CN105765099B - 用于热屏障的微开裂和耐腐蚀性的整体烧结方法 - Google Patents

用于热屏障的微开裂和耐腐蚀性的整体烧结方法 Download PDF

Info

Publication number
CN105765099B
CN105765099B CN201480063452.2A CN201480063452A CN105765099B CN 105765099 B CN105765099 B CN 105765099B CN 201480063452 A CN201480063452 A CN 201480063452A CN 105765099 B CN105765099 B CN 105765099B
Authority
CN
China
Prior art keywords
ceramic layer
temperature
crack
component
welding torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480063452.2A
Other languages
English (en)
Other versions
CN105765099A (zh
Inventor
帕斯卡尔·法布里斯·拜赫
L·P·杜东
帕斯卡尔·杰克斯·雷蒙德·马丁内特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50482914&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105765099(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of CN105765099A publication Critical patent/CN105765099A/zh
Application granted granted Critical
Publication of CN105765099B publication Critical patent/CN105765099B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

使用等离子弧焊炬通过热喷涂将YSZ类陶瓷层沉积在粘结底层上,所述粘结底层自身沉积在要保护的部件上。通过用等离子弧焊炬的束流扫描陶瓷层进行烧结后处理,在此扫描过程中,束流在陶瓷层(C)表面上的撞击点的温度为1300℃~1700℃。

Description

用于热屏障的微开裂和耐腐蚀性的整体烧结方法
技术领域
本发明涉及热屏障。
它更具体地涉及具有横向微裂纹的YSZ陶瓷(C)类的热屏障。
背景技术
在飞机涡轮机中就像在陆基涡轮机中一样,诸如燃烧室、燃料供应喷嘴、分配器和高压涡轮叶片(HPD和HPP)的高压体的构成部件由耐熔“热屏障”类的绝热系统保护。
此系统的整体性对满足所保护的部件的性能要求来说是决定因素。
然而,在日常操作过程中,通常观察到与热气体造成的腐蚀有关的问题。在气体涡轮机中,腐蚀是沉积物表面上的多重爆炸(空化现象)产生的腐蚀和与发动机切断有关的热循环造成的腐蚀的综合结果。
在这两种情况中,结果是绝热厚度由于腐蚀或微剥落而减小,从而导致对下面基底的热保护更少。部件的寿命由此减短并且需要频繁修复,从而产生在维护机构和成本方面上的问题。
对于由电子束物理气相沉积(EBPVD)所沉积的热屏障,由大气等离子喷涂(APS)获得的具有横向微裂纹的热屏障是目前最好的涂层,同时满足耐腐蚀的要求和耐热循环的要求。
这种技术特别用于固体圆形部件,诸如燃烧室的部件;或者用于较小的部件,诸如煤油注射喷嘴。
如图1所示,沉积在部件P上的热屏障TB则通常由以下结构组成:
MCrAlY类(M对应于Ni、Co、Fe和NiCo)的合金沉积物的底层BSL,形成所谓的粘结底层(BSL);
YSZ(由氧化钇Y2O3稳定的氧化锆ZrO2)陶瓷(C)的隔热层C。
热屏障TB的BSL层和C层均使用等离子弧焊炬的热喷涂进行沉积。
对于所述热屏障的实例,有利地能够参考专利申请FR2854166,它描述了一种获得具有横向微裂纹(具有垂直于基底的主向量)的具有陶瓷(C)层C和粘结底层(BSL)的热屏障的方法,该横向微裂纹赋予热屏障以一定的柔韧性并且吸收在基底/热屏障界面上和在热屏障中的多个差热-膨胀循环。
发明内容
本发明的一个总体目标是在部件(例如涡轮部件)中改进包括具有横向微裂纹的YSZ陶瓷层(C)的热屏障的耐腐蚀性和耐微剥落性。
本发明进一步的目的是改进绝热YSZ陶瓷(C)层C的耐腐蚀性并同时保持操作范围(特别是耐温性的范围)几乎等同,而无需显著改变热屏障的总生产时间和成本。
为此,本发明提出了一种获得具有横向微裂纹的热屏障的方法,其中,使用等离子弧焊炬通过热喷涂将YSZ类的陶瓷(C)层C沉积在粘结底层(BSL)上,所述粘结底层(BSL)自身沉积在要保护的部件。用等离子弧焊炬的束流扫描陶瓷(C)层C进行烧结后处理,在此扫描过程中,束流在陶瓷(C)层C上的撞击点的温度为1300℃~1700℃,优选为1400℃~1450℃。
实际上已知,在空气中YSZ类的陶瓷(C)能在等于或大于1300℃的温度下烧结。
在此处和本文其余部分中,烧结是指使材料(例如粉末)强化的处理,通过供应能量(热、机械、激光、等离子焊炬……)使系统的能量最小化而不使至少一种组成部分熔融来实现。陶瓷(C)层的所述烧结使其硬化;它减少了孔隙率并产生了改进的耐腐蚀性。
为了进行烧结,陶瓷(C)必须保持在如下范围内:
温度足够高以使烧结反应能发生,和
时间足够长以进行烧结反应,
孔隙率和未熔合的颗粒水平如喷涂时很低(<5%)。
然而,对于大尺寸部件,热屏障冷却过快,从而阻止烧结反应持续足够长的时间。
使用等离子焊炬提供了对烧结的完全控制。
该方法也能够有利地用于小尺寸部件。
在所述烧结后处理过程中,持续测量陶瓷(C)层C表面上的束流点的温度,并且根据该测量调节焊炬的参数。要控制的关键参数具体是:
焊炬-部件距离(与温度T有关);
焊炬传导速率v和覆盖百分比C,传导速率v和覆盖百分比都与暴露于所述温度T的时间有关。
烧结是具有扩散驱动力(其是时间和温度的函数)的现象。对参数进行控制提供更好的烧结。
此外,对与陶瓷(C)层C相反的部件的表面进行冷却,以将它通常保持在低于950℃的温度下。
所提出的后处理能够用于在它沉积后就已微开裂的陶瓷层(C)。
因此,后处理能改进其烧结。
作为一个变型,烧结后处理可以在标准热屏障(无微裂纹)的喷涂后产生微裂纹。
在后处理步骤中,用束流扫描陶瓷(C)层的表面,以达到1300℃~1700℃的温度,并持续若干秒,通常持续五秒至约二十秒。
所提出的方法有利地应用于大尺寸部件、涂覆到这种类型部件上的微开裂的热屏障,其通常在抗腐蚀性方面几乎不令人满意。
附图说明
从参照附图作为非限制性说明给出的以下描述中,本发明的其它特征和优点将变得更加明显,在附图中:
图1给出了部件的示意性截面图,该部件例如为涡轮(例如涂覆有粘结底层(BSL)和热屏障的飞机涡轮)中使用的部件;
图2示意性地示出了本发明的可能实施方式的主要步骤;
图3示意性示出后处理烧结步骤的实施,冷却流吹到与热斑点相反的内壁侧上,在此示意图中未示出该冷却流;
图4是示出热斑点在涂覆有热屏障的部件上移动的示意性平面图,被扫描的该部件具有小尺寸。
具体实施方式
如图2所示,可能的实施方式包括以下各步骤:
通过打磨预备要保护的部件P的表面(步骤1);
通过APS沉积在该表面上形成粘结底层(BSL)(步骤2);
还是通过APS沉积形成绝热耐熔的YSL陶瓷(C)层C(步骤3);
对陶瓷(C)进行烧结后处理以改进其耐腐蚀性(步骤4)。
大尺寸部件
要涂覆的部件P可以是大尺寸部件,例如,燃烧室的壁。
所述燃烧室壁可以为例如两端直径为约600~800mm且高度为800mm稍微截短的金属部件5(图3)的形式。
此部件由镍基或钴基超级合金制成。它的厚度例如为1~2mm。
为了实施步骤1~4,将此部件5放置在喷涂舱7中的转盘6上。
按照常规方法,等离子弧焊炬8确保粘结底层(BSL)的沉积(步骤2),以及随后在其上的陶瓷(C)层C的淀积(步骤3)。
具体地,陶瓷(C)层C的沉积可以在确保喷涂时微开裂的条件下进行(参照前述的FR2854166)。
它也可以在不产生任何微裂纹的标准条件下进行。
然后进行步骤4的后处理以在第一种情况中改进热屏障TB的烧结;以在第二种情况中使陶瓷(C)层C和热屏障TB微开裂。
应注意:为了在步骤4的后处理过程中增加开裂,使用小粒径的细热喷涂粉末。
熔合的粉碎型细颗粒粉末(在电弧炉中熔合,随后冷却并粉碎,具有10~60μm的粒径)具有熔合更均匀的优点。
它为陶瓷层(C)提供低孔隙率(<5%)。
它更易于实现完全不存在未熔合颗粒。
因此,它能进行烧结和微开裂反应。
一种可能合适的粉末是例如由HC Starck提供的Amperit 831。
另外,还将喷涂粉末选择成:在标准喷涂条件(用于非微裂纹涂层的条件)下,由这种粉末得到的涂层C表现出促进横向微开裂的对粘结底层(BSL)的至少25MPa的粘结力。
C层和底层BSL之间的高粘结力促进在涂层厚度中而不是沿着底层/层界面产生微裂纹。
使用能够使涂层具有至少25Mpa的粘结力的熔合的、粉碎的粉末有助于在下面描述的后喷涂热处理(步骤4)过程中仅在横向方向上以至少20个微裂纹/20mm的比例产生热屏障TB的微裂纹。
如下所述实施该后处理步骤4。
从部件5中除去不再有用的所有掩模和防护项目,因为部件5将不再进行任何进一步的喷涂。
不从喷涂舱的转盘6中移除它,除非物流需要。
将焊炬8设置为工作状态,并且在将转盘设置为旋转之前用焊炬扫描部件以将热屏障TB的一些点加热到1400~1450℃。
放置就位的预先校准的高温计9确保在焊炬8的撞击点处的实时温度测量。喷涂舱7中机器人中的该高温计9嵌入部件5内。
它对准焊炬8的斑点S在涂覆部件5上的撞击点。
它被选择成使温度测量为1200~1700℃。如果陶瓷(C)是YSZ层,则高温计被选择成在大于8μm下、优选在11~13.6μm下、例如在12.6μm(克里斯琴森波长)下操作。
在这些值下:
YSZ显示出零透过率(无寄生测量);
它的发射实际上与温度无关(无校正);
它的发射率约为1,使得在黑体的普通条件下直接读出温度。
应注意:陶瓷(C)表面上的温度是以下参数的函数:
部件的旋转速度;
焊炬-涂覆的表面之间的距离;
覆盖百分比。
一旦已经达到等离子体稳定性,与焊炬出口处的等离子体的开始相关的参数(等离子体产生的气体流速、电压和强度……)保持不变,而与时间无关。
因此,对陶瓷(C)层C表面上的温度进行控制提供了对烧结动力学的控制。
当将转盘6设置成移动时,焊炬8在垂直扫描方向上移动,并与转盘的旋转移动结合,以将由焊炬喷出的斑点S喷到热屏障上,从而确保其螺旋扫描。
对等离子体参数进行控制,以使由高温计测得的表面温度保持在1400~1600℃(最佳烧结温度)的温度范围内。
通常,部件6在约35分钟内得到充分处理。
焊炬8是例如配备有产生较宽的热斑点的6mm喷嘴或8mm喷嘴的F4型。
转盘6的旋转速度例如为1m/min,而热屏障上描绘出的螺距为12mm。
焊炬的喷嘴出口与部件表面之间的距离根据所述喷嘴的直径和焊炬的功率参数而在30~70mm之间变化。
其它参数的组合显然也是可能的。
然而,应注意,表面温度必须为至少1300℃(优选为1400℃~1450℃),并且必须在小于5~10秒(以零速度外推)内达到,否则可能发生热量转移到部件内,而非烧结处理。此外,在后处理过程中,陶瓷(C)层的表面被束流扫描,以达到1300℃~1700℃的温度,并持续若干秒,通常持续五秒至约二十秒,以引起硬化反应。
还建议:相反侧,即金属侧上的温度应不超过950℃,优选为900℃(可能的峰值为1000℃),否则底层可能由于氧化而劣化。
具体地,为了防止加热部件的金属部分,在步骤4中进行的整个处理中冷却该部分。为此,使用多个强有力的空气射流。这些空气射流可朝着金属侧和陶瓷侧(C)。显然,在陶瓷(C)侧上,没有靠近斑点的流,空气流与其相距至少+/–100mm。
所述冷却正是在处理开始时使部件的整体温度更迅速地稳定;并且防止过热,过热可能损坏部件的金属部分。
通过感温变色热贴片或通过高温计或通过电偶,持续测量热屏障相反侧(金属侧)上的温度。
控制焊炬和吹扫冷却的参数,以使该温度保持在所需的水平。
小尺寸部件
步骤4中的烧结处理也可用于使小尺寸部件的热屏障TB涂层(例如煤油注射喷嘴)微开裂。
在热屏障系统的常规沉积过程中,这种类型的部件经历温度上升。该温度足够高使得陶瓷(C)(最初为预烧结形式)的烧结能够通过实施后处理烧结(步骤4)而得以改进。
与大尺寸部件的情况相同,为了形成层C,使用小粒径的细喷涂粉末以使所述层C表现出对粘结底层(BSL)高于25MPa的粘结力,而同时确保孔隙率低于5%并且没有未熔合的颗粒。
陶瓷(C)层C的烧结后处理(步骤4)和在该后处理过程中的温度控制类似于上面关于燃烧室壁所描述的内容。
具体地,所使用的高温计可以是相同类型的。
然而,要处理的部件的几何形状不同,通过焊炬8的斑点在要处理的部件的高度上的线性扫描对加热进行控制。
扫描的实例例如为图4中示出的类型。扫描速率为1m/min,间距为12mm。热斑点从一个通道到另一个通道的覆盖率为至少10%。

Claims (11)

1.一种用于获得具有横向微裂纹的热屏障的方法,其中,使用等离子弧焊炬通过热喷涂将YSZ类的陶瓷层(C)沉积在粘结底层(BSL)上,所述粘结底层(BSL)自身沉积在要保护的部件上,其特征在于,通过用所述等离子弧焊炬的束流扫描所述陶瓷层(C)进行烧结后处理,在此扫描过程中,所述束流在所述陶瓷层(C)表面上的撞击点的温度为1300℃~1700℃。
2.根据权利要求1所述的方法,其特征在于,在此扫描过程中,所述束流在所述陶瓷层(C)表面上的撞击点的温度为1400℃~1450℃。
3.根据权利要求1或2所述的方法,其特征在于,在此烧结后处理过程中,持续测量所述束流在所述陶瓷层(C)表面上的撞击点的温度,并且根据该测量对焊炬参数进行控制。
4.根据权利要求1所述的方法,其特征在于,用于沉积所述陶瓷层(C)的喷涂粉末是粒径为10μm~60μm的熔合且粉碎型的粉末。
5.根据权利要求4所述的方法,其特征在于,所喷涂的陶瓷层(C)具有小于5%的孔隙率。
6.根据权利要求4所述的方法,其特征在于,所喷涂的陶瓷层(C)对所述粘结底层(BSL)具有大于25MPa的粘结力。
7.根据权利要求1所述的方法,其特征在于,使与所述陶瓷层(C)相反的所述部件的表面冷却,以将与所述陶瓷层(C)相反的所述部件的表面保持在低于950℃的温度下。
8.根据权利要求1所述的方法,其特征在于,所述陶瓷层(C)在沉积之后微开裂,所述后处理使所述陶瓷层(C)的烧结改进。
9.根据权利要求1所述的方法,其特征在于,所述后处理在所述陶瓷层(C)上产生横向微裂纹。
10.根据权利要求1所述的方法,其特征在于,所述部件是涡轮部件。
11.根据权利要求1所述的方法,其特征在于,在所述后处理步骤中,用所述束流扫描所述陶瓷层(C)的表面,以达到1300℃~1700℃的温度,并持续五秒至二十秒。
CN201480063452.2A 2013-11-19 2014-11-19 用于热屏障的微开裂和耐腐蚀性的整体烧结方法 Active CN105765099B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1361348 2013-11-19
FR1361348A FR3013360B1 (fr) 2013-11-19 2013-11-19 Procede integre de frittage pour microfissuration et tenue a l'erosion des barrieres thermiques
PCT/FR2014/052967 WO2015075381A1 (fr) 2013-11-19 2014-11-19 Procédé intégré de frittage pour microfissuration et tenue à l'érosion des barrières thermiques

Publications (2)

Publication Number Publication Date
CN105765099A CN105765099A (zh) 2016-07-13
CN105765099B true CN105765099B (zh) 2018-12-18

Family

ID=50482914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480063452.2A Active CN105765099B (zh) 2013-11-19 2014-11-19 用于热屏障的微开裂和耐腐蚀性的整体烧结方法

Country Status (9)

Country Link
US (1) US20160281206A1 (zh)
EP (1) EP3071722B1 (zh)
JP (1) JP6722585B2 (zh)
CN (1) CN105765099B (zh)
BR (1) BR112016011229B1 (zh)
CA (1) CA2930180C (zh)
FR (1) FR3013360B1 (zh)
RU (1) RU2674784C1 (zh)
WO (1) WO2015075381A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636794A1 (en) 2018-10-12 2020-04-15 Siemens Aktiengesellschaft A method to increase the thermal stress capability of a porous ceramic coating and a layer system
CN111593341B (zh) * 2020-05-22 2022-06-14 江苏大学 一种重型燃气轮机叶片高性能热障涂层及其多工艺组合制备方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430360A (en) 1981-03-11 1984-02-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of fabricating an abradable gas path seal
FR2545007B1 (fr) * 1983-04-29 1986-12-26 Commissariat Energie Atomique Procede et dispositif pour le revetement d'une piece par projection de plasma
JPS62274062A (ja) 1986-05-23 1987-11-28 Toyota Motor Corp セラミツク被覆部材の製造方法
JPS6338565A (ja) 1986-08-04 1988-02-19 Nippon Kokan Kk <Nkk> セラミツクス被膜の強化方法
JP2715471B2 (ja) * 1988-09-14 1998-02-18 日立化成工業株式会社 金属箔へのセラミックの溶射方法
US5073433B1 (en) * 1989-10-20 1995-10-31 Praxair Technology Inc Thermal barrier coating for substrates and process for producing it
EP0474604B1 (de) * 1990-09-07 1997-11-05 Sulzer Metco AG Apparatur zur plasmathermischen Bearbeitung von Werkstückoberflächen
US5576069A (en) 1995-05-09 1996-11-19 Chen; Chun Laser remelting process for plasma-sprayed zirconia coating
JPH09327779A (ja) 1996-06-07 1997-12-22 Mitsubishi Heavy Ind Ltd セラミック皮膜の割れ形成方法及び同方法によるセラミック皮膜部品
US6103315A (en) * 1998-04-13 2000-08-15 General Electric Co. Method for modifying the surface of a thermal barrier coating by plasma-heating
JP2000119871A (ja) * 1998-10-14 2000-04-25 Toshiba Corp 遮熱コーティング部材、その製造方法および高温機器部品
JP2001329358A (ja) * 2000-05-19 2001-11-27 Mitsubishi Heavy Ind Ltd 遮熱部材、遮熱部材の製造方法、タービン翼、及び、ガスタービン
JP4166416B2 (ja) 2000-05-26 2008-10-15 関西電力株式会社 熱遮蔽セラミック皮膜の形成方法と該皮膜を有する耐熱部品
JP3631982B2 (ja) * 2000-06-16 2005-03-23 三菱重工業株式会社 遮熱コーティング材の製造方法
CA2451495C (en) 2001-06-15 2010-07-27 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, method of production thereof, and gas turbine member and gas turbine applying said thermal barrier coating material
US20030203224A1 (en) 2001-07-30 2003-10-30 Diconza Paul Josesh Thermal barrier coating of intermediate density
EP1503879B1 (en) * 2002-04-19 2019-02-13 Thermal Dynamics Corporation Consumables cartridge assembly ; plasma arc torch comprising such assembly
US6933061B2 (en) * 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
RU2295588C1 (ru) * 2003-03-06 2007-03-20 Александр Павлович Хинский Способ изготовления композиционного покрытия
FR2854166B1 (fr) 2003-04-25 2007-02-09 Snecma Moteurs Procede d'obtention d'une barriere thermique flexo-adaptative
US7144602B2 (en) * 2003-04-25 2006-12-05 Snecma Moteurs Process for obtaining a flexible/adaptive thermal barrier
US7285312B2 (en) * 2004-01-16 2007-10-23 Honeywell International, Inc. Atomic layer deposition for turbine components
JP4568094B2 (ja) * 2004-11-18 2010-10-27 株式会社東芝 遮熱コーティング部材およびその形成方法
US20080166489A1 (en) * 2005-08-04 2008-07-10 United Technologies Corporation Method for microstructure control of ceramic thermal spray coating
US7955708B2 (en) * 2005-10-07 2011-06-07 Sulzer Metco (Us), Inc. Optimized high temperature thermal barrier
US8603930B2 (en) 2005-10-07 2013-12-10 Sulzer Metco (Us), Inc. High-purity fused and crushed zirconia alloy powder and method of producing same
US20100136258A1 (en) 2007-04-25 2010-06-03 Strock Christopher W Method for improved ceramic coating
US8337939B2 (en) * 2007-09-13 2012-12-25 General Electric Company Method of processing a ceramic layer and related articles
US20100028711A1 (en) 2008-07-29 2010-02-04 General Electric Company Thermal barrier coatings and methods of producing same
FR2941964B1 (fr) * 2009-02-11 2011-04-22 Snecma Methode de traitement d'une barriere thermique recouvrant un substrat metallique en superalliage et piece thermomecanique resultant de cette methode de traitement
US20100224602A1 (en) 2009-03-06 2010-09-09 General Electric Company Method and system for removing thermal barrier coating
US8857055B2 (en) * 2010-01-29 2014-10-14 General Electric Company Process and system for forming shaped air holes
CN102334938A (zh) 2010-07-17 2012-02-01 董晨晖 一种牙缸
KR101256282B1 (ko) 2010-12-03 2013-04-18 한양대학교 산학협력단 수직균열을 갖는 열차폐 코팅층 및 이에 대한 제조방법
JP5769447B2 (ja) 2011-02-28 2015-08-26 三菱重工業株式会社 遮熱コーティングの部分補修方法
JP2013089331A (ja) * 2011-10-14 2013-05-13 Akitoshi Okino プラズマ制御方法およびプラズマ制御装置
CN102534613A (zh) * 2011-12-19 2012-07-04 北京矿冶研究总院 一种新型复合结构涂层及其制备方法
EP3191848A1 (en) * 2014-09-12 2017-07-19 Beckman Coulter, Inc. Systems and methods to determine the age of cells

Also Published As

Publication number Publication date
JP2016540122A (ja) 2016-12-22
FR3013360A1 (fr) 2015-05-22
CA2930180C (fr) 2023-08-01
BR112016011229B1 (pt) 2020-11-24
EP3071722B1 (fr) 2018-08-29
EP3071722A1 (fr) 2016-09-28
JP6722585B2 (ja) 2020-07-15
RU2016124252A (ru) 2017-12-25
CA2930180A1 (fr) 2015-05-28
RU2674784C1 (ru) 2018-12-13
US20160281206A1 (en) 2016-09-29
CN105765099A (zh) 2016-07-13
FR3013360B1 (fr) 2015-12-04
WO2015075381A1 (fr) 2015-05-28

Similar Documents

Publication Publication Date Title
US8783584B2 (en) Nozzle for cold spray system and cold spray device using the nozzle for cold spray system
US20080011813A1 (en) Repair process for coated articles
EP1881154B1 (en) Repair process for coated articles
US20100237134A1 (en) Repair process for coated articles
JP2007224920A (ja) タービンエンジン部品の熱遮蔽被覆の局所修理方法
CN101357854B (zh) 一种降低陶瓷热障涂层热导率的后处理方法
JP2009536984A (ja) セラミックコーティングを得る方法および得られたセラミックコーティング
CN104451672A (zh) 一种调控热障涂层界面形貌的激光粉末沉积方法
CN104164643A (zh) 一种具有网状结构粘结层的热障涂层及其制备方法
CN105765099B (zh) 用于热屏障的微开裂和耐腐蚀性的整体烧结方法
CN109415795A (zh) 自修复热障层及其制造方法
US9862002B2 (en) Process for producing a layer system
EP2322686B1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
US8158906B2 (en) Welding method and welding device
US7144602B2 (en) Process for obtaining a flexible/adaptive thermal barrier
US20170226620A1 (en) Heat shielding coating and turbine member
US11319257B2 (en) Ceramic heat shields having surface infiltration for preventing corrosion and erosion attacks
JP5565390B2 (ja) ガスセンサ素子の製造方法
US20210277510A1 (en) Method for applying a thermal barrier
US20170001918A1 (en) Selective area coating sintering
TWI749097B (zh) 廢棄物焚化爐之鍋爐水管及其製造方法
JP2007231346A (ja) 溶射方法
JP4172585B2 (ja) 曲げ適応性をもつ熱障壁を得る方法
EP2778257B1 (en) Process of fabricating thermal barrier coatings
US20100288977A1 (en) Corrosion protection under influence of corrosive species

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant