技术支撑,在食品安全和环境保护领域具有重大意义。
附图说明
图1为技术方案所涉及的丝网印刷碳电极的实物图;
图2为实施例2的(A)为MC-LR浓度与电化学发光信号强度之间的对应关系图,(B)为检测MC-LR的标准曲线。
具体实施方式
实施例1:
1. 一种硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料的(BNGHs/Ru(NH3)6Cl3)制备方法,包括以下步骤:
(1)在烧杯中加入3 mL氧化石墨(1 mg/mL)和50 mg五硼酸铵,所得的混合物超声0.5 h后转移至反应釜中,140℃下反应12 h,自组装制得得到硼氮同杂石墨烯水凝胶(BNGHs)。
(2)将步骤(1)所合成的硼氮同杂石墨烯水凝胶浸入1 mM/L联吡啶钌的溶液中浸泡3 h,取出用超纯水淋洗,冷冻干燥备用。
2. 一种基于BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体的丝网印刷碳电极(SPE)的制备方法及其应用:
(1)清洗、活化SPE:
将SPE依次置于NaOH溶液超声,超纯水冲洗,氮气吹干;接着,将其置于HCl溶液中超声,依次用超纯水、无水乙醇冲洗,氮气吹干;最后在磷酸盐缓冲溶液中扫描电流-时间曲线直至曲线趋于稳定。
(2)BNGHs/Ru(NH3)6Cl3/SPE的制备:
将2 mg上述制备的BNGHs/Ru(NH3)6Cl3纳米材料分散于1 mL超纯水中,在经过预处理的SPE电极表面滴涂10 μL的BNGHs/Ru(NH3)6Cl3溶液,在室温下干燥,用超纯水淋洗电极表面,冲洗掉未固定的纳米材料,得到BNGHs/Ru(NH3)6Cl3/SPE。
(3)BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体/SPE的制备:
在BNGHs/Ru(NH3)6Cl3/SPE电极表面滴涂10 μL的5 mol/L的MC-LR适配体的溶液,室温下干燥,超纯水淋洗,干燥备用,得BNGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE。
(4)NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE用于MC-LR的检测:
将步骤(4)制备的NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE置于5 mL浓度为10 mmol/L三乙醇胺的PBS缓冲溶液中(pH=7),设置光电倍增管高压为800 V,以铂丝电极为对电极,Ag/AgCl电极为参比电极进行循环伏安扫描至信号稳定。电位扫描范围为0.2~1.2 V,扫描速度为100 mV/s;再将NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE依次浸入从小到大不同浓度的MC-LR温育0.5 h收集电化学发光(ECL)信号,根据不同浓度的MC-LR对应的ECL信号强度建立标准曲线。
实施例2:
1. 一种硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料的(BNGHs/Ru(NH3)6Cl3)制备方法,包括以下步骤:
(1)在烧杯中加入3 mL氧化石墨(3 mg/mL)和100 mg五硼酸铵,所得的混合物超声0.5 h后转移至反应釜中,180℃下反应12 h,自组装制得得到硼氮同杂的石墨烯水凝胶(BNGHs)。
(2)将步骤(1)所合成的硼氮同杂石墨烯水凝胶浸入10 mM/L联吡啶钌的溶液中浸泡4 h,取出用超纯水淋洗,冷冻干燥备用。
2. 一种基于BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体的丝网印刷碳电极(SPE)的制备方法及其应用:
(1)清洗、活化SPE:
将SPE依次置于NaOH溶液超声,超纯水冲洗,氮气吹干;接着,将其置于HCl溶液中超声,依次用超纯水、无水乙醇冲洗,氮气吹干;最后在磷酸盐缓冲溶液中扫描电流-时间曲线直至曲线趋于稳定。
(2)BNGHs/Ru(NH3)6Cl3/SPE的制备:
将5 mg上述制备的BNGHs/Ru(NH3)6Cl3纳米材料分散于1 mL超纯水中,在经过预处理的SPE电极表面滴涂15 μL的BNGHs/Ru(NH3)6Cl3溶液,在室温下干燥,用超纯水淋洗电极表面,冲洗掉未固定的纳米材料,得到BNGHs/Ru(NH3)6Cl3/SPE。
(3)BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体/SPE的制备:
在BNGHs/Ru(NH3)6Cl3/SPE电极表面滴涂15 μL的5 mol/L的MC-LR适配体的溶液,室温下干燥,超纯水淋洗,干燥备用,得BNGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE。
(4)NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE用于MC-LR的检测:
将步骤(4)制备的NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE置于5 mL浓度为15 mmol/L三乙醇胺的PBS缓冲溶液中(pH=7.4),设置光电倍增管高压为800 V,以铂丝电极为对电极,Ag/AgCl电极为参比电极进行循环伏安扫描至信号稳定。电位扫描范围为0.2~1.2 V,扫描速度为100 mV/s;再将NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE依次浸入从小到大不同浓度的MC-LR温育0.5 h(1×10-13~1×10-6 mol/L)收集电化学发光(ECL)信号,根据不同浓度的MC-LR对应的ECL信号强度建立标准曲线,图2中(A)为MC-LR浓度与电化学发光信号强度之间的对应关系,(B)为检测MC-LR的标准曲线,a~i分别为0 mol/L,0.1 pmol/L,0.5 pmol/L,1pmol/L,5 pmol/L,10 pmol/L,50 pmol/L,100 pmol/L,500 pmol/L和1 nmol/L。
实施例3:
1. 一种硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料的(BNGHs/Ru(NH3)6Cl3)制备方法,包括以下步骤:
(1)在烧杯中加入3 mL氧化石墨(5 mg/mL)和250 mg五硼酸铵,所得的混合物超声0.5 h后转移至反应釜中,200 ℃下反应12 h,自组装制得得到硼氮同杂的石墨烯水凝胶(BNGHs)。
(2)将步骤(1)所合成的硼氮同杂石墨烯水凝胶浸入20 mM/L联吡啶钌的溶液中浸泡6 h,取出用超纯水淋洗,冷冻干燥备用。
2. 一种基于BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体的丝网印刷碳电极(SPE)的制备方法及其应用:
(1)清洗、活化SPE:
将SPE依次置于NaOH溶液超声,超纯水冲洗,氮气吹干;接着,将其置于HCl溶液中超声,依次用超纯水、无水乙醇冲洗,氮气吹干;最后在磷酸盐缓冲溶液中扫描电流-时间曲线直至曲线趋于稳定。
(2)BNGHs/Ru(NH3)6Cl3/SPE的制备:
将10 mg上述制备的BNGHs/Ru(NH3)6Cl3纳米材料分散于1 mL超纯水中,在经过预处理的SPE电极表面滴涂20 μL的BNGHs/Ru(NH3)6Cl3溶液,在室温下干燥,用超纯水淋洗电极表面,冲洗掉未固定的纳米材料,得到BNGHs/Ru(NH3)6Cl3/SPE。
(3)BNGHs/Ru(NH3)6Cl3纳米材料固载MC-LR适配体/SPE的制备:
在BNGHs/Ru(NH3)6Cl3/SPE电极表面滴涂20 μL的5 mol/L的MC-LR适配体的溶液,室温下干燥,超纯水淋洗,干燥备用,得BNGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE。
(4)NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE用于MC-LR的检测:
步骤(4)制备的NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE置于5 mL浓度为20 mmol/L三乙醇胺的PBS缓冲溶液中(pH=8),设置光电倍增管高压为800 V,以铂丝电极为对电极,Ag/AgCl电极为参比电极进行循环伏安扫描至信号稳定。电位扫描范围为0.2~1.2 V,扫描速度为100 mV/s;再将NGHs/Ru(NH3)6Cl3/MC-LR适配体/SPE依次浸入从小到大不同浓度的MC-LR温育0.5 h收集电化学发光(ECL)信号,根据不同浓度的MC-LR对应的ECL信号强度建立标准曲线。
SEQUENCE LISTING
<110> 江苏大学
<120> 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法
<130> 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法
<160> 1
<170> PatentIn version 3.5
<210> 1
<211> 60
<212> DNA
<213> 人工序列
<400> 1
ggcgccaaac aggaccacca tgacaattac ccataccacc tcattatgcc ccatctccgc 60
Claims (5)
1.一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素-LR的方法,其特征在于,包括如下步骤:
步骤一、丝网印刷碳电极SPE的预处理:清洗、活化SPE;
步骤二、硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料的制备:
将氧化石墨和五硼酸铵按比例混合,所得的混合物超声后转移至反应釜中,140~200℃水热反应12h后,自组装得到硼氮同杂石墨烯水凝胶;然后浸入一定浓度的联吡啶钌的溶液中浸泡3~6h,取出用超纯水淋洗,得硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料,冷冻干燥备用;
步骤三、硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE的制备:
将2~10mg步骤二制备的硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料分散于1mL超纯水中,制成硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料溶液;然后在经过预处理的SPE电极表面滴涂10~20μL的硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料溶液,在室温下干燥,用超纯水淋洗电极表面,冲洗掉未固定的纳米材料,得到硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE;
步骤四、微囊藻毒素-LR适配体固载于硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE表面:
在硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE表面滴涂10~20μL的5mol/L的微囊藻毒素-LR适配体的溶液,室温下干燥,超纯水淋洗,干燥备用,得微囊藻毒素-LR适配体/硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE;
步骤五、微囊藻毒素-LR适配体/硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE用于微囊藻毒素-LR的检测:
将步骤四制备的微囊藻毒素-LR适配体/硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE置于5mL浓度为10~20mmol/L三乙醇胺的pH=7~8的PBS缓冲溶液中,设置光电倍增管高压为800V,以铂丝电极为对电极,Ag/AgCl电极为参比电极进行循环伏安法电位扫描至信号稳定;再将微囊藻毒素-LR适配体/硼氮同杂石墨烯水凝胶/联吡啶钌纳米材料/SPE依次浸入1×10-13~1×10-6mol/L的不同浓度的微囊藻毒素-LR温育0.5h,收集电化学发光ECL信号,根据不同浓度的微囊藻毒素-LR对应的ECL信号强度建立标准曲线。
2.根据权利要求1所述的一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素-LR的方法,其特征在于,步骤一中,所述丝网印刷碳电极SPE的预处理的步骤为:将SPE依次置于NaOH溶液超声,超纯水冲洗,氮气吹干;接着,将其置于5mol/L的HCl溶液中超声,依次用超纯水、无水乙醇冲洗,氮气吹干;最后在磷酸盐缓冲溶液中扫描电流-时间曲线直至曲线趋于稳定。
3.根据权利要求1所述的一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素-LR的方法,其特征在于,步骤二中,所述氧化石墨和五硼酸铵的用量比为3mL:50~250mg;所述的氧化石墨是采用经典的Hummers方法合成的,其浓度为1~5mg/mL;所述混合物超声时间为0.5h;所述的联吡啶钌溶液的浓度为1~20mM/L。
4.根据权利要求1所述的一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素-LR的方法,其特征在于,步骤五中,所述循环伏安法电位扫描范围为0.2~1.2V,扫描速度为100mV/s。
5.根据权利要求1所述的一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素-LR的方法,其特征在于,步骤五中,所述的PBS为磷酸盐缓冲溶液;所述的微囊藻毒素-LR适配体的碱基序列为:5′-GGC GCC AAA CAG GAC CAC CAT GAC AATTAC CCA TAC CAC CTCATT ATG CCC CAT CTC CGC-3′。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610138381.9A CN105784820B (zh) | 2016-03-11 | 2016-03-11 | 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610138381.9A CN105784820B (zh) | 2016-03-11 | 2016-03-11 | 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105784820A CN105784820A (zh) | 2016-07-20 |
CN105784820B true CN105784820B (zh) | 2018-10-09 |
Family
ID=56392457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610138381.9A Expired - Fee Related CN105784820B (zh) | 2016-03-11 | 2016-03-11 | 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105784820B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106525796B (zh) * | 2016-11-08 | 2020-04-28 | 北京化工大学 | 一种可循环使用的用于检测微囊藻毒素的荧光传感器及其应用方法 |
CN106706733A (zh) * | 2016-11-14 | 2017-05-24 | 江苏大学 | 一种检测伏马毒素b1的电化学适配体传感器的制备方法 |
CN109251031A (zh) * | 2018-11-23 | 2019-01-22 | 福建农林大学 | 一种微波辅助水热制备用于超级电容器的硼氮共掺杂多孔炭材料的方法 |
CN110806438A (zh) * | 2019-10-21 | 2020-02-18 | 中国地质大学(武汉) | 基于水凝胶保护的电化学适配体生物传感器及其制备方法、应用 |
CN110849950B (zh) * | 2019-11-27 | 2022-04-15 | 安徽师范大学 | 热敏水凝胶电化学发光适配体传感器、制备方法及应用 |
CN113281388B (zh) * | 2021-04-30 | 2023-12-08 | 深圳万知达科技有限公司 | 一种基于光助燃料电池的阴极自供能适配体传感器的制备方法及其检测mc-lr的用途 |
CN114778621A (zh) * | 2022-03-21 | 2022-07-22 | 中国农业大学 | 一种基于纳米材料修饰电极快速定量检测单增李斯特菌的电化学发光检测方法 |
-
2016
- 2016-03-11 CN CN201610138381.9A patent/CN105784820B/zh not_active Expired - Fee Related
Non-Patent Citations (4)
Title |
---|
An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization;Liu, Xiang et al.;《The Analyst》;20150921;第140卷(第22期);全文 * |
Cleavage-based hybridization chain reaction for electrochemical detection of thrombin;Chang, Chai et al.;《The Analyst》;20140606;第139卷(第17期);全文 * |
Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene–CdS nanocomposites;Shangguan, Zhu et al.;《Biosensors and Bioelectronics》;20140928;第64卷;全文 * |
Wang, Yao et al..A label-free fluorescent probe for Hg²⁺and biothiols based on graphene oxide and Ru-complex.《Scientific reports》.2014,第4卷5320. * |
Also Published As
Publication number | Publication date |
---|---|
CN105784820A (zh) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105784820B (zh) | 一种丝网印刷碳电极的适配体传感器用于检测微囊藻毒素的方法 | |
Aini et al. | Development of glucose biosensor based on ZnO nanoparticles film and glucose oxidase-immobilized eggshell membrane | |
CN106018523B (zh) | 用于鉴别大西洋鲑和虹鳟的生物传感检测方法 | |
CN107202828B (zh) | 一种基于硼掺杂铁钴氧化物二维纳米复合材料的雌二醇光电化学传感器及其制备与应用 | |
CN102749373A (zh) | 一种环境雌激素电化学免疫传感器的制备方法及应用 | |
CN107345931B (zh) | 一种基于氮化碳-二元金属硼氧化物复合材料的双酚a光电化学传感器及其制备与应用 | |
CN105717180B (zh) | 一种基于二维纳米复合材料的光电化学黄曲霉毒素生物传感器的制备方法及应用 | |
CN105699645B (zh) | 一种电化学沙丁胺醇传感器的制备方法及应用 | |
Guo et al. | Electrochemical aptasensor based on multiwalled carbon nanotubes and graphene for tetracycline detection | |
CN113588752B (zh) | 一种电致化学发光适配体传感器的制备方法及应用 | |
CN110006971A (zh) | 一种双通道输出检测食源性致病菌的适体传感器的制备方法及其应用 | |
CN104407027B (zh) | 磁控诱导自组装快速成膜制备谷胱甘肽印迹传感器的方法 | |
CN110106232A (zh) | 基于靶标催化的无酶无标记双尾杂交生物传感器及制备方法 | |
CN102147389A (zh) | 一种基于辣根过氧化物酶-凹土纳米复合材料的细胞内过氧化氢的检测方法 | |
Lian et al. | Determination of oxytetracycline with a gold electrode modified by chitosan-multiwalled carbon nanotube multilayer films and gold nanoparticles | |
CN105385753A (zh) | 基于核酸适配体检测水胺硫磷的电化学传感器及其制备方法 | |
CN110133077B (zh) | 一种基于复合膜修饰电极的苯乙醇胺a检测方法及传感器 | |
CN109580731A (zh) | Dna微囊及金电极-dna树枝状大分子传感器的制备方法以及在检测多氯联苯中的应用 | |
CN102514261A (zh) | 一种微生物生物印迹薄膜及其制备方法 | |
CN108680635A (zh) | 一种可用于Cu2+检测的功能修饰针灸针电极及其制备方法 | |
CN106198653B (zh) | 一种定性定量检测葡萄糖的传感器材料及其制备方法 | |
CN106053570B (zh) | 一种石墨烯信号放大的微囊藻毒素-lr电化学检测方法 | |
CN104965014B (zh) | 用于检测sam的量子点/酶复合碳糊电极的制备方法 | |
CN108132287A (zh) | 一种基于聚吡咯纳米片复合材料的电流型免疫传感器的制备方法及应用 | |
CN102621216A (zh) | 用双放大效应分子印迹电化学传感器检测微量土霉素的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181009 Termination date: 20190311 |