CN105732046A - 一种抗热震性陶瓷基复合材料及其粉末冶金制备方法 - Google Patents
一种抗热震性陶瓷基复合材料及其粉末冶金制备方法 Download PDFInfo
- Publication number
- CN105732046A CN105732046A CN201610111062.9A CN201610111062A CN105732046A CN 105732046 A CN105732046 A CN 105732046A CN 201610111062 A CN201610111062 A CN 201610111062A CN 105732046 A CN105732046 A CN 105732046A
- Authority
- CN
- China
- Prior art keywords
- parts
- thermal shock
- powder
- filtering residue
- shock resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
- C04B2235/445—Fluoride containing anions, e.g. fluosilicate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/668—Pressureless sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种抗热震性陶瓷基复合材料及其粉末冶金制备方法,由以下组分按重量份数配比制成:氮化硅18~42份、硅酸锆6~19份、氧化锆7~18份、纳米氟化钙12~35份、纳米氧化镁7~13份、氧化钛9~18份、石墨烯粉末12~25份、乙酸18~32份、无水乙醇13~26份、去离子水25~55份。本发明制备获得的抗热震性陶瓷基复合材料以氮化硅作为基体材料,掺入多种金属盐,并结合使用粉末冶金方法制备获得的材料具有抗热震性好,且强度高的优点。
Description
技术领域
本发明涉及复合材料领域,尤其涉及一种抗热震性陶瓷基复合材料及其粉末冶金制备方法。
背景技术
陶瓷基复合材料是以陶瓷材料为基体,以陶瓷纤维、晶须、晶片或颗粒为补强体,通过适当的复合工艺制备且性能可设计的一类新型材料,又称为多相复合陶瓷或复相陶瓷,包括纤维增韧陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。该类材料是上世纪80年代逐渐发展起来的,可通过补强体的加入改善其本征脆性,以避免突发性破坏。
陶瓷基复合材料在高技术领域、航空航天、国防以及国民经济各部门具有广阔的应用前景,是先进材料在有机材料基和金属材料基复合材料不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料,主要用作机械加工材料、耐磨材料、高温发动机燃烧室及连接杆、航天器保护材料、高温热交换器材料、高温耐腐蚀材料、轻型装甲材料、分离或过滤器材料、承载/透波/隔热材料等。
陶瓷基复合材料在经受剧烈的温度变化或在一定起始温度范围内冷热交替作用而不致破坏的能力称为抗热震性,也称之为耐热冲击性或热稳定性。抗热震性与材料本身的热膨胀系数、弹性模量、导热系数、抗张强度及材料中气相、玻璃相及其晶相的粒度有关。
大多数陶瓷在经受剧烈的冷热变化时,容易发生开裂而破坏。陶瓷基复合材料改善了材料的抗热震性。现有技术中常采用添加三氧化二铝的手段来增强材料的抗热震性,但是,该方法易使得材料本身的强度下降,从而影响材料的使用价值。
发明内容
本发明解决的技术问题:为了获得一种抗热震性强、且强度高的陶瓷基复合材料,本发明提供了一种抗热震性陶瓷基复合材料及其粉末冶金制备方法。
技术方案:一种抗热震性陶瓷基复合材料,由以下组分按重量份数配比制成:氮化硅18~42份、硅酸锆6~19份、氧化锆7~18份、纳米氟化钙12~35份、纳米氧化镁7~13份、氧化钛9~18份、石墨烯粉末12~25份、乙酸18~32份、无水乙醇13~26份、、去离子水25~55份。
优选的,所述抗热震性陶瓷基复合材料由以下组分按重量份数配比制成:氮化硅34份、硅酸锆15份、氧化锆14份、纳米氟化钙27份、纳米氧化镁9份、氧化钛13份、石墨烯粉末21份、乙酸27份、无水乙醇22份、去离子水46份。
一种抗热震性陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨1.5~4小时,粉末粒径为300~500目,获得粉末混合物;
(2)将步骤(1)获得的粉末混合物加入乙酸中,在4~12℃条件下,搅拌反应20~45分钟,过滤去除滤液,获得滤渣;
(3)用去离子水清洗步骤(2)获得的滤渣,滤渣与去离子水的质量比为1:1~1.7,清洗三次;
(4)向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应5~20分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于48~72℃条件下烘干;
(5)将烘干后的滤渣置于混料装置内,利用压力为2.9~4.6MPa的高压气体将上述粉末吹起,5~12分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(6)将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为2~5小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
优选的,步骤(1)中将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨3小时,粉末粒径为420目,获得粉末混合物。
优选的,步骤(2)中将步骤(1)获得的粉末混合物加入乙酸中,在6℃条件下,搅拌反应38分钟,过滤去除滤液,获得滤渣。
优选的,步骤(3)中用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1.5,清洗三次。
优选的,步骤(4)中向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应14分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于65℃条件下烘干。
优选的,步骤(5)中将烘干后的滤渣置于混料装置内,利用压力为4.2MPa的高压气体将上述粉末吹起,9分钟后停止通入高压气体,各粉末共同沉积并均匀混合。
优选的,步骤(6)中将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为4小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
有益效果:本发明制备获得的抗热震性陶瓷基复合材料以氮化硅作为基体材料,掺入多种金属盐,并结合使用粉末冶金方法制备获得的材料具有抗热震性好,且强度高的优点。
具体实施方式
实施例1
一种抗热震性陶瓷基复合材料,由以下组分按重量份数配比制成:氮化硅18份、硅酸锆6份、氧化锆7份、纳米氟化钙12份、纳米氧化镁7份、氧化钛9份、石墨烯粉末12份、乙酸18份、无水乙醇13份、、去离子水25份。
一种抗热震性陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨1.5小时,粉末粒径为300目,获得粉末混合物;
(2)将步骤(1)获得的粉末混合物加入乙酸中,在4℃条件下,搅拌反应20分钟,过滤去除滤液,获得滤渣;
(3)用去离子水清洗步骤(2)获得的滤渣,滤渣与去离子水的质量比为1:1,清洗三次;
(4)向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应5分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于48℃条件下烘干;
(5)将烘干后的滤渣置于混料装置内,利用压力为2.9MPa的高压气体将上述粉末吹起,5分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(6)将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为2小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
实施例2
一种抗热震性陶瓷基复合材料,由以下组分按重量份数配比制成:氮化硅34份、硅酸锆15份、氧化锆14份、纳米氟化钙27份、纳米氧化镁9份、氧化钛13份、石墨烯粉末21份、乙酸27份、无水乙醇22份、去离子水46份。
一种抗热震性陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨3小时,粉末粒径为420目,获得粉末混合物;
(2)将步骤(1)获得的粉末混合物加入乙酸中,在6℃条件下,搅拌反应38分钟,过滤去除滤液,获得滤渣;
(3)用去离子水清洗步骤(2)获得的滤渣,滤渣与去离子水的质量比为1:1.5,清洗三次;
(4)向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应14分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于65℃条件下烘干;
(5)将烘干后的滤渣置于混料装置内,利用压力为4.2MPa的高压气体将上述粉末吹起,9分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(6)将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为4小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
实施例3
一种抗热震性陶瓷基复合材料,由以下组分按重量份数配比制成:氮化硅42份、硅酸锆19份、氧化锆18份、纳米氟化钙35份、纳米氧化镁13份、氧化钛18份、石墨烯粉末25份、乙酸32份、无水乙醇26份、、去离子水55份。
一种抗热震性陶瓷基复合材料的粉末冶金制备方法,包含以下步骤:
(1)将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨4小时,粉末粒径为500目,获得粉末混合物;
(2)将步骤(1)获得的粉末混合物加入乙酸中,在12℃条件下,搅拌反应45分钟,过滤去除滤液,获得滤渣;
(3)用去离子水清洗步骤(2)获得的滤渣,滤渣与去离子水的质量比为1:1.7,清洗三次;
(4)向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应20分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于72℃条件下烘干;
(5)将烘干后的滤渣置于混料装置内,利用压力为4.6MPa的高压气体将上述粉末吹起,12分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(6)将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为5小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
对实施例1~3制备获得的抗热震性陶瓷基复合材料进行性能检测,结果如下表所示:
表1实施例1~3制备获得的抗热震性陶瓷基复合材料性能测试结果
Claims (9)
1.一种抗热震性陶瓷基复合材料,其特征在于,由以下组分按重量份数配比制成:氮化硅18~42份、硅酸锆6~19份、氧化锆7~18份、纳米氟化钙12~35份、纳米氧化镁7~13份、氧化钛9~18份、石墨烯粉末12~25份、乙酸18~32份、无水乙醇13~26份、、去离子水25~55份。
2.根据权利要求1所述一种抗热震性陶瓷基复合材料,其特征在于,由以下组分按重量份数配比制成:氮化硅34份、硅酸锆15份、氧化锆14份、纳米氟化钙27份、纳米氧化镁9份、氧化钛13份、石墨烯粉末21份、乙酸27份、无水乙醇22份、去离子水46份。
3.权利要求1所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,包含以下步骤:
(1)将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨1.5~4小时,粉末粒径为300~500目,获得粉末混合物;
(2)将步骤(1)获得的粉末混合物加入乙酸中,在4~12℃条件下,搅拌反应20~45分钟,过滤去除滤液,获得滤渣;
(3)用去离子水清洗步骤(2)获得的滤渣,滤渣与去离子水的质量比为1:1~1.7,清洗三次;
(4)向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应5~20分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于48~72℃条件下烘干;
(5)将烘干后的滤渣置于混料装置内,利用压力为2.9~4.6MPa的高压气体将上述粉末吹起,5~12分钟后停止通入高压气体,各粉末共同沉积并均匀混合;
(6)将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为2~5小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
4.根据权利要求3所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(1)中将氮化硅、硅酸锆、氧化锆、纳米氟化钙、纳米氧化镁、氧化钛和石墨烯粉末同时加入球磨机中,研磨3小时,粉末粒径为420目,获得粉末混合物。
5.根据权利要求3所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(2)中将步骤(1)获得的粉末混合物加入乙酸中,在6℃条件下,搅拌反应38分钟,过滤去除滤液,获得滤渣。
6.根据权利要求3所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(3)中用去离子水清洗步骤(3)获得的滤渣,滤渣与去离子水的质量比为1:1.5,清洗三次。
7.根据权利要求3所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(4)中向经步骤(3)清洗后的滤渣中加入无水乙醇,搅拌反应14分钟,吸水两次;过滤去除无水乙醇后,将滤渣置于65℃条件下烘干。
8.根据权利要求3所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(5)中将烘干后的滤渣置于混料装置内,利用压力为4.2MPa的高压气体将上述粉末吹起,9分钟后停止通入高压气体,各粉末共同沉积并均匀混合。
9.根据权利要求3所述的一种抗热震性陶瓷基复合材料的粉末冶金制备方法,其特征在于,步骤(6)中将上述均匀混合后的粉末置于电炉中,在氦气的保护氛围中采用3阶段升温的方式进行烧结,3阶段的温度分别为1320℃、1460℃、1630℃,每阶段烧结时间为4小时,烧结完成后等静压成型,即可获得抗热震性陶瓷基复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610111062.9A CN105732046A (zh) | 2016-02-29 | 2016-02-29 | 一种抗热震性陶瓷基复合材料及其粉末冶金制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610111062.9A CN105732046A (zh) | 2016-02-29 | 2016-02-29 | 一种抗热震性陶瓷基复合材料及其粉末冶金制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105732046A true CN105732046A (zh) | 2016-07-06 |
Family
ID=56249659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610111062.9A Pending CN105732046A (zh) | 2016-02-29 | 2016-02-29 | 一种抗热震性陶瓷基复合材料及其粉末冶金制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105732046A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106348779A (zh) * | 2016-08-26 | 2017-01-25 | 桐城市明丽碳化硼制品有限公司 | 一种碳化硼‑氟化钙复合的陶瓷喷嘴 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140378294A1 (en) * | 2011-07-29 | 2014-12-25 | The Arizona Board Of Regents, On Behalf Of The University Of Arizona | Graphene-Reinforced Ceramic Composites and Uses Therefor |
CN105110803A (zh) * | 2015-08-27 | 2015-12-02 | 苏州莱特复合材料有限公司 | 一种干式缸套及其粉末冶金制备方法 |
-
2016
- 2016-02-29 CN CN201610111062.9A patent/CN105732046A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140378294A1 (en) * | 2011-07-29 | 2014-12-25 | The Arizona Board Of Regents, On Behalf Of The University Of Arizona | Graphene-Reinforced Ceramic Composites and Uses Therefor |
CN105110803A (zh) * | 2015-08-27 | 2015-12-02 | 苏州莱特复合材料有限公司 | 一种干式缸套及其粉末冶金制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106348779A (zh) * | 2016-08-26 | 2017-01-25 | 桐城市明丽碳化硼制品有限公司 | 一种碳化硼‑氟化钙复合的陶瓷喷嘴 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113816751B (zh) | 一种四方相高熵热障涂层材料及其制备方法 | |
CN105130410B (zh) | 一种快速合成cbn磨具用陶瓷结合剂的制备方法 | |
CN109553419A (zh) | 一种气压固相烧结碳化硼复相陶瓷及其制备方法 | |
CN107299254B (zh) | 一种高温含尘气体分离多孔材料及其制备方法 | |
CN107188544B (zh) | 一种应用闪烧技术烧结锆铝复相共晶陶瓷的制备方法 | |
CN110002870A (zh) | 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法 | |
WO2020057094A1 (zh) | 一种利用工业硅基废渣制备碳化硅闭孔陶瓷及其制备方法 | |
CN101734917A (zh) | 氮化硼基陶瓷复合材料及其制备方法 | |
CN106673625B (zh) | 晶粒定向排列透明多晶氧化铝陶瓷的制备方法 | |
CN105967668A (zh) | 一种基于稻壳堇青石-莫来石多孔陶瓷的制备方法 | |
CN108675797A (zh) | 氮化硅基复合陶瓷材料及其微波烧结制备方法 | |
CN108689695A (zh) | 一种铝灰在高铝陶瓷中的应用方法及其制得的产品 | |
Wu et al. | Thermal shock resistance and oxidation behavior of in-situ synthesized MgAl2O4–Si3N4 composites used for solar heat absorber | |
CN105060896A (zh) | 一种碳化硅陶瓷精密器件的制备方法 | |
CN105732046A (zh) | 一种抗热震性陶瓷基复合材料及其粉末冶金制备方法 | |
CN113105238B (zh) | 一种原位生成SiC掺杂Gd2Zr2O7热障涂层陶瓷材料及其制备方法 | |
Wu et al. | Preparation and performance study of mullite/Al2O3 composite ceramics for solar thermal transmission pipeline | |
CN104072142A (zh) | 一种氧化物结合SiC多孔陶瓷的制备方法 | |
CN113443919A (zh) | 一种非晶态合金喷嘴材料及其制备方法 | |
CN104529167A (zh) | 原位生长β-Si3N4纤维/棒晶增强微晶玻璃复合材料及其制备方法 | |
CN105036167A (zh) | 一种六铝酸钙及其制备方法 | |
CN1209318C (zh) | 一种氮化物/氧化铝基复合陶瓷材料及其制备工艺 | |
CN110835264A (zh) | 一种四价离子掺杂增韧氧化铪基高温热防护材料制备方法 | |
CN106187263B (zh) | C/C-SiC复合材料部件的制造方法及C/C-SiC复合材料部件 | |
Zhang et al. | Effect of Sm2O3 on microstructure and high-temperature stability of MgAl2O4-Si3N4 ceramic for solar thermal absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160706 |
|
RJ01 | Rejection of invention patent application after publication |