CN105753950B - 杀虫蛋白 - Google Patents

杀虫蛋白 Download PDF

Info

Publication number
CN105753950B
CN105753950B CN201610282033.9A CN201610282033A CN105753950B CN 105753950 B CN105753950 B CN 105753950B CN 201610282033 A CN201610282033 A CN 201610282033A CN 105753950 B CN105753950 B CN 105753950B
Authority
CN
China
Prior art keywords
protein
cry1ba
ecry1ba
nucleic acid
insect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610282033.9A
Other languages
English (en)
Other versions
CN105753950A (zh
Inventor
高燕
J·康威尔
陈政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Participations AG
Original Assignee
Syngenta Participations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG filed Critical Syngenta Participations AG
Publication of CN105753950A publication Critical patent/CN105753950A/zh
Application granted granted Critical
Publication of CN105753950B publication Critical patent/CN105753950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=CX2 groups, e.g. isothiourea
    • A01N47/44Guanidine; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pest Control & Pesticides (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Insects & Arthropods (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physiology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Catching Or Destruction (AREA)

Abstract

在此提供了多种用于控制害虫的改进的组合物和方法。具体地,提供了对鳞翅目昆虫害虫具有改进的毒性的新颖的工程化Cry1Ba(eCry1Ba)蛋白。通过取代Cry1Ba蛋白的结构域I中的至少一个氨基酸,设计了一种具有实质上改变的杀虫特性的工程化Cry1Ba蛋白。此外,披露了一种制造工程化Cry1Ba蛋白的方法以及例如在表达eCry1B蛋白的转基因植物中使用ecry1Ba核酸序列来赋予免受昆虫损害的保护的多种方法。

Description

杀虫蛋白
本申请是申请日为2010年9月27日、申请号为201080044606.5、发明名称为“杀虫蛋白”的发明专利申请的分案申请。
发明领域
本发明涉及蛋白质工程、植物分子生物学以及虫害控制领域。更具体地,本发明涉及新颖的工程化Cry1Ba蛋白以及其表达产生了工程化Cry1Ba蛋白的核酸序列,以及制造和使用这些工程化Cry1Ba蛋白和相应的核酸来控制昆虫的方法。
背景
苏云金芽孢杆菌(Bt)Cry蛋白(还被称为δ-内毒素或Cry毒素)是在芽孢杆菌属中形成一种结晶基体的蛋白质,已知这些蛋白质当被某些昆虫摄入时具有杀虫活性。已经鉴定并且命名了在58个家族中的超过180全型Cry蛋白。已经根据各种Cry蛋白的活性谱和序列同源性对它们进行分类。在1990年以前,主要的分类是通过它们的活性谱定义的(Hofte和Whitely,1989,微生物综述(Microbiol.Rev)53:242-255),但是最近发展了一种新的命名法,该法将Cry蛋白基于氨基酸序列的同源性而不是昆虫的目标特异性系统分类(Crickmore等人1998,微生物分子生物综述(Microbiol.Molec.Biol.Rev.)62:807-813)。
大多数针对鳞翅目昆虫的活性Cry蛋白在结晶基体中形成为130-140kDa的原毒素。在鳞翅目昆虫中,肠的碱性pH溶解这种晶体并且然后肠蛋白酶将该原毒素加工成大约60-70kDa的毒蛋白。已报道将原毒素加工成毒素是通过去除N端和C端的氨基酸而进行的,其中进行加工的确切部位取决于特异性Cry蛋白以及所涉及的特异性昆虫肠液(Ogiwara等人,1992,J.Invert.Pathol.60:121-126)。Gry原生素的这种蛋白质水解激活在确定其特异性方面能够发挥重要作用。
已经阐明了一些Cry蛋白的三维结构。针对鞘翅目昆虫是活性的Cry3A蛋白质具有三个结构域:N端的结构域I(从残基58至290)由7个α螺旋组成;结构域II(从残基291至500),含有处于被称为希腊钥匙(Greek key)构象的三个β-折叠;以及C端的结构域III(从残基501至644),它是处于被称为果冻卷饼(jellyroll)构象的一个β-三明治。针对鳞翅目活性Cry1Aa毒素的三维结构也已经被解出(Grochulski等人,1995,分子生物学杂志(J.Mol.Biol.)254:447-464)。Cry1Aa毒素也具有三个结构域:N端的结构域I(从残基33至253)、结构域II(从残基265至461)、以及结构域III(从残基463至609)(在由残基254至264形成的β-折叠之一中具有一个另外的外部链)。如果将Cry3A和Cry1Aa的结构投射至其他的Cry1序列上,则结构域I从大约氨基酸残基28延伸至260,结构域II从大约260延伸至460,并且结构域III从大约460延伸至600。参见Nakamura等人,农业生物化学(Agric.Biol.Chem.)54(3):715-724(1990);Li等人的自然(Nature)353:815-821(1991);Ge等人的生物化学杂志(J.Biol.Chem.)266(27):17954-17958(1991);以及Honee等人的分子微生物学(Mol.Microbiol.)5(11):2799-2806(1991);以上文献中每一篇均通过引用结合在此。因此,目前已知的是基于氨基酸序列同源性,所有的Bt Cry蛋白具有包含三个结构域的相似三维结构。
基于该结构,阐述了一种关于Cry蛋白的结构/功能关系的假设。通常认为的是,结构域I(最N-端结构域)主要负责在昆虫肠膜中的孔形成(Gazit&Shai,1993,应用环境微生物学(Appl.Environ.Microbiol.)57:2816-2820),结构域II主要负责与肠受体的相互作用,由此确定毒素特异性(Ge等人,1991,分子生物化学杂志(J.Biol.Chem.)32:3429-3436)并且结构域III(最C-端的结构域)可能主要涉及蛋白质的稳定性(Li等人1991,上述)连同具有对离子通道活性的调节作用(Chen等人,1993,PNAS 90:9041-9045)。结构域III还涉及确定特异性(美国专利6,204,246,通过引用结合在此)。将鳞翅目活性毒素之间的结构域III进行交换,如通过编码区之间的体内重组,可以导致特异活性方面的变化。将使用此种杂交的结合实验已经展示,结构域III涉及到目标昆虫上的推定的受体上的结合,表明结构域III可以通过在受体识别方面的作用对特异性具有一定的影响。
Bt Cry蛋白的毒素部分的特征还在于在它们的氨基酸序列上具有五个保守区(conserved block)(Hofte&Whiteley,上述)。保守区1(CB1)包括大约29个氨基酸。保守区2(CB2)包括大约67个氨基酸。保守区3(CB3)包括大约48个氨基酸。保守区4(CB4)包括大约10个氨基酸。保守区5(CB5)包括大约12个氨基酸。在这五个保守区之前和之后的的序列是高度可变的,并因此被命名为“可变区”V1至V6。Bt Cry蛋白的结构域I典型地包括可变区1的C末端部分、完整保守区1、整个可变区2、以及保守区2的N端的52个氨基酸。结构域II典型地包括保守区2的C端的大约15个氨基酸、可变区3、以及保守区3的N端的大约10个氨基酸。结构域III典型地包括保守区3的C端的大约38个氨基酸、可变区4、保守区4、可变区5、以及保守区5。Cry1鳞翅目活性毒素(除其他Cry蛋白之外)还具有一个可变区6,该可变区具有横向定位(lying)在结构域III之内的大约1至3个氨基酸。
一些Cry蛋白,例如Cry1Ab、Cry1Ac、Cry1F和Cry2Ba已经在转基因作物植物中表达并且在商业上被开发以控制某些鳞翅目虫害。例如,表达Cry1Ba蛋白的转基因玉米杂交体在10多年来已经是可商购的。在这些玉米杂交体中的Cry1Ba蛋白主要靶向欧洲玉米螟(Ostrinia nubilalis),美国玉米带(US Corn Belt)中的主要鳞翅类害虫。
关于表达Cry蛋白的转基因作物部署产生的忧虑是虫害是否将会变得抵抗Cry蛋白。已经证明了昆虫能够产生针对含Cry蛋白的产物的抗性。在世界上的一些地区,已经在小菜蛾(Plutella xylostella)以及其他蔬菜害虫中产生了对商业Bt微生物喷雾剂(在有机耕作中广泛使用)的抗性。在波多黎各岛上证明了暴露于表达Cry1F蛋白的转基因玉米的草地夜蛾(Spodoptera frugiperda)种群的田间抗性的一个近期发生率(Storer等人,2010.J.Econ.Entomol.103:1031-1038)。然而,从1996年以来,当第一次引入表达Cry蛋白的转基因作物时,在美国并不存在与暴露于转基因作物的玉米或棉花害虫的抗性田间种群有关的任何田间失效的情况。
种子产业、大学研究员以及美国环境保护局已经一起合作来制定管理计划以帮助缓和昆虫抗性的发生。它们主要是基于有关高剂量以及避护所策略。例如对于玉米中的欧洲玉米螟的一个高剂量策略是使用表单足够高水平的Cry蛋白的玉米杂交体来杀死甚至部分抵抗的欧洲玉米螟。基础的假设是杀死部分抗性的ECB并且大力防止它们交配延迟了抗性的产生。一个高剂量策略的成功部分取决于Cry毒素对欧洲玉米螟的特异活性以及多少Cry毒素可以表达在这种转基因玉米植物中。例如,针对害虫的Cry毒素的特异活性越高,在一种转基因植物中需要表达的Cry毒素的量就越少,从而实现一种高剂量策略。由于Cry1Ab对于欧洲玉米螟很具毒性(即,高特异活性),在转基因植物中可实现的Cry1Ab表达水平很容易将这样的玉米杂交体置于一种高剂量范畴中。
其他有可能的减轻抗性产生的方法包括在同一转基因作物植物中累加(pyramiding)多种Cry蛋白或者用新的产生不同Cry蛋白的产品来代替现有的成熟产品。例如,随着目前Cry1Ab蛋白玉米杂交体市场的成熟,可以引入新的产品,这些产品具有与Cry1Ab不同的Cry蛋白或除了Cry1Ab之外其他Cry蛋白。有益的是,对于代替Cry1Ab的蛋白质具有与Cry1Ab相同或类似的对欧洲玉米螟的特异活性。
一种代替Cry1Ab的候选Cry毒素可以是Cry1Ba毒素。这种全型Cry1Ba毒素首次由Brizzard等人在1988年(核酸综述(Nuc.Acids Res.)16:2723-2724)描述。随后,已经鉴定了五种其他的Cry1Ba毒素,其中各自具有与该全型毒素大约99%的一致性。已经报告了Cry1Ba毒素具有针对某些鳞翅类害虫的活性,例如纹白蝶(Pieris brassicae)、小菜蛾(Plutella xylostella)、斜纹夜蛾(Spodoptera littoralis)、甜菜夜娥(Spodopteraexigua)、以及欧洲玉米螟(Ostrinia nubilalis)。然而,已经报告了Cry1Ba针对欧洲玉米螟的活性比Cry1Ab小2倍以上(例如,参见美国专利号5,628,995)并且还报告了它针对其他主要作物害虫没有活性,例如玉米螟蛉(Helicoverpa zea),(参见例如Karim等人2000.杀虫剂生物化学及生理学(Pestic.Biochem.Physiol.)67:198-216)以及草地夜蛾(Spodoptera frugiperda)的NAFTA种群(参见例如,Monnerat等人,2006.应用以及环境微生物学(Appl.Environ.Microbiol.)72:7029-7035)。针对至少欧洲玉米螟,Cry1Ba不如Cry1Ab活性的原因之一可以归于其更低的溶解度特性。因此存在一种需要来改进Cry1Ba针对至少欧洲玉米螟的特异活性并且有可能扩展其活性谱,从而增加其在转基因玉米中作为Cry1Ab的替代物的潜力。
来自Bt的一种单独的Cry毒素的杀虫活性谱可能相当窄,其中一种给定的Bt毒素仅对一个目之内的一些种类是有活性的。例如,已知一种Cry3A蛋白对科罗拉多马铃薯甲虫(Leptinotarsa decemlineata)具有很大的毒性,但对叶甲属(Diabrotica)相关的甲虫具有非常小的毒性或没有毒性(Johnson等人,1993,J.Econ.Entomol.86:330-333)。此外,在一个Cry蛋白类别之内的小的氨基酸序列改变可以影响杀虫活性。例如,von Tersch等人(1991,应用及环境微生物学(Appl.Environ.Microbiol.)57:349-358)证明了通过改变七种氨基酸的Cry1Ac蛋白在其杀虫活性谱上表现出显著的差异。尽管主要考虑了鳞翅目活性毒素,还已经报告了Cry1Ba毒素针对某些鞘翅目昆虫是具有活性的,包括科罗拉多马铃薯甲虫(Leptinotarsa decemlineata)、黑杨叶甲虫(Chrysomela scripta)以及咖啡果小蠹(Hypothenemus hampei)。
Cry蛋白的特异性是以下不同步骤的效率的结果,这些步骤涉及产生一种活性毒素蛋白及其随后的与昆虫中肠中的上皮细胞的相互作用。为了杀虫,大多数已知的Cry蛋白必须首先被昆虫摄入并且被蛋白质水解性激活以形成一种活性毒素。杀虫晶体蛋白的激活是一个多步骤的过程。在摄入之后,这些晶体必须首先溶解在昆虫的肠中。一旦被溶解,这些Cry蛋白通过特异性蛋白酶剪切而被激活。昆虫肠中的这些蛋白酶能够通过确定在何处处理Cry蛋白而在特异性方面发挥作用。一旦Cry蛋白已经被溶解并被处理,它与昆虫的中肠上皮表面上的特异性受体相结合,随后整合到刷状缘膜的脂双层中。然后,一些离子通道形成,扰乱中肠的正常功能最终导致昆虫的死亡。在Cry蛋白的毒素部分的溶解度特性上存在完全不同。
已经工程化某些鳞翅目活性Cry蛋白以试图改善特异活性或拓宽杀虫活性谱。例如,将来自Cry1Aa的蚕蛾(Bombyx mori)特异性结构域移动至一种Cry1Ac蛋白,由此将一种新的杀虫活性赋予至所生成的嵌合蛋白中(Ge等人,1989,PNAS 86:4037-4041)。还有Bosch等人1998(美国专利5,736,131)创造了一种新的鳞翅类活性毒素,是通过用具有Cry1C结构域III取代Cry1E的结构域III,由此产生一种具有更宽的鳞翅目活性谱的Cry1E-Cry1C杂合毒素。
仍需要设计新型并有效的虫害控制剂,这些虫害控制剂为农民提供经济利益并且是环境可接受的。需要具有实质上改变的特性的蛋白质,例如本发明的工程化Cry1Ba蛋白,相比于天然Cry1Ba蛋白,它们具有更大的针对至少欧洲玉米螟(美国玉米中的一种主要害虫,可能对现有的昆虫控制剂变得抵抗)的特异活性。此外,通过这些其使用使环境负担最小化的工程化Cry1Ba蛋白(如通过转基因植物)是令人希望的。
通过增加对至少欧洲玉米螟的Cry1Ba特异活性,在一种玉米植物中应该需要更少的Cry1Ba蛋白表达,因此降低了可能的Cry1Ba对植物的不利作用。此外,增加的特异活性允许这种工程化Cry1Ba针对ECB以高剂量策略来使用。
概述
考虑到这些需要,本发明的一个目的是提供新颖的工程化eCry1Ba(eCry1Ba)蛋白,这些蛋白质具有实质上改变的特性,这些特性被改进为优于天然eCry1Ba蛋白并且与其不同,特别是与对于玉米鳞翅目害虫的杀虫活性相关联的生物化学特性,这些害虫包括但不限于例如:欧洲玉米螟(ECB;Ostrinia nubilalis)、玉米螟蛉(CEW;Helicoverpa zea))、西南玉米螟(SWCB;Diatraea grandiosella)、甘蔗螟虫(SCB;Diatraea saccharalis)、大豆夜蛾(SBL;Pseudoplusia includens)、黎豆夜蛾(VBC;Anticarsia gemmatalis)、等等。根据本发明,如在此定义的通过取代一种天然Cry1Ba蛋白序列或野生型Cry1Ba蛋白中的关键鉴定位置处的氨基酸,设计了相比于天然Cry1Ba的一种具有实质上改变的溶解度和/或杀虫特性的eCry1Ba蛋白。本发明进一步涉及编码这些eCry1Ba蛋白的核酸序列,并且涉及含有这些eCry1Ba蛋白的组合物以及配制品,它们能够抑制虫害的生存、生长以及繁殖的能力或者能够限制昆虫相关的对作物植物的损害或损失。本发明进一步描绘了制造这些eCry1Ba蛋白的一种方法以及使用这些eCry1Ba蛋白的多种方法,例如,在转基因植物中赋予免于昆虫损害的保护。本发明的eCry1Ba蛋白的这种实质上改变的特性允许它们用于针对至少ECB的高剂量策略中,同时需要易于实现的在玉米植物中的表达水平。
这些在此说明的新颖的eCry1Ba蛋白对昆虫是具有高度活性的。例如,本发明的eCry1Ba蛋白可以用来改进对经济上重要的虫害(如ECB或CEW)的控制,而不会不利地影响针对其他重要的玉米害虫(例如SWCB以及SCB)的活性。本发明的eCry1Ba蛋白可以单独使用或与其他昆虫控制策略组合使用以赋予具有最小环境影响的最大虫害控制效率。表达本发明的eCry1Ba蛋白的转基因植物提供了一种手段,通过这种手段栽培者可以控制主要作物(例如并不限于玉米和甘蔗)的鳞翅类害虫。
根据一个方面,本发明包括一种工程化Cry1Ba(eCry1Ba)蛋白,其包括在结构域I中的一个或多个氨基酸位置处的一个突变,由此当与天然的或野生型Cry1Ba蛋白相比时,这种工程化Cry1Ba蛋白具有改进的溶解度和/或对抗至少欧洲玉米螟(Ostrinianubilalis)的杀虫活性。
在另一个方面,在一个或多个氨基酸位置处的突变位于结构域I的α-螺旋4或α-螺旋5中。
在另外的方面,该突变位于相应于SEQ ID NO:2的位置150、178、189或199的氨基酸位置处。
仍然在另一个方面,该突变位于SEQ ID NO:5的位置150、178、189或199处。
在另一个方面,该突变位于相应于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
在仍另一个方面,该突变位于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
在一个方面,本发明包括一种工程化Cry1Ba(eCry1Ba)蛋白,其包括一个氨基酸序列SEQ ID NO:6,其中在位置2处的X是任何氨基酸并且a)在位置150处的X是Pro、Phe、Trp或Lys,并且在位置189处的X是Leu并且在199处是Ser;或b)当在位置150处的X是Lys时,在位置189处的X是Ser;或c)当在位置150处的X是Lys时,在位置199处的X是Lys。
在另一个方面,本发明的eCry1Ba蛋白包括SEQ ID NO:7、SEQ ID NO:8、SEQ IDNO:9或SEQ ID NO:10的氨基酸序列。
在还另一个方面,本发明的eCry1Ba蛋白具有针对鳞翅目或鞘翅目昆虫,特别是鳞翅目昆虫的活性。这样的鳞翅目昆虫的例子包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
本发明还包括其他变异体Cry1Ba(vCry1Ba)蛋白,其中在位置150处的一个酪氨酸(Tyr)或组氨酸(His)(Y150或H150)用一个非Tyr或His的氨基酸取代。在一个方面,取代Y150或H150的氨基酸是Lys、Phe、Trp、Pro、Thr、Leu、Ala、Val、Ser、Arg、Gly或Asp。
在另一个方面,本发明包括一种含SEQ ID NO:3的vCry1Ba蛋白。
仍然在另一个方面,本发明包括一种vCry1Ba蛋白,其中在位置150处的Tyr或His用一个非Tyr或His的氨基酸取代并且具有在位置81处用非Val的氨基酸取代的的缬氨酸(Val)(V81);或在位置155(A155)处的丙氨酸(Ala)以及位置178(M178)处的甲硫氨酸(Met)分别用非Ala或Met的氨基酸取代。在另一个方面,在位置81处的Val(V81)用一个色氨酸(Trp)(V81W)取代。在还另一个方面,本发明的变异体Cry1Ba蛋白包含SEQ ID NO:11。
在一个方面,本发明包括一种具有任何其他氨基酸取代的Y150的vCry1Ba蛋白,其中在位置155处的Ala(A155)用一个天冬氨酸(Asp)(A155D)取代并且在位置178处的Met(Met178)用一个丝氨酸(Ser)(M178S)取代。在另一个方面,本发明的变异体Cry1Ba蛋白包含SEQ ID NO:12。
本发明的vCry1Ba蛋白具有针对鳞翅目或鞘翅目昆虫,特别是鳞翅目昆虫的杀虫活性。这样的鳞翅目昆虫包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。然而,这样的vCry1Ba蛋白与野生型Cry1Ba蛋白相比可能不具有增加的针对这些害虫的活性。
在另一个方面,本发明包括一种核酸,该核酸编码本发明的一种工程化Cry1Ba(eCry1Ba)蛋白或本发明的一种变异体Cry1Ba蛋白(vCry1Ba)。
本发明还包括一种嵌合基因,该嵌合基因包括被可操作地连接到编码一种eCry1Ba蛋白或vCry1Ba蛋白的核酸上的一种异源启动子序列。本发明还包括一种含有这样的嵌合基因的重组载体。此外,本发明还包括一种含有这样的嵌合基因的转基因非人类宿主细胞。根据本发明的这个方面的一种转基因宿主细胞包括但不限于一种细菌细胞或一种植物细胞。这样的转基因植物细胞可以是一种玉米细胞或一种甘蔗细胞。
本发明进一步提供了一种包含这样的植物细胞的转基因植物。这种eCry1Ba蛋白或vCry1Ba蛋白对于在其中易感虫害是一个问题的任何转基因植物中表达是有用的。在本发明的另一个方面,包括来自一种转基因植物的任何代的含有本发明的一种核酸的子代植物、以及来自一种转基因植物的任何代的含有本发明的核酸的一种繁殖体。在另一个方面,该转基因植物是一种玉米植物或甘蔗植物。仍然在另一个方面,该繁殖体是一种种子、节段(sette)或插条。
本发明还包括一种杀虫组合物,该组合物包括一种有效的昆虫控制量的eCry1Ba蛋白或一种根据本发明的vCry1Ba蛋白以及另外地一种可接受的农用载体。这样的农用载体可以是例如一种可喷洒的配制品或一种转基因植物。
在另一个方面,本发明提供了一种用于产生针对昆虫是活性的eCry1Ba蛋白或vCry1Ba蛋白的方法,包括:(a)获得包含一种嵌合基因的宿主细胞,该基因本身包含与本发明的一种核酸分子可操作地连接的一种异源启动子序列;以及(b)在该转基因宿主细胞中表达该核酸,这产生了针对昆虫是活性的至少一种蛋白质。
在另一个方面,本发明提供了产生一种抗昆虫转基因植物的一种方法,包括将本发明的一种核酸分子引入一种植物中由此产生一种转基因植物,其中该核酸分子引起一种eCry1Ba蛋白或vCry1Ba蛋白在该转基因植物中以有效控制昆虫的量进行表达。仍然在另一方面,这些昆虫是鞘翅目昆虫或鳞翅目昆虫。这样的鳞翅目昆虫包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
在另一个方面,本发明包括一种制造工程化Cry1Ba(eCry1Ba)蛋白的方法,包括a)鉴定一种具有结构域I的Cry1Ba蛋白;b)将结构域I的一个位置处的至少一个天然氨基酸用至少一个其他的氨基酸取代;并且c)获得该如此产生的eCry1Ba蛋白,其中当与一种天然Cry1Ba蛋白或野生型Cry1Ba相比时,该eCry1Ba具有改进的溶解度或针对至少欧洲玉米螟的杀虫活性。仍然在另一个方面,该天然氨基酸位于结构域I中的α-螺旋4或α-螺旋5。
仍然在另一个方面,本发明包括一种用于控制鳞翅目昆虫的方法,包括:使该昆虫与本发明的一个有效量的eCry1Ba蛋白或vCry1Ba蛋白接触。根据另一个方面,这样的鳞翅目昆虫包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
优选地,该eCry1Ba蛋白或vCry1Ba蛋白通过口服递送给昆虫。在一方面,这些蛋白质通过一种转基因植物进行口服递送,该转基因植物包含表达本发明的eCry1Ba或vCry1Ba蛋白的一个核酸序列。
本发明进一步提供了一种用于控制昆虫的方法,其中包含一种编码eCry1Ba蛋白或vCry1Ba蛋白的核酸的转基因植物进一步包括一种第二核酸序列或编码至少一种其他的杀虫成分的多个核酸序列。在一个方面,该第二核酸编码了一种不同于本发明的eCry1Ba或vCry1Ba蛋白的Cry蛋白,例如编码了一种营养期杀虫蛋白的那些核酸(分别披露于美国专利5,849,870以及5,877,012中,均通过引用结合在此)、或编码一种非蛋白杀虫成分的产生途径的那些核酸。在本发明的另一方面,该第二杀虫成分是一种Vip3蛋白。
仍然在本发明的另一个方面,提供了向栽培者提供一种用于控制欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾的改进的手段的方法,包括向该栽培者提供或销售转基因繁殖体,该繁殖体包括编码一种eCry1Ba蛋白的核酸分子,该eCry1Ba蛋白在结构域I内的一个或多个氨基酸位置处具有一个突变,该eCry1Ba蛋白与一种天然的Cry1Ba蛋白相比时具有改进的溶解度或针对至少欧洲玉米螟的杀虫活性。在另一个方面,这种转基因繁殖体是种子、节段或插条。
根据本发明的以下说明的一项研究以及非限制性实例,本发明的其他方面和优点对于本领域的普通技术人员而言将变得清楚。
附图简要说明
图1示出了已知的天然Cry1Ba蛋白的氨基酸序列的比对。在位置150处的氨基酸是粗体的。
图2示出了天然全长Cry1Ab和Cry1Ba蛋白的氨基酸序列的比对。结构域I和II以及结构域I的α-螺旋4和5通过箭头来表示。
在序列表中的序列的简要说明
SEQ ID NO:1是一种天然全长cry1Ba编码序列。
SEQ ID NO:2是一种天然全长Cry1Ba蛋白的氨基酸序列。
SEQ ID NO:3是一种突变的全长Cry1Ba。
SEQ ID NO:4是一种cry1Ba-T25编码序列。
SEQ ID NO:5是一种Cry1Ba-T25野生型蛋白。
SEQ ID NO:6是eCry1Ba-X150蛋白。
SEQ ID NO:7是eCry1Ba-T2AY150K蛋白。
SEQ ID NO:8是eCry1Ba-T2AY150KM178S蛋白。
SEQ ID NO:9是eCry1Ba-T2AY150KL189S蛋白。
SEQ ID NO:10是eCry1Ba-T2AY150KS199K蛋白。
SEQ ID NO:11是变异体Cry1Ba-TM21。
SEQ ID NO:12是变异体Cry1Ba-TM90。
SEQ ID NO:13是编码eCry1Ba-T2AY150KL189S蛋白的玉米优化的核酸序列。
SEQ ID Nos:14-41是在本发明中有用的引物。
SEQ ID NO:42是截短的天然Cry1Ba。
SEQ ID NO:43是变异体Cry1Ba-TM69。
SEQ ID NO:44是变异体Cry1Ba-TM61。
定义
为了清晰起见,对在本说明书中所使用的某些术语进行定义并呈现如下:
本发明的eCry1Ba蛋白的“活性”表示eCry1Ba蛋白作为口服活性昆虫控制剂发挥作用,具有一种毒性作用、或者能够干扰或阻止昆虫摄食,这可能引起或者可能不引起昆虫的死亡。当本发明的eCry1Ba蛋白被递送至昆虫时,这种结果典型地是该昆虫的死亡,或者该昆虫不以使该eCry1Ba蛋白可供该昆虫利用的来源为食。
“与之相关联/可操作地连接”指物理上或功能上相关的两种核酸序列。例如,一个启动子或调节DNA序列据说是与对一种RNA或一种蛋白进行编码的一个DNA序列“相关联”的(若这两个序列被操作性地连接)、或被定位为使得该调节DNA序列将影响该编码或结构DNA序列的表达水平。
一种“嵌合基因”或“嵌合构建体”是一个重组核酸序列,其中一个启动子或调节核酸序列被可操作地连接至一个核酸序列上、或与其结合,该核酸序列编码一种mRNA或者被表达为一种蛋白质,这样使得该调节核酸序列能够调节该结合的核酸编码序列的转录或表达。该嵌合基因的调节核酸序列通常不被可操作地连接至如在自然界所发现的该结合的核酸序列上。
一个“编码序列”是被转录成RNA(如mRNA、rRNA、tRNA、snRNA、正义RNA或反义RNA)的一个核酸序列。优选地,该RNA然后在一个生物体中被翻译以产生一种蛋白质。
“控制”昆虫表示通过一种毒性作用来抑制害虫存活、生长、摄食、和/或繁殖的能力,或限制与昆虫有关的损害或作物植物的损失。“控制”昆虫可能表示或可能不表示杀死这些昆虫,尽管它优选地表示杀死这些昆虫。
如在此所使用,术语“玉米”表示玉蜀黍(Zea mays)或玉蜀黍(maize)并且包括所有的可以用玉米繁殖的植物品种,包括野生玉蜀黍种类。
在本发明的背景下,“相应于”表示在将Cry1B蛋白的氨基酸序列彼此比对时,“相应于”本发明中的某些列举的位置的氨基酸是与天然Cry1Ba毒素(SEQ ID NO:2)中的这些位置比对的那些,但不必然是在相对于本发明的具体的Cry1Ba氨基酸序列的这些确切数字位置。例如在截短的Cry1Ba蛋白(SEQ ID NO:42)的位置1处的甲硫氨酸将与该全长Cry1Ba(SEQ ID NO:2)的位置22处的甲硫氨酸比对。因此,根据本发明,序列SEQ ID NO:42氨基酸129“相应于”SEQ ID NO:2的氨基酸数目150。
“递送”一种毒素表示使该毒素与一种昆虫相接触,从而产生一种毒性作用以及对昆虫的控制。这种毒素可以按照许多公认的方式进行递送,例如,通过昆虫经口摄入或通过经由转基因植物表达、一种或多种配制的蛋白质组合物、一种或多种可喷洒的蛋白质组合物、一种饵基、或任何其他的领域公认的毒素递送系统与昆虫接触。
“有效的昆虫控制量”表示一种毒素的浓度,它通过一种毒性作用抑制了害虫存活、生长、摄食、和/或繁殖的能力,或限制与昆虫有关的损害或作物植物的损失。“有效的昆虫控制量”可能表示或可能不表示杀死昆虫,尽管它优选地是表示杀死这些昆虫。
本发明的一种“工程化Cry1Ba”(eCry1Ba)蛋白是指一种Cry1Ba衍生的蛋白质,其具有至少一个在结构域I中的突变,这种突变并不已知天然发生于Cry1Ba蛋白中。一种eCry1Ba蛋白不是天然发生的,而是通过人工合成的,包括一种与已知发生在苏云金芽孢杆菌中的蛋白质不同的氨基酸序列。与天然Cry1Ba蛋白相比,根据本发明已经工程化的Cry1Ba蛋白具有实质上改变的并且改进的特性。具体地,与本发明的一种天然Cry1Ba、野生型Cry1Ba或变异体Cry1Ba蛋白相比,本发明的eCry1Ba蛋白具有改进的溶解度或针对至少欧洲玉米螟的杀虫活性。
根据本发明的一种“工程化cry1Ba基因”(ecry1Ba)是指包括eCry1Ba蛋白编码序列的一种核酸。这种工程化cry1Ba基因可以衍生于一种天然cry1Ba基因或一种合成cry1Ba基因。
如在此所用的“表达盒”表示能够在一个适当的宿主细胞中指导一个特定的核酸序列的表达的一个核酸序列,包含一个启动子,该启动子可操作地连接至所感兴趣的核酸序列上,该核苷酸序列可操作地连接至终止信号上。它还典型地包含正确翻译该核酸序列所需要的序列。包含该感兴趣的核酸序列的表达盒可以是嵌合的,意味着至少一个它的组分相对于至少一个它的其他组分是异源的。该表达盒还可以是一种天然发生的表达盒,但已经是以在对异源表达有用的一个重组体形式而获得的。然而,典型地,该表达盒相对于该宿主而言是异源的,即该表达盒的特定核酸序列不是天然发生于该宿主细胞中,并且必须已经通过一个转化事件引入到该宿主细胞或该宿主细胞的祖先(ancestor)中。在该表达盒中的核酸序列的表达可以是在一个组成型启动子或一个诱导型启动子的控制之下,该启动子只有当该宿主细胞暴露于某一特定的外界刺激时才引发转录。在多细胞生物体(如一种植物)的情况下,该启动子还可能对于特定组织、或器官、或者发育阶段是特异性的。
一个“基因”是一个定义的区域,该区域位于一个基因组之内并且,除了前述的编码核酸序列之外,它包含其他(主要是调控性的)负责编码部分的表达(也就是转录和翻译)的控制的核酸序列。一个基因也可包含其他5'和3'未转译序列以及终止序列。其他可能存在的元件是,例如,内含子。
“感兴趣的基因”是指当被转移至一个植物时赋予该植物一种所希望的特征的任何基因,该特征如抗生素抗性、病毒抗性、抗虫性、抗病性,或者对其他害虫的抗性、除草剂耐受性、改进的营养价值、以及在一个工业过程改进的性能或者改变的繁殖能力。“感兴趣的基因”还可以是这样一个基因,该基因被转入植物用于在该植物中产生商业上有价值的酶或代谢产物。
如在此使用的,术语“栽培者”表示参与农业中培养用于食品或原材料的活的生物体(例如作物)的人或实体。
一种“肠蛋白酶”是在昆虫的消化道内自然发现的一种蛋白酶。这种蛋白酶通常涉及所摄入的蛋白质的消化。
一个“异源”核酸序列是这样一个核酸序列,该序列与将其引入的一个宿主细胞并非天然结合,包括一个天然发生的核酸序列的非天然发生的多个拷贝。
一个“同源”核酸序列是与它被引入到其中的一个宿主细胞天然结合的一个核酸序列。
“同源重组”是在多个同源核酸分子之间的核酸片段的相互交换。
“杀虫的”被定义为一种能够控制昆虫(优选是通过杀死它们)的毒性生物活性。
“分离的”核酸分子是通过人工从其天然环境中分开而存在的一种核酸分子或蛋白质并因此不是自然的产物。一种分离的核酸分子或蛋白质可以按照一种纯化的形式而存在、或可存在于一种非天然环境(例如像,一种重组宿主细胞)中。例如,不分离在苏云金芽孢杆菌中天然发生的一种天然Cry蛋白,但是分离在一种转基因苏云金芽孢杆菌菌株或一种转基因植物中的相同的Cry蛋白。
如在此使用的一种“天然的”Cry1Ba蛋白是指一种大约140kDa的苏云金芽孢杆菌(Bt)鞘翅目昆虫或鳞翅目活性蛋白,例如SEQ ID NO:2,连同可衍生自一种天然Cry1Ba蛋白的、具有自然发现的氨基酸序列的截短的较低分子量的蛋白质。这种较低分子量的蛋白质可以通过天然Cry1Ba蛋白的天然发生蛋白酶识别位点的蛋白酶裂解或通过与编码该天然Cry1Ba蛋白(例如SEQ ID NO:2的M22)的翻译起始密码子处于同一框架中的一个第二翻译起始密码子获得。一种天然Cry1Ba蛋白的氨基酸序列以及由其衍生的较低分子量的蛋白质可以在天然发生在Bt中的蛋白质中找到。例如,六种天然Cry1Ba蛋白已经被命名并且具有以下Genbank登录号:Cry1Ba1=CAA29898;Cry1Ba2=CAA65003;Cry1Ba3=AAK63251;Cry1Ba4=AAK51084;Cry1Ba5=ABO20894;Cry1Ba6=ABL60921。在图1中示出了六种Cry1Ba蛋白的序列比对。一种天然Cry1Ba蛋白可以由一个天然Bt核苷酸序列(如在SEQ ID NO:1中)或者由一个合成的密码子优化的核苷酸序列编码。
“核酸分子”或“核酸序列”是可以从任何来源分离的单链或双链DNA或RNA的一个线性片段。在本发明的背景中,该核酸分子或核酸序列优选地是一个DNA片段。
“植物”是处于任何发育阶段的任何植物,特别是种子植物。
“植物细胞”是一种植物的结构和生理单位,包括原生质体和细胞壁。植物细胞可以处于一种分离的单细胞或一种培养细胞的形式,或者是作为较高级的组织单位(例如,植物组织、植物器官、或整株植物)的一部分。
“植物细胞培养物”表示植物单位的培养物,像例如原生质体、细胞培养物的细胞、植物组织中的细胞、花粉、花粉管、胚珠、胚囊、合子以及处于不同发育阶段的胚。
“植物材料”是指叶、茎、根、花或花的部分、果实、花粉、卵细胞、合子、种子、节段、切条、细胞或组织培养物、或植物的任何其他部分或产物。
“植物器官”是植物的一个独特的、并且具有可见结构的、并且已分化的部分,如根、茎、叶、花芽、或胚。
如在此所使用的“植物组织”是指被组织成为一种结构和功能单位的多个植物细胞的一个组。包括在培养物或在植物中的任何植物组织。本术语包括但不局限于:整株植物、植物器官、植物种子、组织培养物以及被组织成结构和/或功能单元的任何植物细胞群。本术语与如以上所列出的任何特异类型的植物组织一起(或在其缺乏下)使用、或通过由这项定义所涵盖含的其他方式的使用并非旨在排除任何其他类型的植物组织。
“启动子”是一种编码区上游的非翻译DNA序列,它含有针对RNA聚合成酶的结合位点并启动该DNA的转录。启动子区域也可包括充当基因表达的调节物的多个其他的元件。
一种“繁殖体”是用于植物繁殖目的的任何植物材料。例如但不限于,种子、以及插条或节段分别是玉米和甘蔗的繁殖体。
一种“原生质体”是一种没有细胞壁或仅具有部分细胞壁的分离的植物细胞。
“调控元件”是指参与控制核酸序列表达的序列。调控元件包括一个可操作地连接至感兴趣的核酸序列上的启动子和终止信号。它们还典型地涵盖了正确翻译该核酸序列所需要的序列。
如在此使用的,“特异活性”是指具有杀虫效果所需要的蛋白质的量。因此,当一种第一蛋白质具有比一种第二蛋白质更高的特异活性时,表示该第一蛋白质比第二蛋白质采取更少的量而具有对同一百分比的昆虫的杀虫效果。
如在此使用的“溶解度”是指在相同环境条件下天然Cry1Ba毒素、野生型Cry1Ba或eCry1Ba毒素或vCry1Ba毒素可以溶解在一种特定的液体(例如一种缓冲剂、水或昆虫肠液)中的量。因此,如在此使用的与一种天然或野生型Cry1Ba毒素相比,一种eCry1Ba毒素具有“改进的溶解度”或“溶解度增加”,表示在相同条件下一种给定体积的液体可以容纳的eCry1Ba毒素的量比天然或野生型Cry1Ba毒素更多。根据本发明,天然Cry1Ba以及野生型Cry1Ba毒素具有低的溶解度并且某些Cry1Ba毒素相对于彼此具有高的溶解度。
“转化”是将异源核酸引入至一种宿主细胞或生物中的一个过程。具体地说,“转化”表示将一个DNA分子稳定整合进一种感兴趣的生物的基因组中。
“转化的/转基因的/重组的”是指已经引入了一个异源核酸分子的一种宿主生物,如一种细菌或一种植物。该核酸分子可以被稳定地整合到该宿主的基因组中,或者该核酸分子还可以作为一种染色体外分子存在。这样一种染色体外分子能够自动复制。转化的细胞、组织或者植物应当理解为不仅包含一个转化过程的终产物,还包含其转基因子代。一个“非转化的”、“非转基因的”、或“非重组的宿主”是指一种野生型生物,例如,一种细菌或植物,其不含异源核酸分子。
一种“变异体Cry1Ba(vCry1Ba)”蛋白是一种非天然突变蛋白,它与本发明的一种野生型Cry1Ba蛋白相比具有更低的针对至少欧洲玉米螟的特异活性。
一种“野生型Cry1Ba”蛋白是一种非天然突变蛋白,其具有与一种天然Cry1Ba类似的杀虫特性,例如针对昆虫如西南玉米螟、甘蔗螟虫或欧洲玉米螟的特异活性或生物化学特性(如溶解度)。
核酸通过其碱基由以下标准缩写进行表示:腺嘌呤(A)、胞嘧啶(C)、胸腺嘧啶(T)、以及鸟嘌呤(G)。氨基酸也由以下标准缩写表示:丙氨酸(Ala;A)、精氨酸(Arg;R)、天冬酰胺(Asn;N)、天冬氨酸(Asp;D)、半胱氨酸(Cys;C)、谷氨酰胺(Gln;Q)、谷氨酸(Glu;E)、甘氨酸(Gly;G)、组氨酸(His;H)、异亮氨酸(Ile;I)、亮氨酸(Leu;L)、赖氨酸(Lys;K)、甲硫氨酸(Met;M)、苯丙氨酸(Phe;F)、脯氨酸(Pro;P)、丝氨酸(Ser;S)、苏氨酸(Thr;T)、色氨酸(Trp;W)、酪氨酸(Tyr;Y)、以及缬氨酸(Val;V)。
详细说明
本发明的一个目的是提供具有实质上改变的特性的新颖的工程化eCry1Ba(eCry1Ba)蛋白,这些特性优于并且区别于天然eCry1Ba蛋白而改进,特别是与对于玉米的鳞翅目害虫的杀虫活性相关联的生物化学特性,这些害虫包括但不限于:欧洲玉米螟(ECB;Ostrinia nubilalis)、玉米螟蛉(CEW;Helicoverpa zea))西南玉米螟(SWCB;Diatraeagrandiosella)、甘蔗螟虫(SCB;Diatraea saccharalis)、大豆夜蛾(SBL;Pseudoplusiaincludens)、黎豆夜蛾(VBC;Anticarsia gemmatalis)、等等。,通过突变在根据本发明的天然Cry1Ba蛋白序列中的关键鉴定位置处的氨基酸,设计了一种与如在此定义的天然Cry1Ba或野生型Cry1Ba相比具有实质上改变的溶解度和/或杀虫特性的eCry1Ba。可以将编码该eCry1Ba蛋白的核酸序列用于例如转基因作物中以引起该eCry1Ba蛋白的表达从而控制虫害,如欧洲玉米螟(ECB;Ostrinia nubilalis)、玉米螟蛉(CEW;Helicoverpa zea))西南玉米螟(SWCB;Diatraea grandiosella)、甘蔗螟虫(SCB;Diatraea saccharalis)、大豆夜蛾(SBL;Pseudoplusia includens)、黎豆夜蛾(VBC;Anticarsia gemmatalis)、等等。
在一个实施方案中,本发明提供了一种工程化Cry1Ba(eCry1Ba)蛋白,其包括在结构域I中的一个或多个氨基酸位置处的一个突变,由此当与天然或野生型Cry1Ba蛋白相比时,这种eCry1Ba蛋白具有改进的溶解度或至少对抗欧洲玉米螟的杀虫活性。
在另一个实施方案中,该一个或多个氨基酸位置处的突变位于结构域I的α-螺旋4或α-螺旋5内。某些Cry蛋白(如Cry1Aa、Cry1Ab、和Cry1Ac)的结构功能关系的研究已经包括了结构域I的α-螺旋4和5的诱变(Saraswathy等人,2004,生物技术电子杂志(Electron.J.Biotech.)7:178-188)。这些实验的结果涉及在离子通道形成和电导中的α-螺旋4和5。不清楚一种Cry蛋白(特别是Cry1Ba)的结构域I中的任何一种突变或突变的组合对溶解度以及特异活性是否会具有影响。因此,一种Cry1Ba蛋白的结构域I,特别是在α-螺旋4或5位置处,是突变分析的目标,以确定一种天然Cry1Ba蛋白的溶解度是否可以改进和/或针对一种目标昆虫的特异活性是否可以增加,目标昆虫包括欧洲玉米螟(ECB)、西南玉米螟(SWCB)、甘蔗螟虫(SCB)、玉米螟蛉(CEW)、大豆夜蛾(SBL)以及黎豆夜蛾(VBC),连同其他昆虫。基于序列比对,Cry1Ba的α螺旋4包括SEQ ID NO:2的氨基酸143-163。α螺旋5组成了大部分的保守区1并且包括SEQ ID NO:2氨基酸176-199。这六种已知的天然Cry1Ba蛋白仅在位置150处的α螺旋4处的一个氨基酸不同。这六种中的四种在位置150处具有酪氨酸(Tyr;Y)并且其他两个在位置150处具有组氨酸(His;H)。本披露现在证明了在位置150处的氨基酸在Cry1Ba蛋白的毒性中起关键性作用并且在α螺旋4和α螺旋5内的突变对蛋白质的溶解度、针对一种具体害虫的特异活性可能具有显著影响并且增加Cry1Ba的活性谱。
在另一个实施方案中,本发明包括多个突变,这些突变位于相应于SEQ ID NO:2的位置150、178、189或199的氨基酸位置处。仍然在另一个实施方案中,该突变位于SEQ IDNO:5的位置150、178、189或199处。
仍然在另一个实施方案中,本发明包括Cry1Ba中的多个突变,这些突变位于相应于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。在另一个实施方案中,该突变位于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
在一个实施方案中,本发明包括一种工程化Cry1Ba(eCry1Ba)蛋白,其包括一个氨基酸序列SEQ ID NO:6,其中在位置2处的Xaa是任何氨基酸并且a)在位置150处的Xaa是Pro、Phe、Trp或Lys,并且在位置189处的Xaa是Leu并且在199处是Ser;或b)当在位置150处的Xaa是Lys时,在位置189处的Xaa是Ser;或c)当在位置150处的Xaa是Lys时,在位置199处的Xaa是Lys。
在另一个实施方案中,本发明包括一种eCry1Ba蛋白,其包括氨基酸序列SEQ IDNO:7、SEQ ID NO:8、SEQ ID NO:9或SEQ ID NO:10。
仍然在另一个实施方案中,本发明的eCry1Ba蛋白具有针对鳞翅目或鞘翅目昆虫,特别是针对鳞翅目昆虫的活性。这样的鳞翅目昆虫的例子包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。本发明的工程化Cry1Ba蛋白还具有针对玉米螟蛉(一种天然Cry1Ba对其没有活性的一种昆虫害虫)的活性。
仍然在另一个实施方案中,本发明包括一种eCry1Ba蛋白,其具有比一种天然eCry1Ba蛋白至少高3X的针对至少欧洲玉米螟的特异活性。
在另一个实施方案中,本发明还包括变异体Cry1Ba(vCry1Ba)蛋白,其中在位置150处的一个酪氨酸(Tyr)或组氨酸(His)(Y150或H150)用一个非Tyr或His的氨基酸取代。在一个方面,Y150或H150取代的氨基酸是Lys、Phe、Trp、Pro、Thr、Leu、Ala、Val、Ser、Arg、Gly或Asp。
在另一个实施方案中,本发明包括一种突变的Cry1Ba蛋白,其包含SEQ ID NO:3。
仍然在另一个实施方案中,本发明包括一种vCry1Ba蛋白,其中在位置150处的Tyr或His(Y150或H150)用一个非Tyr或His的氨基酸取代并且具有在位置81处用非Val的氨基酸取代的缬氨酸(Val)(V81);或在位置155(A155)的丙氨酸(Ala)以及在位置178(M178)处的甲硫氨酸(Met)分别用非Ala或Met的氨基酸取代。在另一个实施方案中,在位置81处的Val(V81)用一个色氨酸(Trp)(V81W)取代。仍然在另一个实施方案中,本发明包括一种变异体Cry1Ba蛋白,其包含SEQ ID NO:11。
在一个实施方案中,本发明包括一种在150处的Tyr(Y150)用任何其他氨基酸取代的vCry1Ba蛋白,其中在位置155处的Ala(A155)用一个天冬氨酸(Asp)(A155D)取代并且在位置178处的Met(M178)用一个丝氨酸(Ser)(M178S)取代。在另一个实施方案中,本发明包括一种含SEQ ID NO:12的vCry1Ba蛋白。
本发明包含的vCry1Ba蛋白具有针对鳞翅目或鞘翅目昆虫的杀虫活性。这样的鳞翅目昆虫包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。vCry1Ba蛋白的活性典型地小于本发明的野生型Cry1Ba蛋白的活性。这样的变异体Cry1Ba蛋白的一个优点是它们在不需要高的特异活性的情况下的有效性。技术人员将认识到这样的变异体Cry1Ba蛋白的其他用途和优点。
本发明的eCry1Ba蛋白以及vCry1Ba蛋白的昆虫控制特性进一步展示在实例2、4、5、6以及9中。
在一个实施方案中,本发明包括一种编码本发明的eCry1Ba蛋白或编码本发明的vCry1Ba蛋白的核酸。在另一个实施方案中,该核酸包括SEQ ID NO:13。
本发明还包括一种嵌合基因,该嵌合基因包括被可操作地连接到编码eCry1Ba蛋白或vCry1Ba蛋白的核酸上的一个异源启动子序列。在一个实施方案中,该异源启动子是选自下组,该组由以下各项组成:玉米泛素、夜香树属病毒(cestrum virus,cmp)、玉米TrpA、水稻肌动蛋白、噬菌体T3基因9 5'UTR、玉米金属硫蛋白(mtl)、玉米蔗糖合成酶1、玉米醇脱氢酶1、玉米捕光复合物、玉米热休克蛋白、豌豆小亚基RuBP羧化酶、Ti质粒冠瘿碱合成酶、Ti质粒胭脂碱合成酶、牵牛花苯基丙乙烯酮异构酶、大豆富含甘氨酸蛋白1、马铃薯patatin、凝集素、CaMV 35S以及S-E9小亚基RuBP羧化酶启动子。
本发明还包括多种重组载体,这些重组载体包含本发明的核酸序列。这样的载体包括但不限于一种质粒、粘粒、噬菌粒、人工染色体、噬菌体或病毒载体。在这样的载体中,这些核酸序列优选包含在以下表达盒中,这些表达盒包括用于使这些核酸序列表达在一种能够表达这些核酸序列的宿主细胞中的多个调控元件。这样的调控元件通常包括启动子和终止信号,并且还优选地包括多种元件,这些元件允许有效翻译由本发明的核酸序列所编码的多肽。包含这些核酸序列的载体通常能够优选作为染色体外分子在多种特定的宿主细胞中复制,并且因此用来在这些宿主细胞中扩增本发明的核酸序列。在一个实施方案中,用于这样的载体的宿主细胞是微生物,例如细菌,包括但不限于大肠杆菌、苏云金芽孢杆菌、枯草芽孢杆菌、巨大芽孢杆菌、蜡样芽孢杆菌、农杆菌属或假单胞菌属。在另一个实施方案中,用于这样的重组载体的宿主细胞是内生菌或附生菌。在另一个实施方案中,针对这样的载体的宿主细胞是一种真核细胞,如一种植物细胞。本发明包括的这样的植物细胞的实例包括但不限于高粱、小麦、向日葵、番茄、马铃薯、油菜作物、棉花、水稻、大豆、甜菜、甘蔗、烟草、大麦、油菜、以及一种玉米细胞。
在另一个实施方案中,这样的载体是病毒载体并且被用于在特定的宿主细胞(例如昆虫细胞或植物细胞)中复制该核酸序列。重组载体还可用于将本发明的核酸序列转化到宿主细胞中,由此这些核酸序列被稳定地整合到这些宿主细胞的DNA中。在一个实施方案中,这些宿主细胞是原核细胞。在另一个实施方案中,这些宿主细胞是真核细胞,如植物细胞。在另一个实施方案中,植物细胞是玉米细胞。
在一个实施方案中,本发明包括含有本发明的编码根据本发明的eCry1Ba蛋白或vCry1Ba蛋白的核酸的转基因植物。这种eCry1Ba蛋白或vCry1Ba蛋白对于在其中易感虫害是一个问题的任何转基因植物中表达是有用的。这样的转基因植物包括但不限于单子叶植物和双子叶植物。在一个实施方案中,这些单子叶植物转基因植物包括玉米、小麦、燕麦、水稻、大麦、甘蔗、高粱、草坪草以及牧场草植物。在另一个实施方案中,这些双子叶植物包括大豆、以及其他豆科植物、棉花、向日葵、油菜作物以及其他蔬菜、甜菜、烟草以及油菜。
在另一个实施方案中,本发明包括一种来自转基因植物的任何代的子代植物,其中该子代包括本发明的核苷酸。
在另一个实施方案中,本发明包括一种来自转基因植物的任何代的繁殖体,其中该繁殖体包括本发明的核苷酸。仍然在另一个实施方案中,本发明的繁殖体是选自下组,该组由以下各项组成:种子、节段以及插条。
在另一个实施方案中,本发明包括一种来自本发明的转基因植物的一种生物样品,其中该生物样品包括本发明的一种eCry1Ba蛋白并且该eCry1Ba蛋白能够控制虫害。这样的生物样品的实例包括但不限于任何包括蛋白质(如含eCry1Ba蛋白的玉米面或玉米粉)的玉米副产物,其中该eCry1Ba蛋白继续执行它在该生物样品从中衍生的转基因作物中所具有的这种杀虫功能。
本发明还包括一种杀虫组合物,该组合物包括一种根据本发明的eCry1Ba蛋白或根据本发明的vCry1Ba蛋白以及一种可接受的农用载体。在一个实施方案中,这种农用载体可以是一种液体、粉末或一种转基因植物,例如但不限于一种玉米植物或一种甘蔗植物。
在另一个实施方案中,本发明包括了一种用于产生针对昆虫是活性的eCry1Ba蛋白或vCry1Ba蛋白的方法,包括:(a)获得包含一种嵌合基因的宿主细胞,该基因本身包含与本发明的一种核酸分子可操作地连接的一种异源启动子序列;以及(b)在该转基因宿主细胞中表达该核酸,这产生了本发明的针对昆虫是活性的至少一种蛋白质。在另一个实施方案中,这些昆虫是鞘翅目昆虫或鳞翅目昆虫。仍然在另一个实施方案中,这些鳞翅目昆虫是选自下组,该组由以下各项组成:欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
在另一个实施方案中,本发明包括一种产生抗昆虫转基因植物的一种方法,包括将本发明的一种包括核酸的表达盒引入一种植物中由此产生一种转基因植物,其中该表达盒引起在该转基因植物中以有效控制昆虫的量表达本发明的一种蛋白质。在另一个实施方案中,这些昆虫是鞘翅目或鳞翅目昆虫。本发明包括的这些鳞翅目昆虫包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
在另一个实施方案中,本发明包括一种制造eCry1Ba蛋白的方法,包括a)鉴定一种具有结构域I的Cry1Ba蛋白;b)将结构域I中的一个位置处的至少一个天然氨基酸用至少一个其他的氨基酸取代;并且c)获得该如此产生的eCry1Ba蛋白,其中当与一种天然Cry1Ba蛋白相比时,该eCry1Ba具有改进的溶解度和/或针对至少欧洲玉米螟的杀虫活性。在另一个实施方案中,该Cry1Ba蛋白是具有以下Genbank登录号的Cry1Ba1:CAA29898、Cry1Ba2(CAA65003)、Cry1Ba3(AAK63251)、Cry1Ba4(AAK51084)、Cry1Ba5(ABO20894)或Cry1Ba6(ABL60921)。仍然在另一个方面,Cry1Ba中的天然氨基酸位于结构域I的α-螺旋4或α-螺旋5内。仍然在另一个实施方案中,该氨基酸位于相应于SEQ ID NO:2的位置150、178、189或199的位置处。仍然在另一个实施方案中,该氨基酸位于SEQ ID NO:5的位置150、178、189或199的位置处。仍然在另一个实施方案中,Cry1Ba中的氨基酸位于相应于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。在另一个实施方案中,该氨基酸位于SEQ ID NO:5的位置2和150;或位置2、150和178;或位置2、150和189;或位置2、150和199的位置处。
仍然在另一个实施方案中,本发明包括一种用于控制鳞翅目昆虫的方法,包括:向昆虫递送本发明的一个有效量的eCry1Ba蛋白或vCry1Ba蛋白或使昆虫与其接触。根据这个实施方案,这些昆虫是鞘翅目昆虫或鳞翅目昆虫。这样的鳞翅目昆虫包括但不限于欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。优选地,该eCry1Ba蛋白或vCry1Ba蛋白通过口服递送给昆虫。在另一个实施方案中,这些蛋白质通过一种转基因植物进行口服递送,该转基因植物包含表达本发明的eCry1Ba蛋白或vCry1Ba蛋白的一个核酸序列。
本发明进一步包括一种控制昆虫的方法,其中本发明的转基因植物进一步包含编码一种第二杀虫成分的第二核酸序列或多组核酸序列。在一个实施方案中,该第二核酸序列是编码一种不同于本发明的eCry1Ba蛋白或vCry1Ba蛋白的Cry蛋白的那些,例如编码一种营养期杀虫蛋白质的那些(分别披露于美国专利5,849,870以及5,877,012中,均通过引用结合在此)、或编码一种非蛋白质成分的产生途径的那些。在另一个实施方案中,该第二核苷酸序列编码一种Vip3蛋白质。技术人员将认识到许多不同的杀虫成分可以与本发明的eCry1Ba或vCry1Ba蛋白结合使用。
在另一个实施方案中,本发明包括向一个栽培者提供一种控制至少欧洲玉米螟(Ostrinia nubilalis)的改进的手段的方法,包括向该栽培者提供或销售该转基因繁殖体,该繁殖体包括编码一种eCry1Ba蛋白的核酸,该蛋白质在结构域I中的一个或多个氨基酸位置处具有一个突变,该eCry1Ba蛋白与一种天然Cry1Ba蛋白相比时具有改进的溶解度和/或针对至少欧洲玉米螟的杀虫活性。在另一个实施方案中,该转基因繁殖体是选自下组,该组由以下各项组成:种子、节段以及插条。
在另外的实施方案中,通过将随机突变结合至已知的技术(如体外重组或DNA改组)中,可对本发明的核酸序列进行进一步修饰。这项技术说明于Stemmer等人,(自然)Nature 370:389-391(1994)以及美国专利5,605,793中,二者均通过引用结合在此。一种核酸序列的数百万突变体拷贝是基于本发明的最初的一种核酸序列而产生的,并且对具有改进的特性(例如提高的杀虫活性、增强的稳定性、或不同的特异性)或靶虫害范围的变异体进行回收。该方法包括从包含本发明的一种核酸序列的一个模板双链多核酸形成一种诱变的双链多核酸,其中该模板双链多核酸已经被切割成具有所希望的大小的多个双链随机片段;并且包括以下步骤:将一个或多个单链或双链寡核酸添加至生成的双链随机片段群中,其中所述寡核酸包含与该双链模板多核酸具有同一性的一个区域和具有异质性的一个区域;使生成的双链随机片段与寡核酸的混合物变性成单链片段;在导致所述单链片段在所述同一性的区域进行退火以形成多个退火片段对的条件下用一种聚合酶孵育生成的多个单链片段群,所述同一性的区域足以使一个片段对中的一员引导另一个成员进行复制,由此形成一种诱变的双链多核酸;并且将第二和第三个步骤再重复至少两个循环,其中在另一个循环的第二个步骤中生成的混合物包括来自前面的循环的第三个步骤的诱变的双链多核酸,并且该另外的循环形成了另外的诱变的双链多核酸。在一个优选的实施方案中,在多个双链随机片段群中的一个单一种类的双链随机片段的浓度按总DNA的重量计小于1%。在另一个实施方案中,该模板双链多核酸包含至少大约100个种类的多核酸。在另一个优选的实施方案中,该双链随机片段的大小是从大约5bp至5kb。仍然在另一个优选的实施方案中,该方法的第四个步骤包括将第二和第三个步骤重复至少10个循环。
在异源微生物中的核酸序列的表达
作为生物性昆虫控制剂,这些杀虫eCry1Ba蛋白是通过在能够表达这些核酸序列的异源宿主细胞中表达这些核酸序列而产生的。在一个第一实施方案中,制造了包含本发明的一种核酸序列的修饰的苏云金芽孢杆菌细胞。这样的修饰包括存在的调控元件的突变或缺失,因此导致该核酸序列的表达改变,或掺入了控制该核酸序列表达的新的调控元件。在另一个实施方案中,通过插入至染色体中或通过引入包含这些核酸序列的染色体外复制分子而将一种或多种核酸序列的多个另外的拷贝添加至苏云金芽孢杆菌细胞中。
在另一个实施方案中,将本发明的核酸序列中的至少一个插入一个适当的表达盒中(包含一个启动子和终止信号)。该核酸序列的表达是组成型的,或使用相应于各种类型的起始转录的刺激的一种诱导型启动子。在一个优选的实施方案中,其中表达了该蛋白质的细胞是一种微生物,如一种病毒、细菌或真菌。在一个实施方案中,一种病毒(如杆状病毒)在其基因组中包含本发明的一种核酸序列并且在感染了适当的真核细胞(适合于病毒复制以及该核酸序列的表达)之后表达了大量相应的杀虫eCry1Ba蛋白或vCry1Ba蛋白。由此产生的杀虫蛋白用作一种杀虫剂。可替代地,被工程化以包含该核酸序列的杆状病毒被用来体内感染昆虫并通过该杀虫蛋白质的表达或通过病毒感染与该杀虫蛋白质的表达的组合而将其杀死。
细菌细胞也是用于表达本发明的核酸序列的宿主。在一个优选的实施方案中,使用了能够在植物组织内生活并复制的非致病性共生细菌(所谓的内生菌),或能够定植在叶际或根际的非致病性共生细菌(所谓的附生菌)。这样的细菌包括以下属的细菌:农杆菌属、产碱菌属、固氮螺菌属、定氮菌属、芽孢杆菌属、棒形杆菌属、肠杆菌属、欧文菌属、黄杆菌属、克雷白菌属、假单胞菌属、根瘤菌属、沙雷菌属、链霉菌属、以及黄单胞菌属。共生性真菌(如木霉属以及胶枝霉属)也是为了相同目的表达本发明的核酸序列的可能宿主。
这些基因操作技术对于不同的可供使用的宿主而言是特异性的并且在本领域中是已知的。例如,表达载体pKK223-3以及pKK223-2可以用来在大肠杆菌中(在转录或翻译融合中)在tac或trc启动子之后表达异源基因。为了表达编码多个ORF的操纵子,最简单的操作是在转录融合中将该操纵子插入一种载体(如pKK223-3)中,允许对该异源基因的同源核糖体结合位点进行利用。在革兰氏阳性种类(如芽孢杆菌属)中的过表达技术在本领域中也是已知的,并且可在本发明的背景中使用(Quax等人.In:Industrial Microorganisms:Basic and Applied Molecular Genetics,Eds.Baltz et al.,American Society forMicrobiology,Washington(1993))。用于过表达的替代性系统依赖于(例如)酵母载体,并包括毕赤酵母属、酵母属、以及克鲁维酵母属的使用(Sreekrishna,In:Industrialmicroorganisms:basic and applied molecular genetics,Baltz,Hegeman,and Skatrudeds.,American Society for Microbiology,Washington(1993);Dequin&Barre,Biotechnology L2:173-177(1994);van den Berg et al.,Biotechnology 8:135-139(1990))。
植物转化
在一个实施方案中,本发明的这些杀虫eCry1B蛋白质或vCry1Ba蛋白中至少有一种是在一种高级生物(例如,一种植物)中表达的。在这种情况下,表达有效量的这些eCry1Ba或vCry1Ba蛋白的转基因植物保护这些植物其本身免受虫害。在该昆虫开始以这种转基因植物为食时,它也摄取了这种已表达的eCry1Ba或vCry1Ba蛋白。这将妨碍昆虫进一步咬食植物组织或者甚至可以伤害或杀死昆虫。本发明的一种核酸序列被插入到一种表达盒中,然后该表达盒被优选稳定地整合到所述植物的基因组中。在另一个实施方案中,该核酸序列被包含在一种非致病性自我复制病毒中。跟据本发明所转化的植物可以是单子叶植物或双子叶植物,并且包括但不限于:玉米、小麦、大麦、黑麦、甘薯、豆、豌豆、菊苣、莴苣、卷心菜、花椰菜、西兰花、芜菁、萝卜、菠菜、芦笋、洋葱、大蒜、胡椒(pepper)、芹菜、小南瓜(squash)、大南瓜(pumpkin)、大麻、西葫芦、苹果、梨、榅桲、甜瓜、李子(plum)、樱桃、桃、油桃、杏、草莓、葡萄、覆盆子、黑莓、菠萝、鳄梨、番木瓜、芒果、香蕉、大豆、番茄、高粱、甘蔗、甜菜、向日葵、油菜籽、三叶草、烟草、胡萝卜、棉花、苜蓿、水稻、马铃薯、茄子、黄瓜、拟南芥属,以及木本植物,如针叶树以及落叶树。
一旦一种令人希望的核酸序列已经被转化到一种特定的植物种类中,使用传统的育种技术可以将其在该种类中繁殖或将其转移到相同种类的其它品种中,特别包括商业品种。
本发明的一种核酸序列优选地表达于转基因植物中,因此引起相应的eCry1Ba或vCry1Ba蛋白在该转基因植物中的生物合成。通过这种方式产生了对昆虫具有增强的抗性的转基因植物。为了其在转基因植物中的表达,本发明的这些核酸序列可能需要其他的修饰和优化。尽管在许多情况下,来自微生物生物体的基因能够在植物中高水平表达而无需修饰,在转基因植物中的低水平表达可能是由于微生物的核酸序列的缘故,这些序列具有在植物种并不优选的密码子。在本领域中已知的是所有生物都具有特定的密码子使用偏好,而且在本发明中所说明的这些核酸序列的密码子可以被改变以符合植物偏好,同时维持由其编码的这些氨基酸。此外,在植物中高表达最好是由以下编码序列实现的,这些编码序列具有至少大约35%、优选大于约45%、更优选大于约50%、并且最优选大于约60%的GC含量。具有低GC含量的微生物核酸序列在植物中也许表达欠佳,这是由于存在着可能使信息不稳定的ATTTA基序,以及可导致不恰当的多聚腺苷酸化的AATAAA基序。尽管优选的基因序列均可以在单子叶植物和双子叶植物种类中充分表达,还可以对序列进行修饰以便解决单子叶植物或双子叶植物特定的密码子偏好以及GC含量偏好,因为这些偏好已经被证明是不同的(Murray et al.Nucl.Acids Res.17:477-498(1989))。此外,针对不正常剪接位点的存在来筛选这些核酸序列,这些位点可能导致信息平截(message truncation)。使用熟知的位点定向诱变、PCR、以及合成基因的构建,使用说明于公开的专利申请EP 0 385 962(授予Monsanto)、EP 0 359 472(授予Lubrizol)、以及WO 93/07278(授予Ciba-Geigy)中的方法,对在这些核酸序列之内所有需要做出的变化(如以上所说明的那些变化)进行改变。
在本发明的一个实施方案中,根据在美国专利5,625,136(通过引用结合在此)中所披露的操作来制造一种eCry1Ba编码序列。在这个操作中,使用了玉米偏爱的密码子,即最频繁地编码玉米中的氨基酸的单一密码子。针对一种特定的氨基酸的玉米偏爱的密码子可源自(例如)来自玉米的已知基因序列。针对来自玉米植物的28个基因的玉米密码子使用发现于Murray et al.,Nucleic Acids Research 17:477-498(1989)中,其披露内容通过引用结合在此。使用玉米优化的密码子制造的合成序列列出在SEQ ID NO:13中。
以这种方式,为了在任何植物中进行表达可以对这些核酸序列进行优化。认识到的是该基因序列的所有或任何部分可以是优化的或合成的。即,还可以使用合成的或部分优化的序列。
为了有效的翻译起始,可能需要修饰与起始甲硫氨酸相邻的序列。例如,它们可以通过包含已知在植物中有效的序列而被修饰。Joshi已经提出了针对植物的一种合适的共有序列(NAR 15:6643-6653(1987)),并且Clonetech提出了另一个共有翻译起始子(1993/1994目录,210页)。这些共有序列适宜与本发明的核酸序列一起使用。将这些序列添加至包含核酸序列的构建体中,达到ATG并且包括ATG(同时保持不修饰第二个氨基酸),或者可替代地达到ATG后的GTC并且包括ATG后的GTC(具有修饰该转基因的第二个氨基酸的可能性)。
在转基因植物中这些核酸序列的表达是由在植物中发挥作用的启动子所推动的。启动子的选择将依赖于表达的时间和空间需要而变化,并且还依赖于目标种类而变化。因此,本发明的核酸序列在叶、柄(stalk)或茎(stem)、穗、花序(例如穗状花序、圆锥花序、穗轴、等等)、根、和/或籽苗中的表达是优选的。然而在许多情况下,寻求针对多于一种类型虫害的保护,并且因此在多个组织中的表达是令人希望的。尽管已经显示来自双子叶植物的许多启动子在单子叶植物中是可操作的并且反之亦然,理想的是选择双子叶植物启动子用于在双子叶植物中的表达,并且选择单子叶植物启动子用于在单子叶植物中的表达。然而,对所选择的启动子的起源并没有限制,足够的是它们在推动核酸序列在所希望的细胞中的表达中是操作性的。
被组成型表达的启动子包括来自编码肌动蛋白或泛素的基因的启动子以及CaMV35S和19S启动子。本发明的核酸序列也可以在被化学调节的启动子的调节下表达。这使得eCry1Ba或变异体Cry1Ba蛋白仅在用诱导性化学品处理作物植物时能够被合成。用于基因表达的化学诱导的优选技术详述于公开申请EP 0 332 104(授予Ciba-Geigy)以及美国专利5,614,395中。用于化学诱导的一种优选启动子是烟草PR-1a启动子。
另一类启动子是创伤可诱导的启动子。已经说明了数量众多的在创伤部位并且还在植物病原菌感染的部位表达的启动子。理想的是,这种启动子应当仅在感染部位是局部活性的,并且以这种方式这些杀虫eCry1Ba或变异体Cry1Ba蛋白仅在需要合成这些杀虫eCry1Ba或变异体Cry1Ba蛋白的细胞中积累以杀死入侵的虫害。优选的这类启动子包括由Stanford等人Mol.Gen.Genet.215:200-208(1989)、Xu等人Plant Molec.Biol.22:573-588(1993)、Logemann等人Plant Cell 1:151-158(1989)、Rohrmeier&Lehle,PlantMolec.Biol.22:783-792(1993)、Firek等人Plant Molec.Biol.22:129-142(1993)、以及Warner等人Plant J.3:191-201(1993)所说明的启动子。
用于在植物(特别是玉米)中表达编码eCry1Ba或变异体Cry1Ba蛋白的基因的组织特异性的或组织优先的启动子是那些直接在根、髓、叶或花粉(特别是根)中表达的启动子。这样的启动子(例如从PEPC或trpA中分离的那些)披露于美国专利号5,625,136中、或MTL,披露于美国专利号5,466,785中。这两篇美国专利以其全文通过引用结合在此。
另外的优选实施方案是以一种创伤可诱导的方式或病原体感染可诱导的方式表达核酸序列的转基因植物。
除了启动子外,使用本发明的eCry1Ba或变异体Cry1Ba蛋白基因、许多转录终止子可供在嵌合基因构建中使用。转录终止子负责在该转基因及其正确的聚腺苷酸化之外的转录的终止。适当的转录终止子是那些已知在植物中发挥作用的转录终止子,包括CaMV 35S终止子、tml终止子、胭脂碱合成酶终止子、豌豆rbcS E9终止子、以及本领域中已知的其他启动子。这些终止子可以在单子叶植物和双子叶植物中使用。任何一种已知在植物中发挥功能的可供使用的终止子均可以在本发明的背景下使用。
可以将数量众多的其他序列掺入本发明中所说明的表达盒中。这些序列包括已经显示出增强表达的序列,如内含子序列(例如,来自Adhl和bronzel)以及病毒的前导序列(例如,来自TMV、MCMV、以及AMV)。
将本发明的核酸序列靶向到植物中的不同细胞定位的表达可能是更优选的。在某些情况下,在胞质溶胶中的定位可能是令人希望的,而在其他情况下,在某个亚细胞器中的定位可能是优选的。使用本领域内熟知的技术进行编码酶类的转基因的亚细胞定位。典型地,处理编码来自一种已知靶向细胞器的基因产物的目标肽的DNA并将其融合在该核酸序列的上游。针对叶绿体的许多这样的靶序列是已知的并且已经证明了它们在异源构建体中的功能。还将本发明的核酸序列的表达靶向至宿主细胞的内质网或液泡。实现这个目的的技术在本领域中是熟知的。
适合于植物转化的载体说明于在本说明书的其他地方。对于农杆菌介导的转化,二元载体或携带至少一个T-DNA边界序列的载体是适合的,而对于直接基因转移,任何载体都是适合的,并且仅含有感兴趣的构建体的线性DNA也许是优选的。在直接基因转移的情况下,可以使用以单一DNA种类的转化或共转化(Schocher等人Biotechnology 4:1093-1096(1986))。对于直接基因转移以及农杆菌介导的转化这二者,转化通常(但不是必需的)用一种选择标记进行,这种选择标记可以提供针对一种抗生素(卡那霉素、潮霉素、或甲氨蝶呤)或一种除草剂(Basta)的抗性。包含对本发明的eCry1Ba或变异体Cry1Ba蛋白基因的植物转化载体还可能如美国专利5,767,378和5,994,629中所披露的,包含提供转基因植物阳性选择的基因(如磷酸甘露糖异构酶;pmi)(通过引用将其合并在此)或提供对除草剂草铵膦(草丁膦)耐受性的草铵膦乙酰转移酶(pat)。然而,选择标记的选择对于本发明并不是至关重要的。
在另一个实施方案中,直接将编码本发明的一种eCry1Ba或vCry1Ba蛋白的核酸序列转化进入质体基因组中。质体转化的一种主要优点在于质体通常能够表达细菌基因而无需实质性的密码子优化,而且质体能够在一种单一启动子的控制下表达多个开放阅读框。在美国专利号5,451,513、5,545,817、以及5,545,818、在PCT申请号WO 95/16783、并且在McBride等人(1994)Proc.Nati.Acad.Sci.USA 91,7301-7305中广泛说明了质体转化技术。基本的叶绿体转化技术涉及将位于一种选择标记侧翼的克隆的质体DNA区连同所感兴趣的基因一起引入到一种适合的靶组织中,这是(例如)通过生物射弹(biolistics)或原生质体转化(例如,氯化钙或PEG介导的转化)来进行的。这些1至1.5kb的侧翼区(被命名为靶向序列)促进了与质体基因组的同源重组,并且因而允许置换或修饰该原质体(plastome)的特定区域。最初,将叶绿体16S rRNA和rps 12基因(赋予了针对大观霉素和/或链霉素的抗性)的点突变用作选择标记用于转化(Svab,Z.,Hajdukiewicz,P.,and Maliga,P.(1990)Proc.Nati.Acad.Sci.USA 87,8526-8530;Staub,J.M.,and Maliga,P.(1992)Plant Cell4,39-45)。这以大约每100次靶叶轰击大约1个的频率产生稳定的同质转化株。在这些标记之间克隆位点的存在允许建立一种质体靶向载体用于外源基因的引入(Staub,J.M.,andMaliga,P.(1993)EMBO J.12,601-606)。转化频率的实质性增加是通过用一种显性选择标记(细菌aadA基因,它编码了大观霉素-cletoxifying酶-氨基糖苷-3'-腺苷酰转移酶)来置换这些隐性rRNA或r-蛋白抗生素抗性基因(Svab,Z.,and Maliga,P.(1993)Proc.Natl.Acad.Sci.USA 90,913-917)。之前,这种标记已经被成功地用于莱茵衣藻(Chlamydomonas reinhardtii)这种绿藻的质体基因组的高频率转化(Goldschmidt-Clermont,M.(1991)Nucl.AcidsRes.19:4083-4089)。用于质体转化的其他选择标记是本领域所已知的,并且包括在本发明的范围之内。典型地,转化之后需要大致15-20个细胞分裂循环以便达到一种同质状态。质体表达(其中多种基因通过同源重组被插入到在每个植物细胞中存在的所有数千个环状质体基因组的拷贝中)利用了超过核表达的基因的庞大的拷贝数目的优点,以便允许能够很容易超过总的可溶性植物蛋白的10%的表达水平。在一个优选的实施方案中,将本发明的一种核酸序列插入至一种质体靶向的载体中并且转化至一种所希望的植物宿主的质体基因组中。获得了包含本发明的一种核酸序列的对于质体基因组同型的植物,并且这些植物优选地能够高表达该核酸序列。
昆虫控制成分的组合
本发明的eCry1Ba或vCry1Ba蛋白可以与其他Bt Cry蛋白或其他杀虫成分组合使用以增加害虫的目标范围。此外,本发明的eCry1Ba或vCry1Ba蛋白与具有不同性质的其他Bt Cry蛋白或其他杀虫成分结合使用对于预防和/或处理昆虫抗性的具有特殊效用。其他的杀虫成分包括例如凝集素、α-淀粉酶、过氧化物酶、以及胆固醇氧化酶。营养期杀虫蛋白基因,如vip1A(a)和vip2A(a)或vip3在本发明中也是有用的。在一个实施方案中,将被命名为eCry1Ba-T2AY150KL189S(SEQ IDNO:9)的eCry1Ba蛋白与一种Vip3A蛋白在一种转基因植物中组合。这种转基因植物表现出与eCry1Ba和Vip3均相关联的组合的杀虫活性谱。仍然在另一个实施方案中,该转基因植物是一种玉米植物或甘蔗植物。
可以将一种植物遗传工程化以包含并表达所有的在所谓的分子堆积(molecularstack)中必需的基因来实现一种以上的杀虫成分在同一个转基因植物中的共表达。可替代地,可以将一种植物(亲本1)遗传工程化,用于本发明的基因的表达。可以将一种第二植物(亲本2)遗传工程化,用于一种补充性昆虫控制成分的表达。通过将亲本1与亲本2杂交,获得了表达被引入至亲本1和亲本2中的所有基因的子代植物。例如而并非限制,亲本1可以包含一种eCry1Ba编码序列并且亲本2可以包含一种Vip3A编码序列。亲本1与亲本2杂交的某一子代将包含该eCry1Ba编码序列以及Vip3A编码序列这两者。
本发明的转基因种子还可以用一种杀虫的种子包衣进行处理,如在美国专利号5,849,320以及5,876,739中所说明,通过引用结合在此。其中本发明的杀虫种子包衣与转基因种子针对同一种目标昆虫是具有活性的,该组合(i)在用于增强本发明的一种eCry1Ba蛋白针对目标昆虫的活性的方法中以及(ii)在用于通过提供针对该目标昆虫的一种第二作用机制而防止对本发明的eCry1Ba蛋白产生抗性的一种方法中是有用的。因此,本发明提供了一种增强活性的方法,这种活性对抗或防止在一种目标昆虫(例如,玉米根虫)中产生抗性,该方法包括将一种杀虫性种子包衣施用至包含本发明的一种或多种eCry1Ba蛋白的一种转基因种子上。这样的化学处理可以包括杀虫剂、杀真菌剂或杀线虫剂。这样的杀虫剂的实例包括但不限于:呋虫胺,如噻虫嗪、吡虫啉、啶虫脒、烯虫灵、呋虫胺(nidinotefuran)、溴虫腈、吡螨胺、虫酰肼、甲氧虫酰肼、氯虫酰肼、唑蚜威、阿维菌素、多杀菌素、氟虫腈(fiprinol)、乙酰甲胺磷、苯线磷、二嗪农、毒死蜱、甲基毒死蜱(chlorpyrifon-methyl)、马拉硫磷、甲萘威、涕灭威、虫螨威、硫双威以及杀线威。即使其中该杀虫性种子包衣针对一种不同的昆虫是具有活性的,该杀虫性种子包衣可用于扩展昆虫控制的范围,例如通过将一种具有针对鳞翅目昆虫活性的杀虫性种子包衣加入本发明的转基因种子(具有针对鞘翅目昆虫活性)中,经包被的转基因种子产生了对鳞翅目以及鞘翅目虫害这两者的控制。
实例
通过参考以下具体的实例可以进一步描述本发明。这些实例仅仅是出于说明性目的而提供的,并且并不旨在进行限制,除非另外指明。这里所使用的标准的重组DNA以及分子克隆技术在本领域内是熟知的,并且由J.Sambrook,et al.,Molecular Cloning:ALaboratory Manual,3d Ed.,Cold Spring Harbor,NY:Cold Spring Harbor LaboratoryPress(2001);T.J.Silhavy,M.L.Berman,and L.W.Enquist,Experiments with GeneFusions,Cold Spring Harbor Laboratory,Cold Spring Harbor,NY(1984)以及Ausubel,F.M.et al.,Current Protocols in Molecular Biology,New York,John Wiley以及SonsInc.,(1988),Reiter,et al.,Methods in Arabidopsis Research,World ScientificPress(1992),以及Schultz et al.,Plant Molecular Biology Manual,Kluwer AcademicPublishers(1998)进行了说明。
实例1.使用PCR突变Cry1Ba编码序列
聚合酶链式反应(PCR)是核酸序列的一种重复性的、酶促的、引发的合成。这种操作是熟知的并且经常被本领域的技术人员使用(参见Mullis,美国专利号4,683,195、4,683,202、以及4,800,159;Saiki,Randall K.,Stephen Scharf,Fred Faloona,KaryB.Mullis,Glenn T.Horn,Henry A.Erlich,Norman Arnheim[1985]“用于诊断镰状细胞性贫血β珠蛋白基因组序列以及限制位点分析(Enzymatic Amplification of.beta.-GlobinGenomic Sequences and Restriction Site Analysis for Diagnosis of Sickle CellAnemia)”科学(Science)230:1350-1354.)。PCR是基于一种感兴趣的DNA片段的酶促扩增,该DNA片段的侧翼是与靶序列的相反链进行杂交的两种寡核酸引物。这两种引物用指向彼此的3'端而定向。模板的热变性的重复循环、将这些引物退火至其互补序列、以及用DNA聚合成酶对退火的引物进行延伸导致了由PCR引物的5'端所限定的区段的扩增。由于每个引物的延伸产物可以充当另一个引物的模板,每个循环基本上使在之前的循环中所产生的DNA片段的量加倍。这导致了特定目标片段的指数型累积,在几小时内高达几百万倍。通过使用一种热稳定的DNA聚合成酶(如Taq聚合成酶,它分离自嗜热菌栖热水生菌),该扩增过程可以是完全自动化的。
根据生产厂家的说明使用快速变化位点定向诱变试剂盒(QuickChange Site-Directed Mutagenesis Kit)(Stratagene,La Jolla,CA)以及在表1中示出的示例性引物的组合来构建在以下实例中描述的突变体Cry1Ba编码序列。基于本申请,技术人员将认识到可以使用其他的引物对来突变任何Cry1Ba编码序列。
表1.用来制造编码eCry1Ba蛋白的突变编码序列的引物
Figure BDA0000977924790000371
Figure BDA0000977924790000381
实例2.确定Cry1Ba突变体的毒性
通过一种表面污染法来确定突变Cry1Ba蛋白(以下描述的)针对以下虫害的活性:包括欧洲玉米螟(Ostrinia nubilalis)、甘蔗螟虫(Diatraea saccharalis)、西南玉米螟(Diatraea grandiosella)、玉米螟蛉(Helicoverpa zea)大豆夜蛾(Pseudoplusiaincludens)、黎豆夜蛾(Anticarsia gemmatalis)、以及科罗拉多马铃薯甲虫(Leptinotarsa decemlineata)。简言之,将用于一种特定种类的人工饲料倾倒入24孔的组织培养液板中或小的培养皿中。每个孔具有大致2cm2的表面积。将包含该突变Cry1Ba蛋白的液体施加到每个孔中的饲料表面上。该液体被吸收并且干燥之后,将试验幼虫置于每个孔中并且然后将该板密封。将一种工程化Cry1Ba蛋白的活性与一种天然或野生型Cry1Ba的活性进行比较并且报告为死亡百分比或相对活性。
实例3.全长Cry1Ba中位置150处的突变
由于这六种天然Cry1Ba蛋白仅是在α-螺旋4中的氨基酸不同,例如4/6具有酪氨酸(Y150)并且2/6具有组氨酸(H150)(参见图1),初始突变分析研究了在α-螺旋4中的氨基酸位置150对全长Cry1Ba的杀虫活性的影响。
在一种Cry1Ac启动子的控制下将一种天然全长cry1Ba编码序列(SEQ ID NO:1)克隆到一种Bt/大肠杆菌pUC18-衍生的穿梭载体中。使用这种全长编码序列作为一个模板,根据生产厂家说明使用快速变化位点定向诱变试剂盒(QuickChange Site-DirectedMutagenesis Kit)(Stratagene,La Jolla,CA)以及在表1的引物YG152-YG157通过将位置150处的酪氨酸(Tyr)用不同的氨基酸取代来产生突变Cry1Ba蛋白。使用在实例2中描述的方法针对ECB测试所有的突变Cry1Ba蛋白。
在表2中示出的数据证明了全长Cry1Ba蛋白中的位置150在至少ECB毒性的调节中起重要作用。与天然Cry1Ba相比,一些突变降低了ECB特异活性。Cry1Ab(一种具有针对ECB高特异活性的蛋白质)在相应于Cry1Ba序列的Y150的位置(Cry1Ab序列的位置131;参见图2A)处具有一个精氨酸(Arg)。有趣的是,Y150R Cry1Ba突变体仅具有在实验中所使用的天然Cry1Ba蛋白一半的活性。保持或略微增加了天然Cry1Ba的活性的突变包括Y150K、Y150F、Y150W和Y150P。与天然Cry1Ba相比具有较低活性的突变Cry1Ba被称为变异Cry1Ba蛋白。
表2.Cry1Ba-Y150X变异体ECB生物测定的结果
Figure BDA0000977924790000391
实例4.与全长Cry1Ba相比的截短Cry1Ba的毒性
基于本领域所已知的,清楚的是在Cry1Ba中的确切蛋白质分解位点是通过昆虫肠蛋白酶靶向的。因此,这种活性毒素的序列并不清楚。对于这个实例,基于与Cry1Ab(其切割位点已经被报告)的序列比对,预测了Cry1Ba原毒素的切割位点(参见图2)。使用这个信息,构建了表达Cry1Ba的截短形式的载体。
使用全长天然cry1Ba编码序列(SEQ ID NO:1)作为模板以及引物YG160和YG162或YG163和YG166将一种截短cry1Ba片段对应地PCR克隆到pCIB5634或pET28a中。生成的PCR片段编码了一种含SEQ ID NO:2的氨基酸1-647的截短蛋白。然而,在将这种截短的cry1Ba编码序列初始克隆到载体中的过程中,引入了一个突变,由此在位置2处的苏氨酸(T2)用一个丙氨酸(Ala;A)替代(T2A突变)。这种T2A突变被确定为与天然Cry1Ba相比具有对于杀虫活性的不利影响,并且因此被用于所有随后的突变实验中。这种T2A突变体被称为T25野生型Cry1Ba。
生成的PCR片段编码一种含SEQ ID NO:2的氨基酸22-647的N端以及C端截短蛋白(SEQ ID NO:42)并且被称为T7。
蛋白质印迹结果证明,在pCIB5634和pET28a载体两者中的T25截短的Cry1Ba(包含氨基酸1-647)比在两者之一的载体中的T7截短的Cry1Ba毒素更稳定。生物测定结果(表3)显示,T25野生型毒素比T7构建体的活性高15倍并且比全长型Cry1Ba蛋白的活性高3倍。因此,使用野生型T25截短的Cry1Ba构建了另外的Cry1Ba突变体。
表3.针对ECB的截短Cry1Ba对全长Cry1Ba的活性
Figure BDA0000977924790000401
实例5.在截短的Cry1Ba中突变Y150的作用
在T25截短的Cry1Ba毒素中,测试了未降低全长Cry1Ba蛋白的杀虫活性的在氨基酸位置150处的突变(包括Y150K、Y150F、Y150W和Y150P)。使用引物YG152-YG157如以上描述进行Y150K、Y150F、Y150W和Y150P突变。
在截短的T25蛋白质中进行这些突变导致了与全长Cry1Ba蛋白中的不同结果。例如,在T25截短的毒素中的Y150P突变完全敲除了ECB活性。然而,在全长Cry1Ba中的相同突变对于ECB活性没有不利影响(参见实例3)。出人意料地,除了Y150K突变之外,所有突变均将T25ECB活性降低到相同的程度(表4)。所有的天然Cry1Ba蛋白在位置150处具有一个组氨酸(H)抑或一个酪氨酸(Y)。与“H150-型”天然Cry1Ba以及“Y150-型”天然Cry1Ba这两者相比,这种Y150K突变实质上改变了eCry1Ba-Y150K突变体的生物特性。这种Y150K突变体比在150位置处具有一个组氨酸(His)的Cry1Ba蛋白的活性高3倍多。
表4.截短的Y150X突变体的活性
Figure BDA0000977924790000411
对于每种突变T25Cry1Ba蛋白,测试了其溶解度特性。蛋白质的溶解度与杀虫活性相关。例如,eCry1Ba-Y150K蛋白比野生型T25-Cry1Ba以及任何其他的突变蛋白更易溶解的。因此,这些数据证明,改变150处的氨基酸对于一种截短的Cry1Ba蛋白的溶解度以及杀虫活性具有显著影响。例如,与野生型的截短的Cry1Ba毒素(T25)相比,将位置150处的酪氨酸(Tyr)突变成赖氨酸(Lys)实质上增加了这种截短Cry1Ba毒素的溶解度以及针对ECB的特异活性。这种eCry1Ba-Y150K蛋白(TM2)用于进一步的突变分析实验。
实例6.另外的eCry1Ba突变体的构建和测试
Cry1Ab具有针对ECB的高特异活性。因此,进行Cry1Ab和T25-Cry1Ba蛋白之间的序列比对有助于鉴定可能对于Cry1Ba活性或溶解度是重要的α螺旋4或5中的关键性氨基酸位置。在图2中示出了在Cry1Ab与Cry1Ba之间的序列比对。在以下实例10中的表8中示出了Cry1Ab和Cry1Ba结构特征的比较。针对鉴定的关键性氨基酸位置进行了进一步的突变分析,以确定除了Y150K突变之外的突变是否进一步增加了这种eCry1Ba蛋白的特异活性。TM2编码序列(SEQ ID NO:4)被用作一个模板用于进一步的位点定向诱变。如以上描述,使用在表1中列出的YG171-YG193引物进行突变。
对于十一个突变体,测试了针对欧洲玉米螟的活性。表5示出了生物测定的结果。在测试的11个突变体中,两个突变体L189S和S199K增加了TM2-Y150K突变体针对ECB的特异活性,这比野生型Cry1Ba(T25)的特异活性增加了至少3倍。这些突变体被称为工程化Cry1Ba(eCry1Ba)蛋白。两种突变V81W和M178S/A155S具有如TM2相同的活性并且两种突变体M178P和R170S具有比TM2更低的活性。这些突变体归类为变异体Cry1Ba蛋白(vCry1Ba)。四种突变V148E/A155D、A155K、A163K和A163K/L188P完全敲除了活性,表明这些位置对于至少ECB活性是关键的。
表5.与野生型Cry1Ba相比的TM2-Cry1Ba突变体的活性
Figure BDA0000977924790000421
Figure BDA0000977924790000431
eCry1Ba蛋白谱
针对几种其他鳞翅目昆虫:包括甘蔗螟虫(SCB;Diatraea saccharalis)、西南玉米螟(SWCB;Diatraea grandiosella)、玉米螟蛉(CEW;Helicoverpa zea)、黎豆夜蛾(VBC;Anticarsia gemmatalis)、大豆夜蛾(SBL;Pseudoplusia includens,现在称为Chrysodeixis includens),使用一种表面处理过的人工饲料生物测定法测试了TM33突变体(eCry1Ba-T2AY150KL189S)。大致在4-6天之后评定了幼虫死亡率,取决于所测试的昆虫种类。
已经报告了天然Cry1Ba是针对甘蔗螟虫、西南玉米螟、以及大豆夜蛾是活性的并且对于玉米螟蛉没有活性。此外,一些报告已经表明,包含Cry1B-型蛋白的Bt菌株具有针对黎豆夜蛾的活性(Bobrowski等人2001,Brazil.J.Microbol.32:105-109),但是从该报告并不清楚这种活性是否是由于在所测试的Bt菌株中表达的一种Cry1Ba蛋白或某一其他蛋白质所致。其他报告(例如,Monnerat等人2007.Biological Control 41:291-295)证明,对于VBC幼虫,在Bt菌株中存在的Cry1B对这些菌株的毒性贡献极少。
eCry1Ba-T2AY150KL189S的生物测定的结果显示,这种蛋白质像天然Cry1Ba蛋白一样针对甘蔗螟虫、西南玉米螟以及大豆夜蛾是活性的。与天然Cry1Ba蛋白不同,这种eCry1Ba蛋白针对黎豆夜蛾是很有活性的。出人意料地,这种eCry1Ba蛋白还具有针对玉米螟蛉(一种天然Cry1Ba对其没有活性的昆虫)的活性。eCry1Ba蛋白针对黎豆夜蛾以及玉米螟蛉的活性是eCry1Ba蛋白实质上不同于天然Cry1Ba蛋白的另一种指示。
有由于已知天然Cry1Ba针对鳞翅目以及鞘翅目昆虫两者是活性的,针对鞘翅目昆虫科罗拉多马铃薯甲虫(CPB;Leptinotarsa decemlineata)测试了这种TM33eCry1Ba蛋白。使用新生CPB幼虫以及如以上实例2中描述的标准人工饲料进行生物测定。如在本领域已知的,天然Cry1Ba蛋白针对CPB是活性的。这种野生型Cry1Ba突变体T25也是活性的。出人意料地,这种T33eCry1Ba蛋白针对CPB不具有活性。因此,尽管在T33中的突变增加了针对至少欧洲玉米螟的活性,但是这些突变敲除了针对鞘翅目昆虫(科罗拉多马铃薯甲虫)的活性,这还另外表明eCry1Ba蛋白的特性基本上不同于天然Cry1Ba和野生型Cry1Ba蛋白。使用这个途径,技术人员将认识到在一种Cry1Ba中的结构域I,特别是α螺旋4和α螺旋5中的氨基酸突变提供了一种改变Cry1Ba活性谱的方法。
使用本领域已知的标准方法针对溶解度特性方面的差异测试了以上描述的突变体。简言之,根据生产厂家的说明,在具有蛋白酶抑制剂以及溶菌酶(lysonase)的BugBusterTM蛋白质提取试剂(Novagen,Inc.)中处理了来自表达Cry1Ba突变体的以及野生型Cry1Ba的诱导的大肠杆菌培养物的细胞团块。将细胞溶解产物以及在离心细胞溶解产物之后的可溶部分在SDS-PAGE上进行分析并且对使用兔-抗-Cry1Ba抗体进行蛋白质印迹,并且用AlphaImager(Cell Biosciences)将在蛋白质印迹上的Cry1Ba蛋白定量。尽管突变体Cry1Ba和野生型T25在细胞溶解产物中表现出相似的蛋白表达水平,在突变体与野生型之间,在可溶部分中存在的蛋白质的量出人意料地非常不同。为了比较溶解度,将可溶部分中存在的Cry1Ba突变蛋白相对于野生型Cry1Ba进行了标准化。在图6中的结果证明,在相同的环境条件下在相同量的液体中,相比于野生型T25Cry1Ba蛋白,eCry1Ba突变体具有高1.5至2.1倍范围的溶解度。在表6中的“SP”表示可溶性蛋白;并且“TP”表示总蛋白。
表6.eCry1Ba蛋白和野生型T25Cry1Ba蛋白的溶解度比较
Figure BDA0000977924790000441
Figure BDA0000977924790000451
实例7.玉米优化的ecry1B基因构建体
如在美国专利号6,051,760(通过引用结合在此)中所描述,产生了一种编码TM33Cry1Ba突变体(eCry1Ba-T2A:Y150K:L189S)蛋白的玉米优化的核苷酸序列(mocry1Ba-TM33)。该mocry1Ba-TM33编码序列提出在SEQ ID NO:13中。eCry1Ba-T2A:Y150K:L189S氨基酸序列提出在SED ID NO:9中。
实例8.表达eCry1Ba蛋白的转基因玉米和甘蔗
构建了用于将mocry1Ba-TM33编码序列引入到玉米中的两种植物转化载体:(a)包含以下两个表达盒的第一载体(18320):一个第一表达盒以及一个第二表达盒,该第一表达盒包括一种玉米泛素启动子(ZmUbiInt)(Christensen等人,1992PMB 18:675),该启动子可操作地连接到TM33编码序列上,该编码序列进一步可操作地连接到胭脂碱合成酶3’端转录终止和聚腺苷酸化序列上(被称为ZmUbi:mocry1Ba-TM33:NOS),该第二表达盒包括35S:pat:NOS;以及(b)包括以下两个表达盒的第二载体(18319):一个第一表达盒以及一个第二表达盒,该第一表达盒包括一种MTL启动子序列(美国专利号6,018,099),该序列可操作地连接到TM33编码序列上,该编码序列进一步可操作地连接到胭脂碱合成酶3’端转录终止和聚腺苷酸化序列上(被称为ZmUbi:mocry1Ba-TM33:NOS),该第二表达盒包括35S:pat:NOS。在这个实例中的所有载体包括编码一种草铵膦乙酰转移酶(PAT)的pat基因,该基因赋予用于选择转基因事件的对除草剂草铵膦的耐受性。
两种载体单独地转化到玉米中。基本上如在Negrotto等人,2000,Plant CellReports 19:798-803中所说明进行未成熟玉米胚的农杆菌属转化。对于这个实例,所有的培养基组分基本上如在以上Negrotto等人所说明。然而,本领域内已知的各种培养基组分可以被置换。
简言之,使包含一种植物转化质粒的农杆菌菌株LBA4404(pSB1)生长在YEP(酵母提取物(5g/L)、蛋白胨(10g/L)、NaCl(5g/L)、15g/l琼脂,pH 6.8)固体培养基上,在28℃生长2至4天。将大约0.8X109个农杆菌再悬浮于添加有100μM As的LS-inf培养基中(Negrotto等人,上述)。在这个培养基中对细菌预诱导30至60分钟。
将来自一种适合的基因型的未成熟胚从8至12天大的穗中切除到液体LS-inf+100μM As中。用新鲜的感染培养基漂洗这些胚。然后添加农杆菌溶液,并将这些胚涡旋30秒并允许其与细菌一起沉降5分钟。然后,将这些胚(盾片侧向上)转移至LSA培养基中并在黑暗中培养两至三天。随后,将每培养皿20个至25个之间的胚转移至添加有头孢噻肟(250mg/l)以及硝酸银(1.6mg/l)的LSDc培养基中,在黑暗中28℃下培养10天。
将产生胚性愈伤组织的未成熟胚转移至LSD1M0.5S培养基中。在这种培养基上对培养物进行持续大约6周的选择,具有大约3周的传代培养步骤。将存活的愈伤组织转移至添加有甘露糖的Reg1培养基中。之后在光照中(16小时光照/8小时黑暗方案)培养之后,将绿色组织转移至没有生长调节剂的Reg2培养基,孵育大约1至2周。将这些小植株转移至含有Reg3培养基的Magenta GA-7boxes(Magenta Corp,Chicago III.)中并使其在光照中生长。在2-3周之后,针对pat基因和mocry1Ba-TM33编码序列存在,对植物进行了测试。将来自PCR测定的阳性植物转移至温室中并针对至少欧洲玉米螟的抗性进行了测试。
甘蔗转化
构建一种含两个表达盒的植物转化载体(72581),用于将mocry1Ba-TM33编码序列引入到甘蔗中。该第一表达盒包括一个玉米Ubi361启动子序列(PCT/US10/37683),该启动子序列可操作地连接到一个TM33编码序列上,该编码序列进一步可操作地连接到一个胭脂碱合成酶Ubi361 3'端转录终止以及多腺苷酸化序列上(PCT/US10/37683),称为prZmUbi361-3:mocry1Ba-TM33:tZmUbi361。该第二表达盒包括一个玉米泛素启动子(ZmUbilnt)(Christensen等人1992PMB 18:675),该启动子可操作地连接到一个pmi编码序列上,该序列进一步可操作地连接到一个胭脂碱合成酶(nos)3'端转录终止以及多腺苷酸化序列上。该pmi编码序列编码磷酸甘露糖异构酶(PMI)进行,这使得转基因甘蔗能够利用甘露糖并且作为用于转化的一种选择标记起作用。使用农杆菌转化将72581载体而转化到甘蔗中。如以上所述针对新生甘蔗螟虫对转基因甘蔗植物进行了测试。
实例9.转基因玉米以及甘蔗植物的杀虫活性
当植物从Magenta GA-7盒移植至土壤中时,对其进行采样。采样包括切下两小片叶子(约2-4cm长)并且将其各自置于一个小培养皿或多孔板中。阴性对照是来自同一个实验的对mocry1Ba-TM33基因呈PCR阴性的转基因植物,或者来自生长于温室或人工气候室中的非转基因植物(与试验植物具有相似尺寸)。
通过将大致10个一龄幼虫置于每个叶片上,将来自每个植物的叶子样品与适当的目标昆虫害虫进行培养。然后将培养皿或多孔板紧密密封。
在孵育后大约3至4天,收集了数据。计算出幼虫的死亡百分比以及叶子的可见损伤等级。采食损害被评定为高、中、低、或无,并且分别给予数值3、2、1或0的数值。在以下表中“+”表明死亡率是>80%并且叶子损害是0-1。
在表7中示出的结果表明,包含moTM33基因并且表达eCry1Ba-T2A:Y150K:L189S突变蛋白的转基因玉米植物对于至少欧洲玉米螟是具有杀虫性的。尽管这两种构建体生产了针对至少ECB是很有活性的转基因事件,通常具有驱动TM33编码序列的表达的zmUbi启动子的转基因植物产生了比包含MTL启动子的转基因植物更高的eCry1Ba蛋白水平。这种eCry1Ba蛋白浓度范围是针对18319构建体的从460至681μg/mg可溶蛋白、以及针对18320构建体的509-2984μg/mg可溶蛋白。
表7.表达eCry1Ba蛋白的转基因玉米的活性
Figure BDA0000977924790000481
在表8中示出的结果表明,表达eCry1Ba-T2A:Y150K:L189S突变蛋白的转基因甘蔗植物对于至少欧洲玉米螟是具有杀虫性的。
表8.表达eCry1Ba和Vip3的转基因甘蔗的活性
事件 SCB
72581-1A +
72581-2A +
72581-3A +
72581-4A +
72581-5A -
对照 -
实例10.Cry1Ba蛋白结构
表9示出了在各自具有其可变区和保守区的Cry1Ab和Cry1Ba的三个结构域之间的关系。对于这两种蛋白质示出了在每个结构域、保守区以及可变区中所包含的氨基酸。
表9.Cry1Ab和Cry1Ba的结构比较
Figure BDA0000977924790000491
应当理解的是在此描述的实例以及实施方案仅是为了说明性的目的,并且根据它们的不同修改或变更将提示本领域的普通技术人员并且将会包含在本申请以及随附的权利要求的范围的精神和范围之内。
在本说明书中提到的所有公开文件以及专利申请对于本发明所涉及的领域的普通技术人员的技术水平是指示性的。所有公开物和专利申请均通过引用结合在此,其程度如同每个单独的公开物或专利申请被确切地并单独地指明通过引用而被结合。
优选实施方式:
1.一种工程化Cry1Ba(eCry1Ba)蛋白,包括在结构域I中的一个或多个氨基酸位置处的一个突变,当与天然或野生型Cry1Ba蛋白相比时,所述工程化蛋白具有改进的溶解度或至少对抗欧洲玉米螟(Ostrinia nubilalis)的杀虫活性。
2.如项目1所述的eCry1Ba蛋白,其中该突变位于结构域I的α-螺旋4或α-螺旋5内。
3.如项目2所述的eCry1Ba蛋白,其中该突变位于相应于SEQ ID NO:2的位置150、178、189或199的氨基酸位置处。
4.如项目3所述的eCry1Ba蛋白,其中该突变位于SEQ ID NO:5的位置150、178、189或199处。
5.如项目4所述的eCry1Ba蛋白,其中该突变位于相应于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
6.如项目5所述的eCry1Ba蛋白,其中该突变位于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
7.如项目6所述的eCry1Ba蛋白,包括SEQ ID NO:6的氨基酸序列,其中在位置2处的X是任何氨基酸并且
a)在位置150处的X是Pro、Phe、Trp或Lys,并且在位置189处的X是Leu并且在199处是Ser;或
b)当在位置150处的X是Lys时,在位置189处的X是Ser;或
c)当在位置150处的X是Lys时,在位置199处的X是Lys。
8.如项目7所述的eCry1Ba蛋白,其中该蛋白质包括一个氨基酸序列SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9或SEQ ID NO:10。
9.如项目1至8的任一项所述的eCry1Ba蛋白,其中该蛋白质具有针对鳞翅目或鞘翅目昆虫的活性。
10.如项目9所述的eCry1Ba蛋白,其中这些鳞翅目昆虫是西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
11.如项目1所述的eCry1Ba蛋白,其中所述eCry1Ba蛋白的特异活性比一种天然eCry1Ba蛋白高至少3倍。
12.一种变异体Cry1Ba蛋白,其中在位置150处的一个酪氨酸(Y)或组氨酸(H)用一个非Y或H的氨基酸取代。
13.如项目13所述的Cry1Ba蛋白,其中该氨基酸是Lys、Phe、Trp、Pro、Thr、Leu、Ala、Val、Ser、Arg、Gly或Asp。
14.如项目13所述的Cry1Ba蛋白,其中该蛋白质包括SEQ ID NO:3。
15.如项目12所述的Cry1Ba蛋白,其中在位置81处的一个缬氨酸(Val)用一个非Val的氨基酸取代;或在位置155处的一个丙氨酸(Ala)以及在位置178处的一个甲硫氨酸(Met)分别用非Ala或Met的氨基酸取代。
16.如项目15所述的Cry1Ba蛋白,其中该V81用一个色氨酸(W)取代。
17.如项目16所述的Cry1Ba蛋白,包括SEQ ID NO:11。
18.如项目15所述的Cry1Ba蛋白,其中在位置155处的该丙氨酸(A)用一个天冬酰胺(Asp)取代并且在位置178处的甲硫氨酸(Met)用一个丝氨酸(Ser)取代。
19.如项目18所述的Cry1Ba蛋白,包括SEQ ID NO:12。
20.如项目12至19的任一项所述的Cry1Ba蛋白,其中该蛋白质具有针对鳞翅目或鞘翅目昆虫的活性。
21.如项目20所述的Cry1Ba蛋白,其中该鳞翅目昆虫是欧洲玉米螟、西南玉米螟或甘蔗螟虫。
22.一种核酸分子,包括编码如项目1-21的任一项所述的蛋白质的核酸序列。
23.一种嵌合基因,包括一个异源启动子序列,该启动子序列可操作地连接至如项目22所述的核酸分子上。
24.如项目23所述的嵌合基因,其中所述启动子是一种植物可表达的启动子。
25.如项目24所述的嵌合基因,其中所述植物可表达的启动子是选自下组,该组由以下各项组成:泛素、cmp、TrpA、mtl、噬菌体T3基因9 5'UTR、玉米蔗糖合成酶1、玉米醇脱氢酶1、玉米捕光复合物、玉米热休克蛋白、豌豆小亚基RuBP羧化酶、Ti质粒冠瘿碱合成酶、Ti质粒胭脂碱合成酶、牵牛花苯基丙乙烯酮异构酶、大豆富含甘氨酸蛋白1、马铃薯patatin、凝集素、CaMV 35S以及S-E9小亚基RuBP羧化酶启动子。
26.一种重组载体,该重组载体包括如项目23至25的任何一项所述的一种嵌合基因。
27.如项目26所述的载体,进一步定义为一种质粒、粘粒、噬菌粒、人工染色体、噬菌体或病毒载体。
28.一种转基因非人类宿主细胞,包括如项目23所述的嵌合基因或如项目26所述的重组载体。
29.如项目28所述的转基因宿主细胞,进一步限定为一种细菌细胞或一种植物细胞。
30.如项目29所述的宿主细胞,其中该细菌细胞是一种大肠杆菌、苏云金芽孢杆菌、枯草芽孢杆菌、巨大芽孢杆菌、蜡样芽孢杆菌、农杆菌属或一种假单胞菌属细胞。
31.如项目29所述的宿主细胞,其中该植物细胞是高粱、小麦、向日葵、番茄、马铃薯、油菜作物、棉花、水稻、大豆、甜菜、甘蔗、烟草、大麦、油菜、以及玉米细胞。
32.一种转基因植物,包括一种如项目31所述的植物细胞。
33.如项目32所述的转基因植物,进一步限定为一种单子叶植物。
34.如项目33所述的转基因植物,进一步限定为一种玉米、小麦、燕麦、水稻、大麦、草坪草、甘蔗或牧场草植物。
35.如项目34所述的转基因植物,其中所述植物是一种玉米植物。
36.如项目34所述的转基因植物,其中所述植物是一种甘蔗植物。
37.如项目32所述的转基因植物,进一步限定为一种双子叶植物。
38.如项目37所述的转基因植物,进一步限定为一种大豆、其他豆科植物、棉花、向日葵、油菜作物以及其他蔬菜、甜菜、烟草或油菜。
39.如项目32至38的任一项所述的任一代植物的子代,其中该子代包括该核酸分子。
40.一种来自如项目32至39的任一项所述的任一代转基因植物的繁殖体,其中该繁殖体包括该核酸分子。
41.如项目40所述的繁殖体,进一步限定为一种种子、节段或插条。
42.一种杀虫组合物,包括如项目1至21的任一项所述的工程化Cry1Ba蛋白以及一种可接受的农用载体。
43.如项目42所述的组合物,其中该农用载体是一种表达eCry1Ba蛋白的植物。
44.一种产生抗昆虫转基因植物的方法,包括将如项目22所述的核酸分子引入一种植物中,由此产生一种转基因植物,其中该核酸分子引起以一个控制昆虫的量表达蛋白质。
45.如项目44所述的方法,其中这些昆虫是鳞翅目昆虫。
46.如项目45所述的方法,其中这些鳞翅目昆虫是选自下组,该组由以下各项组成:欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
47.一种用于制造eCry1Ba蛋白的方法,包括:
a)鉴定一种具有所述蛋白质的结构域I的Cry1Ba蛋白;
b)将结构域I中的一个位置处的至少一个天然氨基酸用至少一个其他的氨基酸取代;并且
c)获得如此产生的eCry1Ba蛋白,其中当与一种天然Cry1Ba蛋白相比时,该eCry1Ba具有改进的溶解度或针对至少欧洲玉米螟的杀虫活性。
48.如项目47所述的方法,其中结构域I中的该位置是在α-螺旋4或α-螺旋5内。
49.如项目48所述的方法,其中该突变位于相应于SEQ ID NO:2的位置150、178、189或199的氨基酸位置处。
50.如项目47所述的方法,其中该突变位于SEQ ID NO:5的位置150、178、189或199处。
51.如项目50所述的方法,其中该突变位于相应于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
52.如项目51所述的方法,其中该突变位于SEQ ID NO:5的氨基酸2和150;或氨基酸2、150和178;或氨基酸2、150和189;或氨基酸2、150和199的位置处。
53.如项目52所述的方法,其中该eCry1Ba蛋白包括包括SEQ ID NO:6的氨基酸序列,其中在位置2处的X是任何氨基酸并且
a)在位置150处的X是Pro、Phe、Trp或Lys,并且在位置189处的X是Leu并且在199处是Ser;或
b)当在位置150处的X是Lys时,在位置189处的X是Ser;或
c)当在位置150处的X是Lys时,在位置199处的X是Lys。
54.如项目53所述的方法,其中该eCry1Ba蛋白包括一个氨基酸序列SEQ ID NO:7、SEQ ID NO:8、SEQ ID NO:9或SEQ ID NO:10。
55.如项目47至54的任一项所述的方法,其中该eCry1Ba蛋白具有针对鳞翅目或鞘翅目昆虫的活性。
56.如项目55所述的方法,其中这些鳞翅目昆虫是欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
57.一种用于控制鳞翅目昆虫的方法,包括使该昆虫与一个有效量的eCry1Ba蛋白接触,该eCry1Ba蛋白在所述蛋白质的结构域I中具有至少一个氨基酸突变,当与一种天然Cry1Ba蛋白相比时,该蛋白质具有改进的溶解度或针对一种鳞翅目昆虫的杀虫活性。
58.如项目57所述的方法,其中该鳞翅目昆虫是欧洲玉米螟、西南玉米螟、甘蔗螟虫、玉米螟蛉、大豆夜蛾以及黎豆夜蛾。
59.一种向栽培者提供控制至少欧洲玉米螟(Ostrinia nubilalis)的一种手段的方法,包括向该栽培者提供或销售转基因种子,该转基因种子包括编码一种工程化Cry1Ba蛋白(eCry1Ba)的核酸分子,该Cry1Ba蛋白在结构域I中的一个或多个氨基酸位置处具有一个突变,当与一种天然Cry1Ba蛋白相比时,该eCry1Ba蛋白具有改进的溶解度或针对至少欧洲玉米螟的杀虫活性。
Figure IDA0000977924850000011
Figure IDA0000977924850000021
Figure IDA0000977924850000031
Figure IDA0000977924850000041
Figure IDA0000977924850000051
Figure IDA0000977924850000061
Figure IDA0000977924850000071
Figure IDA0000977924850000081
Figure IDA0000977924850000091
Figure IDA0000977924850000101
Figure IDA0000977924850000111
Figure IDA0000977924850000121
Figure IDA0000977924850000131
Figure IDA0000977924850000141
Figure IDA0000977924850000151
Figure IDA0000977924850000161
Figure IDA0000977924850000171
Figure IDA0000977924850000181
Figure IDA0000977924850000191
Figure IDA0000977924850000201
Figure IDA0000977924850000211
Figure IDA0000977924850000221
Figure IDA0000977924850000231
Figure IDA0000977924850000241
Figure IDA0000977924850000251
Figure IDA0000977924850000261
Figure IDA0000977924850000271
Figure IDA0000977924850000281
Figure IDA0000977924850000291
Figure IDA0000977924850000301
Figure IDA0000977924850000311
Figure IDA0000977924850000321
Figure IDA0000977924850000331
Figure IDA0000977924850000341
Figure IDA0000977924850000351
Figure IDA0000977924850000361
Figure IDA0000977924850000371
Figure IDA0000977924850000381
Figure IDA0000977924850000391
Figure IDA0000977924850000401
Figure IDA0000977924850000411
Figure IDA0000977924850000421
Figure IDA0000977924850000431

Claims (9)

1.一种由SEQ ID NO:7或SEQ ID NO:8或SEQ ID NO:10组成的工程化Cry1Ba蛋白,其中所述工程化Cry1Ba蛋白具有相比于在相应于SEQ ID NO:5的氨基酸位置150的位置处或在SEQ ID NO:5的氨基酸位置150处具有Tyr(Y)或His(H)的天然Cry1Ba蛋白而言更高的对抗欧洲玉米螟即Ostrinia nubilalis的杀虫活性。
2.一种核酸分子,其编码如权利要求1所述的工程化Cry1Ba蛋白。
3.一种嵌合基因,其包含异源启动子序列,该启动子序列可操作地连接至如权利要求2所述的核酸分子上。
4.一种重组载体,该重组载体包含如权利要求2所述的核酸分子或者如权利要求3所述的嵌合基因。
5.一种杀虫组合物,其由有效的昆虫控制量的如权利要求1所述的工程化Cry1Ba蛋白以及可接受的农用载体组成。
6.一种用于控制鳞翅目昆虫的方法,其包括:使该昆虫与有效的昆虫控制量的如权利要求1所述的工程化Cry1Ba蛋白或如权利要求5所述的杀虫组合物接触。
7.如权利要求2所述的核酸分子用于产生抗昆虫转基因植物的用途。
8.如权利要求1所述的工程化Cry1Ba蛋白用于控制昆虫害虫的用途。
9.如权利要求1所述的工程化Cry1Ba蛋白用于生产杀虫组合物的用途。
CN201610282033.9A 2009-10-02 2010-09-27 杀虫蛋白 Active CN105753950B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24798609P 2009-10-02 2009-10-02
US61/247,986 2009-10-02
CN201080044606.5A CN102596988B (zh) 2009-10-02 2010-09-27 杀虫蛋白

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080044606.5A Division CN102596988B (zh) 2009-10-02 2010-09-27 杀虫蛋白

Publications (2)

Publication Number Publication Date
CN105753950A CN105753950A (zh) 2016-07-13
CN105753950B true CN105753950B (zh) 2020-06-16

Family

ID=43826844

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080044606.5A Active CN102596988B (zh) 2009-10-02 2010-09-27 杀虫蛋白
CN201610282033.9A Active CN105753950B (zh) 2009-10-02 2010-09-27 杀虫蛋白

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201080044606.5A Active CN102596988B (zh) 2009-10-02 2010-09-27 杀虫蛋白

Country Status (14)

Country Link
US (4) US9243262B2 (zh)
EP (1) EP2482639B1 (zh)
CN (2) CN102596988B (zh)
AU (1) AU2010300850B2 (zh)
BR (1) BR112012009381A2 (zh)
CA (1) CA2775582A1 (zh)
CL (1) CL2012000799A1 (zh)
IL (1) IL218798A0 (zh)
IN (1) IN2012DN02413A (zh)
MX (1) MX342640B (zh)
RU (1) RU2613778C2 (zh)
UA (1) UA110925C2 (zh)
WO (1) WO2011041256A2 (zh)
ZA (1) ZA201202266B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX346321B (es) 2008-12-16 2017-03-15 Syngenta Participations Ag Evento 5307 del maiz.
RU2613778C2 (ru) 2009-10-02 2017-03-21 Зингента Партисипейшнс Аг Инсектицидные белки
US20140242048A1 (en) * 2013-02-25 2014-08-28 Beijing Dabeinong Technology Group Co., Ltd. Methods For Controlling Pests
CN103146717A (zh) * 2013-02-25 2013-06-12 北京大北农科技集团股份有限公司 杀虫基因及其用途
US10059959B2 (en) * 2014-10-16 2018-08-28 Monsanto Technology Llc Lepidopteran-active Cry1Da1 amino acid sequence variant proteins
CN114736275A (zh) 2014-10-16 2022-07-12 先锋国际良种公司 具有改进的活性谱的杀昆虫多肽及其用途
EP3715361A1 (en) * 2014-10-16 2020-09-30 Monsanto Technology LLC Novel chimeric insecticidal proteins toxic or inhibitory to lepidopteran pests
US11130964B2 (en) 2014-11-20 2021-09-28 Monsanto Technology Llc Insect inhibitory proteins
CA2989169A1 (en) 2015-06-22 2016-12-29 AgBiome, Inc. Pesticidal genes and methods of use
AU2016312603B2 (en) * 2015-08-27 2020-03-26 Monsanto Technology Llc Novel insect inhibitory proteins
WO2017132188A1 (en) * 2016-01-26 2017-08-03 Pioneer Hi-Bred International, Inc. Novel bacillus thuringiensis gene with lepidopteran activity
CN109517069A (zh) * 2018-10-18 2019-03-26 先正达参股股份有限公司 一种用于表达Bt杀虫蛋白的高效蛋白质表达系统
CN111676233A (zh) * 2020-06-17 2020-09-18 中国农业科学院作物科学研究所 抗虫基因Cry1Ab-l及其编码蛋白与应用

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
FI891054A (fi) 1988-03-08 1989-09-09 Ciba Geigy Ag Kemiskt reglerbara dna-sekvenser och gener samt olika anvaendningar daerav.
US5614395A (en) 1988-03-08 1997-03-25 Ciba-Geigy Corporation Chemically regulatable and anti-pathogenic DNA sequences and uses thereof
NZ230375A (en) 1988-09-09 1991-07-26 Lubrizol Genetics Inc Synthetic gene encoding b. thuringiensis insecticidal protein
AU638438B2 (en) 1989-02-24 1993-07-01 Monsanto Technology Llc Synthetic plant genes and method for preparation
EP0400246A1 (en) * 1989-05-31 1990-12-05 Plant Genetic Systems, N.V. Prevention of Bt resistance development
US6855873B1 (en) 1989-05-31 2005-02-15 Bayer Bioscience, N.V. Recombinant plant expressing non-competitively binding Bt insecticidal cryatal proteins
US5187091A (en) * 1990-03-20 1993-02-16 Ecogen Inc. Bacillus thuringiensis cryiiic gene encoding toxic to coleopteran insects
ES2187497T3 (es) 1990-04-12 2003-06-16 Syngenta Participations Ag Promotores preferentemente en tejidos.
US5451513A (en) 1990-05-01 1995-09-19 The State University of New Jersey Rutgers Method for stably transforming plastids of multicellular plants
US5994629A (en) 1991-08-28 1999-11-30 Novartis Ag Positive selection
GB9304200D0 (en) 1993-03-02 1993-04-21 Sandoz Ltd Improvements in or relating to organic compounds
UA48104C2 (uk) * 1991-10-04 2002-08-15 Новартіс Аг Фрагмент днк, який містить послідовність,що кодує інсектицидний протеїн, оптимізовану для кукурудзи,фрагмент днк, який забезпечує направлену бажану для серцевини стебла експресію зв'язаного з нею структурного гена в рослині, фрагмент днк, який забезпечує специфічну для пилку експресію зв`язаного з нею структурного гена в рослині, рекомбінантна молекула днк, спосіб одержання оптимізованої для кукурудзи кодуючої послідовності інсектицидного протеїну, спосіб захисту рослин кукурудзи щонайменше від однієї комахи-шкідника
US5530197A (en) * 1992-08-19 1996-06-25 Plant Genetic Systems, N.V. Control of ostrinia
EP0589110A1 (en) * 1992-08-19 1994-03-30 Plant Genetic Systems N.V. Control of ostrinia
US5849870A (en) 1993-03-25 1998-12-15 Novartis Finance Corporation Pesticidal proteins and strains
US5877012A (en) 1993-03-25 1999-03-02 Novartis Finance Corporation Class of proteins for the control of plant pests
GB9318207D0 (en) 1993-09-02 1993-10-20 Sandoz Ltd Improvements in or relating to organic compounds
US5576198A (en) 1993-12-14 1996-11-19 Calgene, Inc. Controlled expression of transgenic constructs in plant plastids
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5545817A (en) 1994-03-11 1996-08-13 Calgene, Inc. Enhanced expression in a plant plastid
US5545818A (en) 1994-03-11 1996-08-13 Calgene Inc. Expression of Bacillus thuringiensis cry proteins in plant plastids
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5849320A (en) 1996-06-13 1998-12-15 Novartis Corporation Insecticidal seed coating
US6023013A (en) * 1997-12-18 2000-02-08 Monsanto Company Insect-resistant transgenic plants
US6060594A (en) * 1997-12-18 2000-05-09 Ecogen, Inc. Nucleic acid segments encoding modified bacillus thuringiensis coleopteran-toxic crystal proteins
US6121521A (en) * 1998-04-01 2000-09-19 Novartis Ag Chimeric insecticidal protein and DNA coding therefor
US7253343B2 (en) * 2003-08-28 2007-08-07 Athenix Corporation AXMI-003, a delta-endotoxin gene and methods for its use
RU2613778C2 (ru) 2009-10-02 2017-03-21 Зингента Партисипейшнс Аг Инсектицидные белки

Also Published As

Publication number Publication date
AU2010300850B2 (en) 2015-02-12
UA110925C2 (uk) 2016-03-10
ZA201202266B (en) 2012-12-27
US20160201083A1 (en) 2016-07-14
CN102596988B (zh) 2016-07-13
RU2012117576A (ru) 2013-11-10
US9243262B2 (en) 2016-01-26
MX342640B (es) 2016-10-07
US10167323B2 (en) 2019-01-01
AU2010300850A1 (en) 2012-04-12
CL2012000799A1 (es) 2012-10-12
EP2482639B1 (en) 2017-08-02
BR112012009381A2 (pt) 2017-03-01
US20160222374A1 (en) 2016-08-04
US10934330B2 (en) 2021-03-02
RU2613778C2 (ru) 2017-03-21
IN2012DN02413A (zh) 2015-08-21
MX2012003658A (es) 2012-04-30
WO2011041256A3 (en) 2011-06-09
IL218798A0 (en) 2012-06-28
CN105753950A (zh) 2016-07-13
US20120210464A1 (en) 2012-08-16
CN102596988A (zh) 2012-07-18
US10196633B2 (en) 2019-02-05
US20190194644A1 (en) 2019-06-27
WO2011041256A2 (en) 2011-04-07
EP2482639A2 (en) 2012-08-08
CA2775582A1 (en) 2011-04-07
EP2482639A4 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
US10934330B2 (en) Methods for modulating the activity of insecticidal proteins
EP1425397B1 (en) Modified cry3a toxins and nucleic acid sequences coding therefor
US20180291397A1 (en) Engineered pesticidal proteins
US10239921B2 (en) Insecticidal proteins
CN113179823A (zh) 小地老虎的控制
CN113186218A (zh) 斜纹贪夜蛾的控制
CN114747590A (zh) 夜蛾、草螟和螟蛾有害生物的防治
CN114680126A (zh) 夜蛾、草螟和螟蛾有害生物的防治

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant