CN105734485B - 一种铍铜合金表面复合耐磨涂层的制备方法 - Google Patents

一种铍铜合金表面复合耐磨涂层的制备方法 Download PDF

Info

Publication number
CN105734485B
CN105734485B CN201610244769.7A CN201610244769A CN105734485B CN 105734485 B CN105734485 B CN 105734485B CN 201610244769 A CN201610244769 A CN 201610244769A CN 105734485 B CN105734485 B CN 105734485B
Authority
CN
China
Prior art keywords
workpiece
beallon
coating
alloys
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610244769.7A
Other languages
English (en)
Other versions
CN105734485A (zh
Inventor
黑鸿君
于盛旺
王荣
李咏梅
申艳艳
刘小萍
贺志勇
周兵
吴艳霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610244769.7A priority Critical patent/CN105734485B/zh
Publication of CN105734485A publication Critical patent/CN105734485A/zh
Application granted granted Critical
Publication of CN105734485B publication Critical patent/CN105734485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种铍铜合金表面复合耐磨涂层的制备方法,首先采用双层辉光等离子体渗金属技术,以W、Mo、Nb金属或W‑Mo合金、Mo‑Nb合金、W‑Nb合金、W‑Mo‑Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极,在铍铜工件表面制备渗镀层,制备前先将经Cu表面金属化处理后的金刚石颗粒均匀喷洒在铍铜合金工件表面,使其弥散分布,渗镀层制备过程中,涂层厚度每增加2‑5μm,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次,渗镀层制备结束后,通入氢气快速冷却;然后抛光涂层表面并使金刚石颗粒表面露出。该方法制备的涂层具有高的电导率、热导率、耐磨性,涂层与基体结合强度高、制备工艺过程简单。

Description

一种铍铜合金表面复合耐磨涂层的制备方法
技术领域
本发明涉及一种铍铜合金表面复合耐磨层的制备方法,属于金属材料表面改性技术领域。
背景技术
铍铜(QBe1.9)合金由于其良好的导电、导热性、较高的弹性极限等优点,被广泛用于电子电器、航空航天、石油化工等许多领域,已经成为国民经济建设中不可缺少的重要工业材料。但是QBe1.9合金的硬度低、耐磨性较差,因此当应用于齿轮、测试探针等受摩擦的环境时,常会因其硬度低导致磨损严重。
由于QBe1.9合金成分、组织结构等特点的限制,热处理的方法使铍铜合金硬度提高幅度有限,因此对耐磨性的改善作用不明显。常用的金属或非金属碳化物、氮化物、硼化物耐磨涂层与QBe1.9相比,电阻率均明显较高、热导率明显偏低,同时由于膨胀系数的差异,涂层与基体之间也常由于结合强度不足而导致使用过程中剥落。
发明内容
本发明旨在提供一种铍铜合金表面复合耐磨层的制备方法,采用双层辉光等离子体渗金属技术,涂层与基体冶金结合,结合强度高;采用氢气快速冷却,涂层晶粒细小、机械强度高,由此获得机械强度高、具有良好热导率、电导率的复合耐磨涂层。
本发明提供了一种铍铜合金表面复合耐磨层的制备方法,首先采用双层辉光等离子体渗金属技术,以W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极,在铍铜工件表面制备渗镀层,制备前先将经Cu表面金属化处理后的金刚石颗粒均匀喷洒在铍铜合金工件表面,使其弥散分布,渗镀层制备过程中,涂层厚度每增加2-5 μm,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次,由此将具有较低电阻率的金属元素与具有极高耐磨性能、较高热导率的金刚石相结合,获得具有良好的热导率、电导率的复合耐磨涂层,渗镀层制备结束后,通入氢气快速冷却,增大过冷度从而细化晶粒,提高涂层机械强度;然后抛光涂层表面并使金刚石颗粒表面露出。
进一步地,所述的复合耐磨涂层具体制备方法如下:将铍铜合金工件用去离子水和酒精分别进行超声波清洗,用热风吹干后置于双层辉光等离子渗金属设备的基台上,使用W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极,控制铍铜工件上表面与靶材下表面之间的距离为15-25 mm,待双层辉光等离子渗金属设备的真空炉抽真空至5 Pa以下时,通入氩气,流量为50-70sccm,调节设备内压强在25-40 Pa,打开装有晶粒尺度为2-5 μm的 Cu表面金属化处理后的金刚石颗粒容器的阀门,向工件喷洒金刚石颗粒,持续时间为20-60 s,使金刚石颗粒均匀弥散分布于工件表面。打开源极电源和工件极电源,调节源极电源和工件极电源,控制压差为200-400 V,将工件的温度升至700-1000 ℃,在铍铜合金表面制备渗镀涂层,制备时间为1-5 h;在制备过程中,涂层厚度每增加2-5 μm,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次。涂层制备结束后,关闭源极电源和工件极电源并立即向反应腔体中通入2000-5000 sccm的氢气,持续时间10~20 min,使得工件快速冷却,增大过冷度从而细化晶粒,提高涂层机械强度。经1-3 h随炉冷却后,打开双辉等离子体表面冶金设备的真空腔室,将工件取出后用抛光机进行抛光,使最上层弥散分布的金刚石颗粒露出。
上述制备方法中,所述靶材的制备过程为:将方形铍铜合金板材上设置排列有序的小孔,将长短一致的金属或金属合金丝材穿入小孔中,并加以固定,即为靶材;所述的金属为W、Mo、Nb金属中的一种,金属合金为W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的一种;所述金属丝或金属合金丝的长度为0.8-1.2 cm。
上述制备方法中,所述Cu表面金属化处理后的金刚石颗粒的晶粒尺度为2-5 μm。
上述制备方法中,所述双层辉光等离子渗金属设备的结构如下:炉壳为圆柱结构,炉壳内为腔室,腔室底部为炉底板;炉壳上方设有充气孔连接气源,炉底板设有抽气孔连接抽真空装置;炉底板上方设有工件阴极,工件阴极上方为阴极垫板,铍铜合金工件位于阴极垫板上部中央,阴极垫板上方设有圆筒状辅助阴极将工件置于其中,铍铜合金工件上方对应设有与靶阴极架连接的W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极,位于辅助阴极内;源极通过靶阴极架与源极电源连接;铍铜合金工件与工件电源连接形成工件极;炉壳外部设有金刚石颗粒容器,细管通过辅助阴极上侧壁加工的孔伸到铍铜合金工件上方,与辅助阴极接触部分设有陶瓷环与工件极绝缘。进一步地,所述金刚石颗粒容器的入口和出口分别设有阀门,上方阀门用于隔绝空气、保证腔室内真空,下方阀门用于控制金刚石颗粒的通入量。
本发明方法制备的复合耐磨涂层采用的元素W、Mo、Nb具有较低的电阻率且与铜无限固溶,机械强度高,同时将经Cu表面金属化处理后的金刚石颗粒间断性均匀喷洒在工件表面,提高其热导率和耐磨性能,本发明将具有较低电阻率的金属或合金和具有极高耐磨性能、较高热导率的金刚石相结合,所获得的复合耐磨涂层具有良好的热导率、电导率。
本发明的有益效果:
1)本发明方法制备的复合耐磨涂层采用的元素W、Mo、Nb具有较低的电阻率且与铜无限固溶,加之采用双层辉光等离子体渗金属技术,涂层与基体呈冶金结合,均使涂层与基体间具有良好的结合强度。
2)本发明方法制备的复合涂层材料将具有较低电阻率的W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金和具有极高耐磨性能、较高热导率的金刚石相结合,所获得的复合耐磨涂层具有良好的热导率、电导率。
3)本发明整个涂层的制备采用同一台双层辉光等离子体渗金属设备完成,工艺简单,易于操作。
附图说明
图1为双层辉光等离子体渗金属装置的结构示意图。
图2为实施例1在铍铜合金表面制备复合耐磨涂层的结构示意图。
图中:1-充气孔、2-炉壳、3-辅助阴极、4-源极、5-第一阀门、6-金刚石颗粒容器、7-第二阀门、8-陶瓷环、9-铍铜合金工件、10-阴极垫板、11-炉底板、12-工件阴极、13-抽气孔、14-靶阴极架、15-工件电源、16-源极电源;
a-铍铜合金基体、b-金属W与铍铜合金扩散层、c-经Cu表面金属化处理后的金刚石颗粒、d-金属W与铍铜合金沉积层、c-1-金刚石颗粒、c-2-Cu。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
如图1所示,本发明整个涂层的制备采用同一台双层辉光等离子体渗金属设备完成,所述双层辉光等离子体渗金属设备的结构为:
炉壳2为圆柱结构,炉壳2内为腔室,腔室底部为炉底板11;炉壳2上方设有充气孔1连接气源,炉底板11设有抽气孔13连接抽真空装置;炉底板11上方设有工件阴极12,工件阴极12上方为阴极垫板10,铍铜合金工件9位于阴极垫板10上部中央,阴极垫板10上方设有圆筒状辅助阴极3将工件置于其中,铍铜合金工件9上方对应设有与靶阴极架14连接的W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极4,位于辅助阴极内;源极4通过靶阴极架14与源极电源16连接;铍铜合金工件9与工件电源15连接形成工件极;炉壳外部设有金刚石颗粒容器6,细管通过辅助阴极3侧壁加工的孔伸到铍铜合金工件9上方,与辅助阴极3接触部分设有陶瓷环8与工件极绝缘。金刚石颗粒容器6的入口和出口分别设有阀门,第一阀门5用于隔绝空气、保证腔室内真空,第二阀门7用于控制金刚石颗粒的通入量。
实施例1:
以金属W丝与铍铜合金板制作的靶材作为源极,靶材制备过程为:将方形铍铜合金板上打排列有序的小孔,将长短一致长度为1.0 cm的W丝穿入小孔中,并加以固定,即为钨W与铍铜合金的靶材。
包括以下步骤:
①铜合金工件用去离子水和酒精分别进行超声波清洗干净,用热风吹干;
②将清洗后的铍铜工件置于双层辉光等离子渗金属设备的基台上,以金属W丝与铍铜合金板制作的靶材作为源极,控制铍铜工件上表面与靶材下表面之间的距离为18 mm,待双层辉光等离子渗金属设备的真空炉抽真控至5 Pa以下时,通入氩气,流量为60 sccm,调节设备内压强在30±2 Pa,打开装有晶粒尺度为2-5μm的经Cu表面金属化处理后的金刚石颗粒容器的阀门,向工件喷洒金刚石颗粒,持续时间为30 s,使金刚石颗粒均匀弥散分布于工件表面。打开源极电源和工件极电源,调节源极电源和工件极电源,控制压差为 250V,将工件的温度升至1000 ℃,在铍铜合金表面制备渗镀涂层。在制备过程中,处理时间每30 min,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次,制备第三层W与铍铜合金复合渗镀涂层之后不再喷洒金属化处理后的金刚石颗粒,结束涂层的制备;
③涂层制备结束后,关闭源极电源和工件极电源并立即向反应腔体中通入2000sccm的氢气,持续时间20 min;
④经3h随炉冷却后,打开双辉等离子体表面冶金设备的真空腔室,将工件取出后用抛光机进行抛光,使最上层弥散分布的金刚石颗粒露出,最终在铍铜合金表面得到复合耐磨涂层。
如图2所示,最终得到的复合耐磨涂层依次为(从内到外):铍铜合金基体a、金属W与铍铜合金扩散层b、Cu金属化处理后的金刚石颗粒c、金属W与铍铜合金沉积层d、c-1为金刚石颗粒、c-2为Cu。
经激光闪射法,测得在铍铜合金表面制备复合耐磨涂层后的热导率为157W/m·K,20℃,为铍铜合金QBe1.9热导率(105 W/m·K,20℃)的1.5倍;经直流四探针法,测得复合耐磨涂层的电导率为17.5%IACS,相比铍铜合金QBe1.9的电导率(18%IACS)有微小降低。
实施例2:
以金属Nb丝与铍铜合金板制作的靶材作为源极,靶材制备过程为:将方形铍铜合金板上打排列有序的小孔,将长短一致长度为0.8 cm的Nb丝穿入小孔中,并加以固定,即为铌Nb与铍铜合金的靶材。
①铜合金工件用去离子水和酒精分别进行超声波清洗干净,用热风吹干;
②将清洗后的铍铜工件置于双层辉光等离子渗金属设备的基台上,使用金属Nb丝与铍铜合金板制作的靶材作为源极,控制铍铜工件上表面与靶材下表面之间的距离为20mm,待双层辉光等离子渗金属设备的真空炉抽真控至5 Pa以下时,通入氩气,流量为70sccm,调节设备内压强在40±2 Pa,打开装有晶粒尺度为2-5μm的经Cu表面金属化处理后的金刚石颗粒容器的阀门,向工件喷洒金刚石颗粒,持续时间为25 s,使金刚石颗粒均匀弥散分布于工件表面。打开源极电源和工件极电源,调节源极电源和工件极电源,控制压差为300 V,将工件的温度升至900 ℃,在铍铜合金表面制备渗镀涂层。在制备过程中,处理时间每20min,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次,制备第四层Nb与铍铜合金复合渗镀涂层之后不再喷洒金属化处理后的金刚石颗粒,结束涂层的制备;
③涂层制备结束后,关闭源极电源和工件极电源并立即向反应腔体中通入3000sccm的氢气,持续时间15 min;
④经2.5 h随炉冷却后,打开双辉等离子体表面冶金设备的真空腔室,将工件取出后用抛光机进行抛光,使最上层弥散分布的金刚石颗粒露出,最终在铍铜合金表面得到复合耐磨涂层。
经激光闪射法,测得在铍铜合金表面制备复合耐磨涂层后的热导率为186W/m·K,20℃,为铍铜合金QBe1.9热导率(105 W/m·K,20℃)的1.77倍;经直流四探针法,测得复合耐磨涂层的电导率为17%IACS,相比铍铜合金QBe1.9的电导率(18%IACS)有微小降低。
实施例3:
以Mo-Nb合金丝与铍铜合金板制作的靶材作为源极,靶材制备过程为:将圆形铍铜合金板上打排列有序的小孔,将长短一致长度为1.2 cm的Mo-Nb合金丝穿入小孔中,并加以固定,即为Mo-Nb合金与铍铜合金的靶材。
①铜合金工件用去离子水和酒精分别进行超声波清洗干净,用热风吹干;
②将清洗后的铍铜工件置于双层辉光等离子渗金属设备的基台上,使用Mo-Nb合金丝与铍铜合金板制作的靶材作为源极,控制铍铜工件上表面与靶材下表面之间的距离为22 mm,待双层辉光等离子渗金属设备的真空炉抽真控至5 Pa以下时,通入氩气,流量为65sccm,调节设备内压强在35±2 Pa,打开晶粒尺度为2-5μm的经Cu表面金属化处理后的金刚石颗粒容器的阀门,向工件喷洒金刚石颗粒,持续时间为30 s,使金刚石颗粒均匀弥散分布于工件表面。打开源极电源和工件极电源,调节源极电源和工件极电源,控制压差为 250V,将工件的温度升至800 ℃,在铍铜合金表面制备渗镀涂层。在制备过程中,处理时间每40min,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次,制备第二层Mo-Nb合金与铍铜合金复合渗镀涂层之后不再喷洒金属化处理后的金刚石颗粒,结束涂层的制备;
③涂层制备结束后,关闭源极电源和工件极电源并立即向反应腔体中通入5000sccm的氢气,持续时间10 min;
④经1.5 h随炉冷却后,打开双辉等离子体表面冶金设备的真空腔室,将工件取出后用抛光机进行抛光,使最上层弥散分布的金刚石颗粒露出,最终在铍铜合金表面得到复合耐磨涂层。
经激光闪射法,测得在铍铜合金表面制备复合耐磨涂层后的热导率为191W/m·K,20℃,为铍铜合金QBe1.9热导率(105 W/m·K,20℃)的1.82倍;经直流四探针法,测得复合耐磨涂层的电导率为17.3%IACS,相比铍铜合金QBe1.9的电导率(18%IACS)有微小降低。

Claims (6)

1.一种铍铜合金表面复合耐磨涂层的制备方法,其特征在于:
首先采用双层辉光等离子体渗金属技术,以W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极,在铍铜工件表面制备渗镀层,制备前先将经Cu表面金属化处理后的金刚石颗粒均匀喷洒在铍铜合金工件表面,使其弥散分布,渗镀层制备过程中,涂层厚度每增加2-5 μm,将Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次,渗镀层制备结束后,通入氢气快速冷却,增大过冷度从而细化晶粒,提高涂层机械强度;然后抛光涂层表面并使金刚石颗粒表面露出。
2.根据权利要求1所述的铍铜合金表面复合耐磨涂层的制备方法,其特征在于:包括以下步骤:
①将铍铜合金工件用去离子水和酒精分别进行超声波清洗干净,用热风吹干;
②将吹干后的铍铜工件置于双层辉光等离子渗金属设备的基台上,以W、Mo、Nb金属或W-Mo合金、Mo-Nb合金、W-Nb合金、W-Mo-Nb合金中的任一种丝材与铍铜合金板材制作的靶材作为源极,控制铍铜工件上表面与靶材下表面之间的距离为15-25 mm,待双层辉光等离子渗金属设备的真空炉抽真空至5 Pa以下时,通入氩气,流量为50-70 sccm,调节设备内压强在25-40 Pa,打开装有经Cu表面金属化处理后的金刚石颗粒容器的阀门,向工件喷洒金刚石颗粒,持续时间为20-60 s,使金刚石颗粒均匀弥散分布于工件表面;
③打开源极电源和工件极电源,调节源极电源和工件极电源,控制压差为200-400 V,将工件的温度升至700-1000 ℃,在铍铜合金表面制备渗镀涂层,制备时间为1-5 h;
在制备过程中,涂层厚度每增加2-5 μm,将经Cu表面金属化处理后的金刚石颗粒向工件表面均匀喷洒一次;
④涂层制备结束后,关闭源极电源和工件极电源并立即向反应腔体中通入2000-5000sccm的氢气,持续时间10~20 min,使得工件快速冷却,增大过冷度从而细化晶粒,提高涂层机械强度;
⑤经1-3 h随炉冷却后,打开双层辉光等离子渗金属设备的真空腔室,将工件取出后用抛光机进行抛光,使最上层弥散分布的金刚石颗粒露出,最终在铍铜合金表面得到复合耐磨涂层。
3.根据权利要求2所述的铍铜合金表面复合耐磨涂层的制备方法,其特征在于:所述靶材的制备过程为:将方形铍铜合金板材上设置排列有序的小孔,将长短一致的金属或金属合金丝材穿入小孔中,并加以固定,即为靶材;所述的金属为W、Mo或Nb金属中的一种,金属合金为W-Mo合金、Mo-Nb合金,W-Nb合金、W-Mo-Nb合金中的一种;所述金属丝或金属合金丝的长度为0.8-1.2 cm。
4.根据权利要求2所述的铍铜合金表面复合耐磨涂层的制备方法,其特征在于:所述经Cu表面金属化处理后的金刚石颗粒的晶粒尺度为2-5 μm。
5.根据权利要求2所述的铍铜合金表面复合耐磨涂层的制备方法,其特征在于:所述双层辉光等离子渗金属设备的结构如下:炉壳为圆柱结构,炉壳内为腔室,腔室底部为炉底板;炉壳上方设有充气孔连接气源,炉底板设有抽气孔连接抽真空装置;炉底板上方设有工件阴极,工件阴极上方为阴极垫板,铍铜合金工件位于阴极垫板上部中央,阴极垫板上方设有圆筒状辅助阴极将工件置于其中,铍铜合金工件上方对应设有与靶阴极架连接的源极,源极位于辅助阴极内;源极通过靶阴极架与源极电源连接;铍铜合金工件与工件电源连接形成工件极;炉壳外部设有金刚石颗粒容器,细管通过辅助阴极上侧壁加工的孔伸到铍铜合金工件上方,与辅助阴极接触部分设有陶瓷环与工件极绝缘。
6.根据权利要求5所述的铍铜合金表面复合耐磨涂层的制备方法,其特征在于:所述金刚石颗粒容器的入口和出口分别设有阀门,入口位于容器上方,出口位于容器下方,上方阀门用于隔绝空气、保证腔室内真空,下方阀门用于控制金刚石颗粒的通入量。
CN201610244769.7A 2016-04-19 2016-04-19 一种铍铜合金表面复合耐磨涂层的制备方法 Active CN105734485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610244769.7A CN105734485B (zh) 2016-04-19 2016-04-19 一种铍铜合金表面复合耐磨涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610244769.7A CN105734485B (zh) 2016-04-19 2016-04-19 一种铍铜合金表面复合耐磨涂层的制备方法

Publications (2)

Publication Number Publication Date
CN105734485A CN105734485A (zh) 2016-07-06
CN105734485B true CN105734485B (zh) 2018-03-06

Family

ID=56254829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610244769.7A Active CN105734485B (zh) 2016-04-19 2016-04-19 一种铍铜合金表面复合耐磨涂层的制备方法

Country Status (1)

Country Link
CN (1) CN105734485B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773965C1 (ru) * 2022-02-09 2022-06-14 Артем Олегович Бахметьев Способ нанесения покрытия на акупунктурные иглы

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381474B (zh) * 2016-08-31 2019-01-22 江苏华力金属材料有限公司 不锈钢板表面复合耐磨涂层的制备方法
CN106967964B (zh) * 2017-05-16 2023-06-27 中国工程物理研究院激光聚变研究中心 一种掺铍的碳氢涂层、其制备方法及制备装置
CN111424270B (zh) * 2020-05-25 2021-11-05 上海交通大学 铜合金表面激光熔覆铜基金刚石颗粒增强复合涂层的方法
CN114178639B (zh) * 2022-02-17 2022-05-17 太原理工大学 一种用于铍窗和不锈钢基座的脉冲激光钎焊封接方法
CN115786859A (zh) * 2022-12-23 2023-03-14 核工业理化工程研究院 适用于大型水冷坩埚双辉等离子处理的源极及表面冶金处理工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030996A (en) * 1971-09-07 1977-06-21 Telic Corporation Electrode type glow discharge method and apparatus
CN102534290A (zh) * 2012-03-06 2012-07-04 陈照峰 一种合金元素成分可控的铂族金属合金涂层及其制备方法
CN105349944A (zh) * 2015-11-12 2016-02-24 浙江百纳橡塑设备有限公司 氮化钛铬涂层及其双层辉光等离子渗制备方法
CN105483611A (zh) * 2015-12-04 2016-04-13 太原理工大学 一种铍铜合金表面Ti+N/Ti复合渗层的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116749A (ja) * 1985-11-13 1987-05-28 Nec Corp 硬質非晶質炭素膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030996A (en) * 1971-09-07 1977-06-21 Telic Corporation Electrode type glow discharge method and apparatus
CN102534290A (zh) * 2012-03-06 2012-07-04 陈照峰 一种合金元素成分可控的铂族金属合金涂层及其制备方法
CN105349944A (zh) * 2015-11-12 2016-02-24 浙江百纳橡塑设备有限公司 氮化钛铬涂层及其双层辉光等离子渗制备方法
CN105483611A (zh) * 2015-12-04 2016-04-13 太原理工大学 一种铍铜合金表面Ti+N/Ti复合渗层的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A study on tribological behavior of double-glow plasma surface alloying W-Mo coating on gear steel";Zhong-kai Qiu et al.;《surface & coatings technology》;20150805;第92-98页 *
"temperature dependence of W metallic coatings synthesized by double glow plasma surface alloying technology on CVD diamond films";Jie Gao et al.;《applied surface science》;20150814;第429-437页 *
"双辉等离子体表面冶金金属化CVD金刚石自支撑膜研究";高雪艳等;《人工晶体学报》;20150915;第44卷(第9期);第2386-2389页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773965C1 (ru) * 2022-02-09 2022-06-14 Артем Олегович Бахметьев Способ нанесения покрытия на акупунктурные иглы

Also Published As

Publication number Publication date
CN105734485A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105734485B (zh) 一种铍铜合金表面复合耐磨涂层的制备方法
CN110539067B (zh) 一种高纯铜靶材的扩散焊接方法
JP5988411B2 (ja) 試料保持具
TW200305189A (en) Evaluation of chamber components having textured coatings
US20080173541A1 (en) Target designs and related methods for reduced eddy currents, increased resistance and resistivity, and enhanced cooling
JP2002527618A (ja) スパッターターゲット/背板組立体及びその製造方法
TW200944618A (en) Member coated with aluminum nitride by thermal spraying and process for producing the same
KR20040097903A (ko) 내플라즈마 부재 및 그 제조 방법
CN105990081B (zh) 等离子体处理装置及其制作方法
CN109913796A (zh) 一种钛合金表面的TiAlN复合涂层及其制备方法
CN107267916A (zh) 一种在硬质合金表面通过直流磁控溅射沉积w‑n硬质膜的方法
JP2000068234A (ja) 半導体装置製造用スパッタリング設備及びスパッタリング方法
US6988306B2 (en) High purity ferromagnetic sputter target, assembly and method of manufacturing same
CN109930125A (zh) 一种金刚石-铝复合材料的磁控溅射镀膜方法
CN113652644B (zh) 一种能够提高钛合金抗高温氧化性能的TiAl涂层及其制备方法
CN115572961B (zh) 一种微波辅助气压浸渗制备金刚石复合材料的方法
CN110303236A (zh) 一种用于钨或钨合金与高强度钢的热等静压扩散连接方法
TW201510261A (zh) 濺鍍標靶之部分噴霧修整
CN113462911B (zh) 一种强韧耐蚀az80镁合金的制备方法
TW201930623A (zh) 濺鍍方法及濺鍍裝置
KR100616765B1 (ko) 확산 접합된 스퍼터 타켓 조립체 및 그 제조 방법
CN213309133U (zh) 一种烹饪器具
CN102065647A (zh) 厚膜陶瓷复合基板的制造方法
CN113403577A (zh) 一种改善Cu基体与碳基薄膜结合力的方法
RU2388684C2 (ru) Способ ионно-плазменного нанесения на деталь наноструктурированного металлического покрытия

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Hei Hongjun

Inventor after: Yu Shengwang

Inventor after: Wang Rong

Inventor after: Li Yongmei

Inventor after: Shen Yanyan

Inventor after: Liu Xiaoping

Inventor after: He Zhiyong

Inventor after: Zhou Bing

Inventor after: Wu Yanxia

Inventor before: Hei Hongjun

Inventor before: Wang Rong

Inventor before: Yu Shengwang

Inventor before: Shen Yanyan

Inventor before: Liu Xiaoping

Inventor before: He Zhiyong

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant