CN105733644A - 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法 - Google Patents

一种裂解气循环加热与微波结合的轮胎橡胶裂解方法 Download PDF

Info

Publication number
CN105733644A
CN105733644A CN201610142490.8A CN201610142490A CN105733644A CN 105733644 A CN105733644 A CN 105733644A CN 201610142490 A CN201610142490 A CN 201610142490A CN 105733644 A CN105733644 A CN 105733644A
Authority
CN
China
Prior art keywords
gas
cracking
tire
rubber
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610142490.8A
Other languages
English (en)
Other versions
CN105733644B (zh
Inventor
周昆
康琪
姚波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Hope & Hot-Pulse Microwave Tech Co Ltd
Original Assignee
Sichuan Hope & Hot-Pulse Microwave Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Hope & Hot-Pulse Microwave Tech Co Ltd filed Critical Sichuan Hope & Hot-Pulse Microwave Tech Co Ltd
Priority to CN201610142490.8A priority Critical patent/CN105733644B/zh
Publication of CN105733644A publication Critical patent/CN105733644A/zh
Priority to PCT/CN2017/075471 priority patent/WO2017157180A1/zh
Application granted granted Critical
Publication of CN105733644B publication Critical patent/CN105733644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明提供一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:A、轮胎橡胶预处理;B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;C、采用气体加热装置将气体介质加热至350℃~700℃;D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;E、将步骤D得到的混合气态产物进行油气分离除去裂解油;F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至350℃~700℃用于步骤D循环裂解。本发明方法能有效减少裂解能耗及裂解时间,节约成本。

Description

一种裂解气循环加热与微波结合的轮胎橡胶裂解方法
技术领域
本发明涉及一种废旧轮胎的处理技术,尤其涉及一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,属于废料处理与资源利用技术领域。
背景技术
随着人们生活水平逐步提高和物流业高速发展,我国的私有车保有量和货车数量逐年提高。车辆数量的增加带动了经济的发展,同时汽车轮胎的消耗和磨损也产生了很多的垃圾——废旧轮胎。废旧轮胎的处理现已成为废物处理的难题。目前,对废旧轮胎的处理,主要有以下几种方法:掩埋法、焚烧法、再生利用及裂解法等,目前裂解方法包括热裂解、微波裂解以及一些改进的真空裂解等。废旧轮胎的裂解是废轮胎综合利用,变废为宝的最后一道关键步骤。长期以来,受到社会各界极大的关注,很多研究人员为此进行了大量的研究和实验工作。但由于种种原因至今仍没有形成一条理想的规模化、工业化、且符合环保要求,并在经济上可行的生产线。
热裂解是指通过在催化剂存在下加热使之裂解,热裂解温度最高可达750℃,轮胎热裂解过程需要消耗大量的热能。传统的焚烧和热解是氧化和高温过程,传热慢,均匀性差,要使其完全裂解需要较长的时间、裂解时间效率较低。同时一方面要维持裂解所需高温,另一方面需要较长的裂解时间,导致裂解能耗较高、裂解能源效率较低,并伴随次生环境污染。此外,热裂解技术作为处理废轮胎问题的途径,还存在方法复杂的缺陷,即大多要先将废轮胎里的环状钢丝拉出,再将废轮胎切割成块,投入裂解炉或裂解塔中进行高温裂解,加工环节多,生产流程长,整体效率低。如申请公布号为CN104531198A,名称为一种废旧轮胎的热裂解方法,将废旧轮胎整体与催化剂在预加热仓中通过300℃~450℃的流动氮气预加热后进入裂解仓,在600℃~1000℃的流动氮气氛围下进行裂解。该专利方法是一个单纯使用高温气体加热废旧轮胎裂解的方法:实际上,废旧轮胎橡胶是不良热导体,高温气体作用于轮胎表面,需要长时间维持高温才能将热能传入轮胎内部,而长时间的维持高温使热耗散变大,能量浪费多;而且随着轮胎表面的裂解,变成疏松的炭表层,其导热性能进一步变差。
微波裂解技术是近年来发展起来的一项比较新的裂解技术。通常是在惰性氮气体环境中利用微波能将化学键断开,打开高分子聚合物大分子链,而后经分离得到液油、燃气及炭黑。其惰性氮气环境避免了有机物的氧化过程,阻止了如呋喃等有毒物质的产生。这种对裂解环境的控制大大改善了各种回收产品,特别是炭黑的稳定性品质。因此,轮胎微波裂解相比热裂解优势十分明显。如公告号为CN103333709A,名称为圆盘式微波连续裂解装置及裂解废旧橡胶的方法、2005年第四期,《微波技术在废物处理中的应用》,第33页公开了微波处理废旧轮胎。但时至今日仍鲜见以微波裂解技术建成的废物处理工厂实际投用,结合我们的研究认为:废轮胎含有橡胶以及金属等多种材料,将微波简单的用于对其加热,能量耦合率较低,实际裂解微波能耗较高;此外微波的选择性加热、以及正反馈效应,废轮胎部分被先加热先裂解,导致裂解均匀性变差,为保证裂解完全只能延长裂解时间,从而导致更多的微波能浪费。
发明内容
本发明旨在解决轮胎橡胶在裂解过程中存在的耗能高,裂解效率低,裂解产物不符合环保要求,裂解处理过程可控性低等问题,提供一种新的轮胎橡胶的裂解方法,针对废旧轮胎的特殊性,将轮胎橡胶裂解得到的气体经过处理后与微波裂解进行创新性的结合,并循环用于轮胎橡胶的裂解,通过采用特定的方法步骤和参数,使得发明的裂解方法在能耗上有了质的降低,裂解效率有了质的提高,同时还提高了裂解处理过程的可控性,避免有害有毒气体的产生,并将处理后的液油、气体、炭渣作为燃料,用于加热循环气体,提高资源的回收利用率,减轻环境压力。
为了解决上述技术问题,本发明通过以下技术实现:
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;预处理主要是将轮胎橡胶清洗、除杂、破碎等处理;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至350℃~700℃;通常,整个裂解过程都都是在无氧条件下进行,所以气体介质因选择无氧气体。
D、将步骤C加热的气体介质持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,轮胎橡胶在上述共同作用下持续的裂解,持续转化得到固态产物和混合气态产物;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;裂解油回收利用;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至350℃~700℃用于步骤D循环裂解,其余部分排出裂解系统,不再参与循环,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体的流量相同。排出裂解系统的那一部分气体回收利用。
裂解装置开机前,需进行排氧处理,排氧可以氮气、二氧化碳、水蒸气、惰性气体等进行,初始裂解时,气体介质可以采用加热到350~700℃的氮气、二氧化碳、水蒸气、惰性气体中的一种或一种以上的组合作为初始裂解的气体介质;在裂解经过一个循环后,所述的气体介质为步骤E中经油气分离得到的气体。
进一步的,所述的轮胎橡胶裂解前进行预加热,所述预加热是将轮胎橡预加热至100℃~400℃。对要裂解的橡胶轮胎预加热可提高废旧橡胶轮胎吸收微波的能力和吸收微波的均匀性,并使微波更多的用于废旧橡胶轮胎裂解。将轮胎橡胶预加热至100℃~400℃,可以采用热水、热油、蒸汽、加热循环尾气、燃烧后的缺氧尾气或者加热的惰性气体进行预加热。
在裂解时,使用的微波是一种300MHz~300GHz的电磁波,可进一步的选择频率为915MHz±50MHz、2450MHz±50MHz,5.8GHz±100MHz中的一种或一种以上的组合。
在步骤D中,所述固态产物经无氧冷却后排出,回收利用;在步骤E中,所述的油气分离方法包括冷凝、吸附、静电除油及喷淋中的一种或一种以上的组合使混合气态产物中的裂解油被分离出来。冷凝是用冷却的方法使油蒸汽变成液体,吸附可用活性碳、吸附剂(如硅胶、氧化铝、分子筛)等吸附材料吸附油雾,静电除油,喷淋可以采用喷洒水、油之类的液体,去除油雾、油蒸汽。
在步骤F中,所述气体介质加热包括将气体介质与步骤D所述混合气态产物通过换热装置换热进行加热,混合气态产物温度高,因此可通过换热的方式对气体介质加热,从而节约了能源。或利用步骤E中油气分离得到裂解油、油气分离后被排出的气体、所述固态产物中的炭渣中的一种或多种作为燃料进行加热。达到热量自给自足的目的。
进一步的,本发明还提供了一种用于权利要求1裂解方法的轮胎橡胶裂解系统,包括微波发生器、与微波发生器连接的复合裂解腔、油气分离装置,所述复合裂解腔上开设有复合裂解腔进气口和复合裂解腔出气口,所述油气分离装置上开设有油气分离装置进气口和油气分离装置出气口,还包括气体加热装置,所述气体加热装置上开设有气体加热装置进气口和气体加热装置出气口,所述气体加热装置进气口与油气分离装置出气口连通,所述气体加热装置出气口与复合裂解腔进气口连通,所述油气分离装置进气口与复合裂解腔出气口连通。其工作流程为:将需裂解的原料送入复合裂解腔,然后开启与复合裂解腔连接的气体加热装置将气体加热装置中的气体介质加热;加热好后打开气体加热装置的出气口、复合裂解腔的进气口,此时加热好的气体介质持续地通入复合裂解腔与微波发生器馈入复合裂解腔的微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;混合气态产物从复合裂解腔出气口持续流出,从油气分离装置进气口进入油气分离装置进行油气分离,分离得到的气体中的部分通入到气体加热装置中加热后再通入到复合裂解腔中用于裂解,依次循环;没有通入到复合裂解腔中的气体则通过油气分离装置上、油气分离装置与气体加热装置的连接通道上的气体分流口排出裂解系统。
进一步的,可在复合裂解腔上连接多个微波发生器,以便于能向复合裂解腔中馈入一种或多种频率的微波,以及更大的微波功率。
在向复合裂解腔持续的通入气体介质的裂解的过程中,复合裂解腔中的混合气体(为裂解产生的气态产物和通入气体介质的混合)也同时持续地从复合裂解腔出气口流出,进入下一环节。
本裂解系统除了气体分流口将气体排出裂解系统外、固态产物排出通道将固态产物排出裂解系统外,各装置之间连接成一个循环流通的密闭系统,除了刚开始裂解,没有得到混合气态产物的情况下气体介质为氮气、二氧化碳、水蒸气和惰性气体,后面所有的循环过程中的气体介质都是将裂解得到的混合气态产物经油气分离得到的。
进一步的,所述裂解系统还包括原料预加热装置,所述原料预加热装置与复合裂解腔连接。
所述复合裂解腔上还设有固体产物排出通道,所述油气分离装置上、油气分离装置与气体加热装置的连接通道上设有气体分流口,气体分流口可设置多个。
所述油气分离装置包括管式换热冷凝器、壳管式冷凝器、吸附除油器、喷雾式冷凝器、喷淋式冷凝器、列板式冷凝器、管板式冷凝器、静电除油器中的任意一种或一种以上的组合,所述原料预加热装置包括热风式加热器、红外加热器、回转加热筒、加热流化床、加热浴槽中的一种或一种以上的组合。
本发明的有益效果:
1、本发明将加热至350℃~700℃的气体介质通入复合裂解腔,与微波同时作用于轮胎橡胶从而进行裂解,通过这一特定的方法步骤和参数的结合,在裂解同样量的轮胎橡胶时,与传统的热裂解方法、微波裂解方法相比,裂解时间减少了20%以上,裂解能耗降低了30%以上,大大的提高了裂解效率,节省了生产成本;取得了意料不到的技术效果。本发明持续地的通入温度为350℃~700℃的气体介质进行裂解,这一温度范围的气体介质强制性的从原料之间流过并与之充分换热,不仅提供裂解能量,更重要的是改善橡胶轮胎吸收微波的性能,再将这一特点与微波特定地结合,从而充分提高裂解的能源利用率,减少了裂解时间;还提高了裂解进程的可控性,便于控制裂解原料的温度,从而有效控制混合气态产物中不凝性气体与裂解油的比例、裂解油的品质。
本发明在初始裂解的时候的气体介质为氮气、二氧化碳、水蒸气、惰性气体这些气体,后续都将按本发明方法得到的气体循环用于裂解,不但节省了气体介质的成本,同时还能避免了使用氮气、二氧化碳、水蒸气、惰性气体这些气体造成环境危害问题,减轻了环境压力。
本发明方法适合大规模应用,且符合环保要求,并在经济上可行的方法路线。
2、本发明在裂解前将轮胎橡胶预加热至100℃~400℃,通过预热和裂解系统中的高温气体介质加热轮胎橡胶,提高轮胎橡胶温度,从而改善轮胎橡胶的微波吸收能力、提高均匀性,还能部分地提供裂解能量,从而极大地提高微波利用效率,进一步减少能耗及裂解时间。
3、采用本发明的方法,在保证轮胎的完全裂解的同时,极大的降低了微波能耗,并提高了裂解效率。
4、本发明将高温的混合气态产物与气体介质换热,从而回收热能;并利用原料裂解后得到的炭渣、经油气分离后排出裂解系统的气体、液油作为燃料进行加热,达到能量自足的目的,节省生产成本。
5、本发明的裂解系统在现有技术的基础上增加了气体加热装置,并创新性的改变系统中各装置之间的连接关系,形成一个可以将裂解自身得到的气体循环用于裂解的系统,结构简单,操作简单。
附图说明
图1为本发明裂解系统结构示意图;
图2为本发明方法流程图;
1微波发生器、2复合裂解腔、21复合裂解腔进气口、22复合裂解腔出气口、23固态产物排出通道、3气体加热装置、31气体加热装置出气口、32气体加热装置进气口、4气体分流口、5气体驱动装置、6油气分离装置、61油气分离装置出气口、62油气分离装置进气口、7原料预加热装置。
具体实施方式
下述实施例中,裂解过程中是隔绝氧气的,每次开机需通入氮气、二氧化碳、水蒸气、惰性气体的一种或几种排出系统内空气;这些气体随着气体介质的循环被替换掉。
下述实施例中,微波输出功率为10~2000kw。
实施例1
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至350℃;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至350℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
实施例2
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至700℃;气体介质为惰性气体;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至700℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
实施例3
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至450℃;气体介质为水蒸气;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;裂解的微波频率为2450MHz±50MHz;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至450℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
实施例4
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至600℃;气体介质为氮气;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;微波频率为915MHz±50MHz。
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至600℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
实施例5
为了更好的实施本发明,本实施例在实施例2的基础上进一步改进,本实施例与实施例2的区别在于:
本实施例的气体介质为氮气、水蒸气、二氧化碳的混合。
本实施例将轮胎橡胶进行预加热后再送入复合裂解腔进行裂解,所述预加热是将轮胎橡预加热至100℃。对要裂解的橡胶轮胎预加热可提高废旧橡胶轮胎吸收微波的能力和吸收微波的均匀性,并使微波更多的用于废旧橡胶轮胎裂解。
实施例6
为了更好的实施本发明,本实施例在实施例2的基础上进一步改进,本实施例与实施例2的区别在于:
本实施例将轮胎橡胶进行预加热后再送入复合裂解腔进行裂解,所述预加热是将轮胎橡预加热至250℃。
实施例7
为了更好的实施本发明,本实施例在实施例2的基础上进一步改进,本实施例与实施例2的区别在于:
本实施例将轮胎橡胶进行预加热后再送入复合裂解腔进行裂解,所述预加热是将轮胎橡预加热至400℃。
实施例8
本实施例在实施例1的基础上,进一步提供了较优的用于裂解的裂解系统,如图1所示,所述的裂解系统包括微波发生器1、与微波发生器1连接的复合裂解腔2、油气分离装置6,所述复合裂解腔2上开设有复合裂解腔进气口21和复合裂解腔出气口22,所述油气分离装置6上开设有油气分离装置进气口62和油气分离装置出气口61,其特征在于:还包括气体加热装置3,所述气体加热装置3上开设有气体加热装置进气口32和气体加热装置出气口31,所述气体加热装置进气口32与油气分离装置出气口61连通,所述气体加热装置出气口31与复合裂解腔进气口21连通,所述油气分离装置进气口62与复合裂解腔出气口22连通。
实施例9
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至600℃;本实施例的气体介质为二氧化碳;
D、将步骤C加热的气体介质持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;微波频率为5.8GHz±100MHz;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至600℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
所述的轮胎橡胶裂解前进行预加热,所述预加热是将轮胎橡预加热250℃。
本实施例还包括固态产物处理,所述固态产物处理是将裂解得到的固态产物经无氧冷却后排出、裂解后的固态产物中含有钢丝和大量的炭渣,可回收利用。
本实施例中,所述的油气分离方法为冷凝,冷凝是用冷却的方法使油蒸汽变成液体从而将裂解油分离出来。
本实施例中的步骤F中,所述加热是将油气分离得到的气体与步骤D中所述混合气态产物通过换热装置换热的方式进行加热或利用步骤E中所述裂解油、步骤D中所述固态产物中的炭渣中的一种或多种燃料进行加热。
实施例10
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至600℃;气体介质为按本实施例经过一个循环裂解得到的混合气态产物经油气分离处理后得到的气体;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;微波频率为915MHz±50MHz和5.8GHz±100MHz的组合;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至600℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
本实施例中,所述的轮胎橡胶裂解前进行预加热,所述预加热是将轮胎橡预加热至250℃。
本实施例中,所述的油气分离方法为喷淋除油,喷淋可以采用喷洒水、油之类的液体,去除油雾、油蒸汽。
本实施例中,在步骤F中,所述加热包括将油气分离得到的气体与步骤D中所述混合气态产物通过换热装置换热的方式进行加热或利用步骤E中所述裂解油、步骤D中所述固态产物中的炭渣中的一种或多种燃料进行加热。
实施例11
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,所述方法包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至550℃;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;微波频率为5.8GHz±100MHz和2450MHz±50MHz的组合。
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至550℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
本实施例中,气体介质为二氧化碳与步骤E油气分离得到的气体的组合。
进一步的,所述的轮胎橡胶裂解前进行预加热,所述预加热是将轮胎橡预加热至300℃。
本实施例中,在步骤F中,所述加热包括将油气分离得到的气体与步骤D中所述混合气态产物通过换热装置换热的方式进行加热或利用步骤E中所述裂解油、步骤D中所述固态产物中的炭渣中的一种或多种燃料进行加热。
所述的油气分离方法为冷凝,冷凝是用冷却的方法使油蒸汽变成液体。
本实施例提供了另一种用于本发明的较佳的裂解系统,如图1所示,该裂解系统包括微波发生器1、与微波发生器1连接的复合裂解腔2、油气分离装置6,所述复合裂解腔2上开设有复合裂解腔进气口21和复合裂解腔出气口22,所述油气分离装置6上开设有油气分离装置进气口62和油气分离装置出气口61,其特征在于:还包括气体加热装置3,所述气体加热装置3上开设有气体加热装置进气口32和气体加热装置出气口31,所述气体加热装置进气口32与油气分离装置出气口61连通,所述气体加热装置出气口31与复合裂解腔进气口21连通,所述油气分离装置进气口62与复合裂解腔出气口22连通。所述裂解系统还包括原料预加热装置7,所述原料预加热装置7与复合裂解腔2连接。所述复合裂解腔2上还设有固体产物排出通道23,所述油气分离装置6上、油气分离装置6与气体加热装置3的连接通道上设有气体分流口4。
所述油气分离装置6采用的是管式换热冷凝器。
所述原料预加热装置7采用的是红外加热器。
实施例12
一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,包括下述步骤:
A、轮胎橡胶预处理;主要是将轮胎橡胶进行清洗,然后破碎成25cm2左右的小块;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至650℃;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;微波频率为2450MHz±50MHz和915MHz±50MHz的组合。
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至600℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
所述的轮胎橡胶裂解前进行预加热,所述预加热是将轮胎橡预加热至200℃。
本实施例固态产物处理处理方式与实施例8相同。
所述的油气分离方法为吸附,可采用活性炭吸附以及吸附剂吸附等吸附油雾。
本实施例与实施例11中的裂解系统的区别在于:
本实施的原料预加热装置为回转加热筒,所述油气分离装置为吸附除油器。
实施例13
本实施例与实施例11的区别在于:本实施例中,油气分离方采用冷凝方式,所述油气分离装置为壳管式冷凝器,原料预加热装置为回转加热筒。
实施例14
本实施例与实施例11的区别在于:
步骤C中,气体介质加热至500℃;
步骤F中,气体加热至500℃;
进行原料预加热时,原料预加热至350℃;
本实施裂解固态产物处理方法实施例8相同。
本实施例的油气分离方法可采用喷淋进行。
原料预加热采用加热流化床。
所述油气分离装置可采用喷雾式冷凝器或是喷淋式冷凝器。
实施例15
本实施例与实施例14的区别在于:
步骤C中,气体介质加热至600℃;
步骤F中,气体加热至600℃;
进行原料预加热时,原料预加热至200℃;
本实施例中,原料预加热装置为加热浴槽。
将实施例1-15的相关数据统计在下表1中;
表1
由上述1数据可知:本方法有效提高裂解效率并显著降低微波能耗;相对的,大幅的加速了裂解过程,减少裂解油在高温环境的时间,极大的提高了裂解油的品质和产量。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (10)

1.一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,其特征在于:所述方法包括下述步骤:
A、轮胎橡胶预处理;
B、将步骤A预处理好的轮胎橡胶送入复合裂解腔;
C、采用气体加热装置将气体介质加热至350℃~700℃;
D、将步骤C加热的气体持续地通入复合裂解腔与微波同时作用于轮胎橡胶进行裂解,得到固态产物和混合气态产物;
E、将步骤D得到的混合气态产物进行油气分离除去裂解油;
F、将步骤E中经油气分离得到的气体中的部分通入到步骤C所述的气体加热装置中加热至350℃~700℃用于步骤D循环裂解,其余部分排出,所述通入到气体加热装置中的气体的流量与步骤D中通入到复合裂解腔中的气体介质的流量相同。
2.根据权利要求1所述的一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,其特征在于:步骤C中所述气体介质包括氮气、二氧化碳、水蒸气、惰性气体和所述步骤E中经油气分离得到的气体的一种或一种以上的组合。
3.根据权利要求1所述的一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,其特征在于:所述的轮胎橡胶裂解前进行预加热,所述预加热是将轮胎橡预加热至100℃~400℃。
4.根据权利要求1所述的一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,其特征在于:所述裂解的微波频率包括915MHz±50MHz、2450MHz±50MHz,5.8GHz±100MHz中的一种或一种以上的组合。
5.根据权利要求1所述的一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,其特征在于:在步骤D中,所述固态产物经无氧冷却后排出,回收利用;在步骤E中,所述的油气分离方法包括冷凝、吸附、静电及喷淋中的一种或一种以上的组合。
6.根据权利要求5所述的一种裂解气循环加热与微波结合的轮胎橡胶裂解方法,其特征在于,在步骤F中,所述加热包括将油气分离得到的气体与步骤D中所述混合气态产物通过换热装置换热的方式进行加热;或利用步骤E中油气分离得到的气体和裂解油、步骤D中所述固态产物中的炭渣中的一种或多种作为燃料进行加热。
7.一种用于权利要求1橡胶裂解方法的轮胎橡胶裂解系统,包括微波发生器(1)、与微波发生器(1)连接的复合裂解腔(2)、油气分离装置(6),所述复合裂解腔(2)上开设有复合裂解腔进气口(21)和复合裂解腔出气口(22),所述油气分离装置(6)上开设有油气分离装置进气口(62)和油气分离装置出气口(61),其特征在于:还包括气体加热装置(3),所述气体加热装置(3)上开设有气体加热装置进气口(32)和气体加热装置出气口(31),所述气体加热装置进气口(32)与油气分离装置出气口(61)连通,所述气体加热装置出气口(31)与复合裂解腔进气口(21)连通,所述油气分离装置进气口(62)与复合裂解腔出气口(22)连通。
8.根据权利要求7所述的裂解系统,其特征在于:所述裂解系统还包括原料预加热装置(7),所述原料预加热装置(7)与复合裂解腔(2)连接。
9.根据权利要求7所述的裂解系统,其特征在于:所述复合裂解腔(2)上还设有固体产物排出通道(23),所述油气分离装置(6)上、油气分离装置(6)与气体加热装置(3)的连接通道上设有气体分流口(4)。
10.根据权利要求8所述的裂解系统,其特征在于:所述油气分离装置(6)包括管式换热冷凝器、壳管式冷凝器、吸附除油器、喷雾式冷凝器、喷淋式冷凝器,列板式冷凝器、管板式冷凝器、静电除油器中的任意一种或一种以上的组合,所述原料预加热装置(7)包括热风式加热器、红外加热器、回转加热筒、加热流化床、加热浴槽中的一种或一种以上的组合。
CN201610142490.8A 2016-03-14 2016-03-14 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法 Active CN105733644B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610142490.8A CN105733644B (zh) 2016-03-14 2016-03-14 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法
PCT/CN2017/075471 WO2017157180A1 (zh) 2016-03-14 2017-03-02 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610142490.8A CN105733644B (zh) 2016-03-14 2016-03-14 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法

Publications (2)

Publication Number Publication Date
CN105733644A true CN105733644A (zh) 2016-07-06
CN105733644B CN105733644B (zh) 2017-10-31

Family

ID=56250462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610142490.8A Active CN105733644B (zh) 2016-03-14 2016-03-14 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法

Country Status (2)

Country Link
CN (1) CN105733644B (zh)
WO (1) WO2017157180A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106244186A (zh) * 2016-08-31 2016-12-21 广东新生环保科技股份有限公司 一种有机高分子废弃物料处理装置
CN106520176A (zh) * 2016-11-21 2017-03-22 中国科学院过程工程研究所 一种用聚烯烃塑料制取小分子烯烃的方法
WO2017157180A1 (zh) * 2016-03-14 2017-09-21 四川宏图普新微波科技有限公司 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法
CN107376802A (zh) * 2017-09-15 2017-11-24 四川宏图普新微波科技有限公司 一种用于微波裂解废轮胎的保持腔内洁净运行的工艺
CN107556785A (zh) * 2017-09-15 2018-01-09 四川宏图普新微波科技有限公司 一种橡胶补强用再生补强炭黑的制备方法
CN107760354A (zh) * 2017-11-20 2018-03-06 叶子毓 一种废旧橡胶的连续裂解装置和使用方法
CN108018062A (zh) * 2016-11-03 2018-05-11 江苏林达智思环保科技有限公司 废旧橡胶裂解方法及系统
CN108690651A (zh) * 2018-06-11 2018-10-23 南京三乐微波技术发展有限公司 一种基于微波和热风耦合加热的橡胶制品裂解装置
CN108753339A (zh) * 2018-06-11 2018-11-06 江苏绿地环保滤材有限公司 工业废橡胶环保处理装置
CN108913186A (zh) * 2018-06-11 2018-11-30 南京三乐微波技术发展有限公司 一种有机固体废弃物微波裂解处理系统及其微波裂解处理方法
CN109628120A (zh) * 2019-02-20 2019-04-16 青岛伊克斯达智能装备有限公司 一种废旧轮胎整胎连续式热裂解系统及方法
CN111057402A (zh) * 2019-12-16 2020-04-24 珠海格力绿色再生资源有限公司 一种炭黑组分分离工艺
CN111303928A (zh) * 2020-03-30 2020-06-19 安徽省克林泰迩再生资源科技有限公司 一种橡胶热循环加热的微负压裂解系统及裂解方法
CN111876191A (zh) * 2020-07-23 2020-11-03 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种新型组合式油气回收系统及油气回收方法
US11920004B2 (en) 2020-04-01 2024-03-05 Environmental Waste International, Inc. Hybrid processing of waste material
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190048166A1 (en) * 2017-08-14 2019-02-14 Environmental Waste International, Inc. Hybrid processing of waste material
CN112646595A (zh) * 2020-11-20 2021-04-13 江苏林达智思环保科技有限公司 一种新型裂解炉
CN114165314A (zh) * 2021-12-07 2022-03-11 威海泓创企业管理咨询有限公司 一种废旧轮胎裂解不凝气发电机尾气处理装置和方法
CN116286074B (zh) * 2023-03-13 2024-06-04 北京工业大学 一种用于提高轮胎裂解油中btx含量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089124A (zh) * 2006-06-15 2007-12-19 任丽娟 废旧轮胎的裂解方法及其设备
CN201553708U (zh) * 2009-09-30 2010-08-18 刘毅 利用微波使废轮胎资源再生装置
CN103333709A (zh) * 2013-06-28 2013-10-02 青岛东方循环能源有限公司 圆盘式微波连续裂解装置及裂解废旧橡胶的方法
CN104531198A (zh) * 2014-12-19 2015-04-22 河北科技大学 一种废旧轮胎的热裂解工艺
CN105349186A (zh) * 2015-12-11 2016-02-24 山东百川同创能源有限公司 基于微波加热的生物质制气系统及工艺
CN105368497A (zh) * 2015-12-11 2016-03-02 山东百川同创能源有限公司 生物质材料微波辅助热解气化装置及其使用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843457A (en) * 1971-10-14 1974-10-22 Occidental Petroleum Corp Microwave pyrolysis of wastes
US4647443A (en) * 1984-10-12 1987-03-03 Fred Apffel Recovery process
GB8726397D0 (en) * 1987-11-11 1987-12-16 Holland K M Processing of organic material
FI20105618A (fi) * 2010-06-01 2011-12-02 Raute Oyj Menetelmä ja laite fragmentoidun materiaalin käsittelemiseksi pyrolyysillä
US8466332B1 (en) * 2011-12-21 2013-06-18 Climax Global Energy Method and apparatus for microwave depolymerization of hydrocarbon feedstocks
CN204550476U (zh) * 2015-04-22 2015-08-12 柏绿山 一种废旧轮胎或废旧塑料无害化、资源化处理系统
CN106334704A (zh) * 2016-03-14 2017-01-18 四川宏图普新微波科技有限公司 一种固体有机材料的裂解工艺及系统
CN105733644B (zh) * 2016-03-14 2017-10-31 四川宏图普新微波科技有限公司 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法
CN106338067B (zh) * 2016-03-14 2018-12-07 四川宏图普新微波科技有限公司 一种固体有机材料裂解系统
CN106338066B (zh) * 2016-03-14 2018-12-07 四川宏图普新微波科技有限公司 一种固体有机材料的裂解方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089124A (zh) * 2006-06-15 2007-12-19 任丽娟 废旧轮胎的裂解方法及其设备
CN201553708U (zh) * 2009-09-30 2010-08-18 刘毅 利用微波使废轮胎资源再生装置
CN103333709A (zh) * 2013-06-28 2013-10-02 青岛东方循环能源有限公司 圆盘式微波连续裂解装置及裂解废旧橡胶的方法
CN104531198A (zh) * 2014-12-19 2015-04-22 河北科技大学 一种废旧轮胎的热裂解工艺
CN105349186A (zh) * 2015-12-11 2016-02-24 山东百川同创能源有限公司 基于微波加热的生物质制气系统及工艺
CN105368497A (zh) * 2015-12-11 2016-03-02 山东百川同创能源有限公司 生物质材料微波辅助热解气化装置及其使用方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157180A1 (zh) * 2016-03-14 2017-09-21 四川宏图普新微波科技有限公司 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法
CN106244186A (zh) * 2016-08-31 2016-12-21 广东新生环保科技股份有限公司 一种有机高分子废弃物料处理装置
CN108018062A (zh) * 2016-11-03 2018-05-11 江苏林达智思环保科技有限公司 废旧橡胶裂解方法及系统
CN106520176A (zh) * 2016-11-21 2017-03-22 中国科学院过程工程研究所 一种用聚烯烃塑料制取小分子烯烃的方法
CN107376802A (zh) * 2017-09-15 2017-11-24 四川宏图普新微波科技有限公司 一种用于微波裂解废轮胎的保持腔内洁净运行的工艺
CN107556785A (zh) * 2017-09-15 2018-01-09 四川宏图普新微波科技有限公司 一种橡胶补强用再生补强炭黑的制备方法
WO2019052453A1 (zh) * 2017-09-15 2019-03-21 四川宏图普新微波科技有限公司 一种用于微波裂解废轮胎的保持腔内洁净运行的工艺
CN107760354A (zh) * 2017-11-20 2018-03-06 叶子毓 一种废旧橡胶的连续裂解装置和使用方法
CN108753339A (zh) * 2018-06-11 2018-11-06 江苏绿地环保滤材有限公司 工业废橡胶环保处理装置
CN108913186A (zh) * 2018-06-11 2018-11-30 南京三乐微波技术发展有限公司 一种有机固体废弃物微波裂解处理系统及其微波裂解处理方法
CN108690651A (zh) * 2018-06-11 2018-10-23 南京三乐微波技术发展有限公司 一种基于微波和热风耦合加热的橡胶制品裂解装置
CN109628120A (zh) * 2019-02-20 2019-04-16 青岛伊克斯达智能装备有限公司 一种废旧轮胎整胎连续式热裂解系统及方法
CN109628120B (zh) * 2019-02-20 2023-09-26 青岛伊克斯达智能装备有限公司 一种废旧轮胎整胎连续式热裂解系统及方法
CN111057402A (zh) * 2019-12-16 2020-04-24 珠海格力绿色再生资源有限公司 一种炭黑组分分离工艺
CN111303928A (zh) * 2020-03-30 2020-06-19 安徽省克林泰迩再生资源科技有限公司 一种橡胶热循环加热的微负压裂解系统及裂解方法
US11920004B2 (en) 2020-04-01 2024-03-05 Environmental Waste International, Inc. Hybrid processing of waste material
CN111876191A (zh) * 2020-07-23 2020-11-03 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种新型组合式油气回收系统及油气回收方法
US11999920B2 (en) 2020-09-14 2024-06-04 Ecolab Usa Inc. Cold flow additives for plastic-derived synthetic feedstock
US12031097B2 (en) 2021-10-14 2024-07-09 Ecolab Usa Inc. Antifouling agents for plastic-derived synthetic feedstocks

Also Published As

Publication number Publication date
WO2017157180A1 (zh) 2017-09-21
CN105733644B (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
CN105733644A (zh) 一种裂解气循环加热与微波结合的轮胎橡胶裂解方法
CN106338066B (zh) 一种固体有机材料的裂解方法及系统
CN207227348U (zh) 废旧橡胶裂解系统
CN107987866B (zh) 一种固体废弃物微波高效解聚联产生物油和生物炭的装置及方法
CN108101335A (zh) 一种含油污泥连续处理工艺及处理装置
CN106338067B (zh) 一种固体有机材料裂解系统
CN206318947U (zh) 连续型废塑料循环裂解系统
CN110938451A (zh) 一种废旧轮胎裂解碳化冷却系统
CN107200452A (zh) 微波热解污泥的装置及方法
CN218491660U (zh) 一种循环利用热解气的废旧轮胎热解装置
CN111944546B (zh) 一种用于处理有机固体废料的可移动式集装箱系统
CN202328275U (zh) 一种用于垃圾处理的固渣裂解装置
CN103194623A (zh) 一种钼精矿提纯方法及装置
CN108410494A (zh) 一种ept废旧轮胎连续裂解装置及方法
CN102757803A (zh) 废轮胎流化床蒸气低温干馏系统及方法
CN204644281U (zh) 一种废旧轮胎低温连续裂解加工设备
CN103173238B (zh) 一种费托合成反应蜡渣的热裂解方法
CN106185863A (zh) 利用废旧轮胎热裂解产生的可燃气制备碳纳米管的工艺
CN106334704A (zh) 一种固体有机材料的裂解工艺及系统
CN111808446A (zh) 一种利用高温裂解气进行炭化的裂解炭黑及制备方法
CN211339392U (zh) 一种废旧轮胎裂解碳化冷却系统
CN210001821U (zh) 一种轮胎裂解炭渣和油气分离装置
US9994776B2 (en) Refining apparatus and refining method for recycling waste plastics
CN106590706A (zh) 一种可车载的生物质热裂解液化系统
CN204644280U (zh) 一种废旧轮胎再生利用环保处理设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant