CN105742657B - 一种麦穗形Te-Pt合金纳米线的制备方法 - Google Patents

一种麦穗形Te-Pt合金纳米线的制备方法 Download PDF

Info

Publication number
CN105742657B
CN105742657B CN201610148260.2A CN201610148260A CN105742657B CN 105742657 B CN105742657 B CN 105742657B CN 201610148260 A CN201610148260 A CN 201610148260A CN 105742657 B CN105742657 B CN 105742657B
Authority
CN
China
Prior art keywords
wire
tellurium
nano
alloy nano
head shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610148260.2A
Other languages
English (en)
Other versions
CN105742657A (zh
Inventor
王騊
王晟
欧阳申珅
彭美灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deqing Jiuyun Materials Science Research Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610148260.2A priority Critical patent/CN105742657B/zh
Publication of CN105742657A publication Critical patent/CN105742657A/zh
Application granted granted Critical
Publication of CN105742657B publication Critical patent/CN105742657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Te‑Pt合金纳米线的制备方法,具体涉及一种麦穗形的Te‑Pt合金纳米线的制备方法,包括以下步骤:1)使用碲源制备出碲纳米线,按质量份数,称取1‑5份的碲纳米线加入到含有25‑50份无水乙醇的烧杯中,磁力搅拌30‑50分钟使得分散均匀;2)取步骤1)所得的分散溶液,以碲、铂原子摩尔比为10:(1至100)的比例加入所需铂源,分散到超纯水中,放入聚四氟乙烯内衬中,移入反应釜中水热反应4‑6小时,即得麦穗形Te‑Pt合金纳米线成品。本发明制备过程简单,条件易于控制,且本发明制备的直径为25纳米左右的麦穗形碲铂合金纳米线,在微观状态下大长径比的碲铂合金纳米线相互交织在一起,暴露出大的活性面积,具有规整的微纳结构,催化活性高,稳定性好。

Description

一种麦穗形Te-Pt合金纳米线的制备方法
技术领域
本发明涉及一种Te-Pt合金纳米线的制备方法,具体涉及一种麦穗形的Te-Pt合金纳米线的制备方法。
背景技术
目前商用的铂催化剂用量大,但是铂催化剂存在主要问题:(1)贵金属铂的使用价格昂贵且资源稀缺,导致了燃料电池的制作成本很高,因此需要进一步的降低铂的含量,同时提高催化剂的活性;(2)一些中间产物如CO会在甲醇过程中吸附在催化剂表面影响催化性能,需通过调控催化剂的形貌结构和种类,从而提高催化剂的性能和性能的稳定性;(3)开发寻求合理的制备催化剂的合成方法,使其成本低廉、工艺简单并且容易控制的催化剂。以上三个问题成为制约燃料电池商业化进程的重要因素。碲铂合金纳米线材料电催化活性优异,催化性能稳定等优点,可应用于电极或催化剂等方面。
发明内容
本发明的目的在于提供一种麦穗形的Te-Pt合金纳米线的制备方法,该发明通过水热法将铂置换到碲纳米线模板上,随后经过干燥后,即可得到了尺寸均一,形貌相互交织的麦穗形Te-Pt合金纳米线。
为实现上述目的,本发明采用的技术方案是:一种麦穗形Te-Pt合金纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取1-5份的碲纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;
2)取步骤1)所得的分散溶液,以碲、铂原子摩尔比为10:(1至100)的比例加入所需铂源,分散到超纯水中,放入聚四氟乙烯内衬中,移入反应釜中水热反应4-6小时,即得麦穗形Te-Pt合金纳米线成品。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的直径为25纳米左右的麦穗形碲铂合金纳米线,在微观状态下大长径比的碲铂合金纳米线相互交织在一起,暴露出大的活性面积,具有规整的微纳结构;
(2)本发明制备出基于麦穗形Te-Pt合金纳米线材料催化活性高,稳定性好;
(3)本发明制备过程简单,条件易于控制,便于规模生产。
附图说明
图1是本发明的麦穗形Te-Pt合金纳米线的不同倍率下(10万倍)的透射电镜图。
图2是本发明的麦穗形Te-Pt合金纳米线的不同倍率下(40万倍)的透射电镜图。
具体实施方式
下面结合实施例对本发明做进一步阐述,而不是要以此对本发明进行限制。
本发明首先通过水热法将铂置换到碲纳米线模板上,然后经过干燥后即可得到直径为25纳米左右的麦穗形碲铂合金纳米线。微观状态下大长径比的碲铂合金纳米线相互交织在一起,暴露出大的活性面积,具有规整的微纳结构。
实施例1:
一种麦穗形Te-Pt合金纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取1份的碲纳米线加入到含有25份无水乙醇的烧杯中,磁力搅拌30分钟使得分散均匀;
2)取步骤1)所得的分散溶液,以碲、铂原子摩尔比为10:1的比例加入所需铂源,分散到超纯水中,放入聚四氟乙烯内衬中,移入反应釜中水热反应4小时,即得麦穗形Te-Pt合金纳米线成品。
如此,便可制备出直径为25纳米的麦穗形碲铂合金纳米线,微观状态下大长径比的碲铂合金纳米线相互交织在一起,暴露出大的活性面积,具有规整的微纳结构。
实施例2:
一种麦穗形Te-Pt合金纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取3份的碲纳米线加入到含有35份无水乙醇的烧杯中,磁力搅拌40分钟使得分散均匀;
2)取步骤1)所得的分散溶液,以碲、铂原子摩尔比为10:10的比例加入所需铂源,分散到超纯水中,放入聚四氟乙烯内衬中,移入反应釜中水热反应5小时,即得麦穗形Te-Pt合金纳米线成品。
实施例3:
一种麦穗形Te-Pt合金纳米线的制备方法,包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取5份的碲纳米线加入到含有50份无水乙醇的烧杯中,磁力搅拌50分钟使得分散均匀;
2)取步骤1)所得的分散溶液,以碲、铂原子摩尔比为10:80的比例加入所需铂源,分散到超纯水中,放入聚四氟乙烯内衬中,移入反应釜中水热反应6小时,即得麦穗形Te-Pt合金纳米线成品。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (1)

1.一种麦穗形Te-Pt合金纳米线的制备方法,其特征在于包括以下步骤:
1)使用碲源制备出碲纳米线,按质量份数,称取1-5份的碲纳米线加入到含有25-50份无水乙醇的烧杯中,磁力搅拌30-50分钟使得分散均匀;
2)取步骤1)所得的分散溶液,以碲、铂原子摩尔比为10:(80-100)的比例加入所需铂源,分散到超纯水中,放入聚四氟乙烯内衬中,移入反应釜中水热反应4-6小时,即得麦穗形Te-Pt合金纳米线成品。
CN201610148260.2A 2016-03-16 2016-03-16 一种麦穗形Te-Pt合金纳米线的制备方法 Active CN105742657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610148260.2A CN105742657B (zh) 2016-03-16 2016-03-16 一种麦穗形Te-Pt合金纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610148260.2A CN105742657B (zh) 2016-03-16 2016-03-16 一种麦穗形Te-Pt合金纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN105742657A CN105742657A (zh) 2016-07-06
CN105742657B true CN105742657B (zh) 2019-02-26

Family

ID=56250601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610148260.2A Active CN105742657B (zh) 2016-03-16 2016-03-16 一种麦穗形Te-Pt合金纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN105742657B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453793A (zh) * 2018-10-22 2019-03-12 浙江工业大学 一种超长铂碲介孔纳米管电催化剂及其制备方法
CN110339833A (zh) * 2019-07-19 2019-10-18 河海大学 一种超薄PtTe纳米线的制备方法及PtTe纳米线
CN115746461B (zh) * 2022-11-21 2024-07-30 广东圆融新材料有限公司 一种高性能抗菌耐候聚丙烯复合材料及其制备方法
CN116750726B (zh) * 2023-08-15 2023-11-14 北京大学口腔医学院 一种PtCuTe纳米材料及其制备方法和修复凝胶

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872886B (zh) * 2012-09-21 2014-08-13 中国科学技术大学 一种碲基贵金属合金纳米线催化剂的制备方法及其应用
CN105140536A (zh) * 2015-07-29 2015-12-09 舟山宇净环境科技有限公司 一种脊椎骨状钯铂复合纳米粒子的制备方法

Also Published As

Publication number Publication date
CN105742657A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105742657B (zh) 一种麦穗形Te-Pt合金纳米线的制备方法
Cargnello Colloidal nanocrystals as building blocks for well-defined heterogeneous catalysts
Jiang et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires
Lee et al. Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity
Li et al. Bimetallic nanocrystals: Structure, controllable synthesis and applications in catalysis, energy and sensing
Luo et al. Concave platinum–copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis
You et al. Free-standing Pt–Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation
Wang et al. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process
Zhang et al. Syntheses of sub-30 nm Au@ Pd concave nanocubes and Pt-on-(Au@ Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation
Bu et al. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts
Feng et al. Pd–Ni alloy nanoparticles as effective catalysts for Miyaura–Heck coupling reactions
Zhang et al. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions
Wang et al. Simple synthesis of Au–Pd Alloy nanowire networks as macroscopic, flexible electrocatalysts with excellent performance
CN107321368B (zh) 一种Au原子修饰的CoSe2纳米带及其制备方法和应用
CN104056633A (zh) 一种SiO2包裹的核壳结构催化剂的制备方法
Karczmarska et al. Carbon-supported noble-metal nanoparticles for catalytic applications—a review
CN104646025A (zh) 一种中空Pt/Ni合金与石墨烯气凝胶复合材料的制备方法
Imura et al. Highly stable silica-coated gold nanoflowers supported on alumina
Bai et al. Synthesis of metallic nanocrystals: from noble metals to base metals
Xu et al. Surface plasmon enhanced ethylene glycol electrooxidation based on hollow platinum-silver nanodendrites structures
Yu et al. Hollow AuAg alloy nanourchins: twin plane and surface treatment for enhanced methanol electrooxidation performance
Sadeghi et al. Nanoplates controlled synthesis and catalytic activities of silver nanocrystals
CN108607576A (zh) 一种简易制备单分散铂铜双金属纳米颗粒的方法
Wang et al. Strained ultralong silver nanowires for enhanced electrocatalytic oxygen reduction reaction in alkaline medium
Asikin-Mijan et al. Single-atom catalysts: a review of synthesis strategies and their potential for biofuel production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221123

Address after: 311100 Room 5337, 5/F, Building 4, No. 88, Renhe Avenue, Renhe Street, Yuhang District, Hangzhou, Zhejiang

Patentee after: Hangzhou Cuiwu Technology Co.,Ltd.

Address before: 310018 No. 2, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: ZHEJIANG SCI-TECH University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230512

Address after: 313200 Room 17, Floor 12, Building 8, Deqing Geographic Information Town, District D, Wuyang Street, Deqing County, Huzhou City, Zhejiang Province (Moganshan National High tech Zone) (self declared)

Patentee after: Deqing Jiuyun Materials Science Research Co.,Ltd.

Address before: 311100 Room 5337, 5/F, Building 4, No. 88, Renhe Avenue, Renhe Street, Yuhang District, Hangzhou, Zhejiang

Patentee before: Hangzhou Cuiwu Technology Co.,Ltd.

TR01 Transfer of patent right