CN105720579A - 一种基于lmi时滞电力系统动态输出反馈控制器 - Google Patents

一种基于lmi时滞电力系统动态输出反馈控制器 Download PDF

Info

Publication number
CN105720579A
CN105720579A CN201610250006.3A CN201610250006A CN105720579A CN 105720579 A CN105720579 A CN 105720579A CN 201610250006 A CN201610250006 A CN 201610250006A CN 105720579 A CN105720579 A CN 105720579A
Authority
CN
China
Prior art keywords
overbar
phi
theta
eta
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610250006.3A
Other languages
English (en)
Inventor
钱伟
高超
赵运基
黄凯征
李冰锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201610250006.3A priority Critical patent/CN105720579A/zh
Publication of CN105720579A publication Critical patent/CN105720579A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于LMI的时滞电力系统动态输出反馈控制器,首先建立了时滞电力系统状态空间模型,再给定其动态输出反馈控制器并利用自由参数矩阵对闭环系统进行适当变换,并结合Lyapunov?Krasovskii泛函得到了时滞电力系统控制器的存在性判据。然后采用参数化的方法,将控制器参数与泛函参数的解归结为线性矩阵不等式形式,克服了求解非凸优化问题所导致的保守性。通过仿真结果表明该动态输出控制器具有一定的时滞不敏感性,提高了电力系统的稳定性。

Description

一种基于LMI时滞电力系统动态输出反馈控制器
技术领域
本发明属于电力系统控制器设计技术领域,具体涉及一种基于LMI的时滞电力系统动态输出反馈控制器。
背景技术
随着电网规模的不断发展和广域测量技术在电力系统中的广泛应用,现代电力系统中信息传输的时滞可达几十甚至几百毫秒,时滞将会对电力系统的稳定运行产生严重的影响,如何消除这种不良影响以成为国内外学者研究的热点。
线性矩阵不等式(LMI)是设计时滞电力系统控制器的主要方法之一,目前已有许多文献对这一问题进行了深入的研究。如,《基于LMI理论的时滞电力系统无记忆状态反馈控制器设计》(安海云,贾宏杰,余晓丹)利用自由权矩阵方法给出了时滞电力系统稳定判据,并设计了无记忆状态反馈控制器,采用调整参数法处理非线性项,将NLMI转化为LMI,但参数的设定需要人为地进行调整,具有较强的保守性。《计及时滞影响的广域附加阻尼控制》(罗珂,刘玉田,叶华)采用直接迭代的方法,得到了基于状态反馈的广域电力系统附加阻尼控制器。《基于LMI的时滞电力系统双层广域阻尼控制》(罗珂,吕红丽,霍春岭)针对时滞电力系统提出了一种新型建模方法,运用双层控制策略设计出了时滞电力系统附加阻尼控制器,取得了良好的效果。但是,由于在工程实际中,状态变量往往不易获得或者获得状态的代价太高,从而不便于设计状态反馈控制器,所以很有必要研究输出反馈控制器。
中国专利申请号201310189887.9公开了考虑WAMS信号时延的电力系统广域输出反馈控制方法,该方法是基于网络化控制系统理论建立计及反馈信号时滞的闭环广域电力系统通用模型;通过引入改进的自由权矩阵方法得到广域电力系统网络化控制系统时滞稳定性分析的定理和推论;同时采用改进锥补偿算法将非线性矩阵不等式(NLMI)转换为可以方便求解的线性矩阵不等式(LMI),得到保守性较低的广域电力系统网络化控制器最大时滞边界和相应的状态反馈控制器;最后结合成熟的状态观测器理论实现电力系统的时滞输出反馈控制。但由于该控制方法泛函构造一般,在采用锥补线性化方法处理NLMI时,当系统的状态矩阵过大时,会使计算机在迭代求解过程中消耗过多时间,在实际用难以应用;并且所设计的控制器本质上仍采用状态反馈,并未给出动态输出反馈控制器的具体形式。
发明内容
本发明的目的是提供一种基于LMI的时滞电力系统动态输出反馈控制器,以解决现有反馈控制方法状态变量难以求解及求解非凸优化问题所导致的保守性的问题。
为实现上述目的,本发明采用如下技术方案:一种基于LMI时滞电力系统动态输出反馈控制器,该控制器的建立计算过程如下:
(1)根据时滞电力系统建立如下状态空间模型:
x · ( t ) = A x ( t ) + A 1 x ( t - h ) ) x ( t ) = φ ( t ) t ∈ [ - h , 0 ] ;
(2)给定动态输出反馈控制器,即使得对于任意时滞h,满足闭环系统是渐近稳定的,其中,
根据则上述闭环系统可变换为如下形式:
M,N满足如下约束的自由矩阵:
(3)构成如下Lyapunov-Krasovskii泛函:
V(ξ)=V1(ξ)+V2(ξ)+V3(ξ)+V4(ξ)
其中,V1(ξ)=ξT(t)Pξ(t),
V 2 ( ξ ) = ∫ r 0 η t T ( θ ) ( S 1 + S 2 + r A d T ‾ S 4 A d ‾ ) η t ( θ ) d θ
V 3 ( ξ ) = ∫ r 0 ∫ θ t ξ T ( σ ) ( A ‾ + A d ‾ ) T S 3 ( A ‾ + A d ‾ ) ξ ( σ ) d σ d θ
V 4 ( ξ ) = ∫ r 0 ∫ θ t η σ T ( - r ) A d T ‾ S 4 A d ‾ η σ ( - r ) ) ξ ( σ ) d σ d θ ;
计算该泛函中各项时间导数,得到如下不等式:
V &CenterDot; ( &xi; ) &le; &xi; T ( t ) &lsqb; ( A &OverBar; + A d &OverBar; ) T P + P ( A &OverBar; + A d &OverBar; ) + r ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) + rPNS 3 - 1 N T P + rPNJ n S 4 - 1 J n T N T P + PMS 2 - 1 M T P + P ( A &OverBar; + A d &OverBar; ) S 1 - 1 ( A &OverBar; + A d &OverBar; ) T P &rsqb; &xi; T ( t ) < 0
根据泛函微分方程稳定性理论,步骤(2)中的闭环系统是渐近稳定的;
(4)假定S2=diag(S S22),S,S22∈Rn×n,根据schur引理,则步骤(3)中的不等式等价于
其中,
令:S3=P,Q=P-1以及变换矩阵
T1=diag(Q Q In Q Q In)
T2=diag(L L In L L In),经过变换得:
&Pi; = T 2 T T 1 T &Xi;T 1 T 2 = &Pi; ( 1 , 1 ) L T ( A &OverBar; + A &OverBar; d ) Q L L T J n A d L T Q ( A &OverBar; + A &OverBar; d ) T L L T ( A &OverBar; + A &OverBar; d ) Q L L T ( A &OverBar; + A &OverBar; d ) J n * - L T QS 1 Q L 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 L T Q L 0 0 * * * * - h &OverBar; - 1 L T Q L 0 * * * * * - h &OverBar; - 1 S 4 < 0
其中,
(5)为求解动态输出反馈控制器参数,设根据步骤(2)中的约束自由矩阵得则闭环系统表达为:
&xi; ( t ) = ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - ( A &OverBar; + 2 A d &OverBar; ) &eta; ( - r ) + ( A &OverBar; + A d &OverBar; ) &Integral; - r t &lsqb; ( A &OverBar; + A d &OverBar; ) &xi; ( &theta; ) - A d &OverBar; &eta; ( - r ) &rsqb; d &theta;
引入如下参数集:
&Phi; = X &Element; R n &times; n , Y &Element; R n &times; n , R &Element; R n &times; n , U &Element; R n &times; n , V &Element; R n &times; n , W &Element; R n &times; n
其中,X>0,Y>0为对称矩阵;
设Z=X-Y-1,动态反馈控制器即为Lyapunov-Krasovskii泛函的参数化形式:
K D K C K B K A = I m 0 B - Y - 1 W U V R - Y ( A + A d ) X &times; I h - CXZ - 1 0 Z - 1 = W ( - W C X + U ) Z - 1 B W - Y - 1 V &lsqb; - B W C X + B U + Y - 1 V C X - Y - 1 R + ( A + A d ) X &rsqb; Z - 1
P - 1 ( &Phi; ) = Q ( &Phi; ) = X Z Z Z
将上述参数化形式控制器代入闭环系统的系数矩阵,得到参数化闭环系数矩阵:
( A &OverBar; + A d &OverBar; ) ( &Phi; ) = E 11 E 12 E 21 E 22
其中,Ε11=A+Ad+BWC
Ε12=(-BWCX+BU)Z-1
Ε21=BWC-Y-1VC
Ε22=[-BWCX+BU+Y-1VCX-Y-1R+(A+Ad)X]Z-1
将上述参数化闭环系数矩阵代入步骤(4)中的不等式,计算可得:
L T ( A &OverBar; + A &OverBar; d ) ( &Phi; ) Q ( &Phi; ) L = &Gamma; 1 ( &Phi; )
LTJnAd=Γ2(Φ)
L T ( A &OverBar; + A &OverBar; d ) ( &Phi; ) J n = &Gamma; 3 ( &Phi; ) .
步骤(2)泛函中各项时间导数的计算过程如下:V1(ξ)沿着Lyapunov-Krasovskii泛函解轨线的导数为:
其交叉项分别满足如下估计:
泛函中其余各项的时间导数为:
V &CenterDot; 2 ( &xi; ) = - &eta; t T ( - r ) ( S 1 + S 2 + r A d T &OverBar; S 4 A d &OverBar; ) &eta; t ( - r )
V &CenterDot; 3 ( &xi; ) = r&xi; T ( t ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - &Integral; r 0 &xi; T ( t + &theta; ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &times; &xi; ( t + &theta; ) d &theta;
V &CenterDot; 4 ( &xi; ) = r&eta; t T ( - r ) A d T &OverBar; S 4 A d &OverBar; &eta; t ( - r ) - &Integral; r 0 &eta; t T ( &theta; - r ) A d T &OverBar; S 4 A d &OverBar; &eta; t ( &theta; - r ) d &theta;
结合上述各式,可得不等式:
V &CenterDot; ( &xi; ) &le; &xi; T ( t ) &lsqb; ( A &OverBar; + A d &OverBar; ) T P + P ( A &OverBar; + A d &OverBar; ) + r ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) + rPNS 3 - 1 N T P + rPNJ n S 4 - 1 J n T N T P + PMS 2 - 1 M T P + P ( A &OverBar; + A d &OverBar; ) S 1 - 1 ( A &OverBar; + A d &OverBar; ) T P &rsqb; &xi; T ( t ) < 0 .
根据步骤(5),令步骤(4)不等式中S1=LTQS1QL,得:如果存在参数集Φ及正定对称矩阵S1∈R2n×2n,S,S4∈Rn×n满足下列线性矩阵不等式:
&Gamma; 1 T ( &Phi; ) + &Gamma; ( &Phi; ) &Gamma; 1 ( &Phi; ) &Gamma; 2 ( &Phi; ) &Gamma; 1 T ( &Phi; ) &Gamma; 1 ( &Phi; ) &Gamma; 3 ( &Phi; ) * - S 1 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 Q ( &Phi; ) 0 0 * * * * - h &OverBar; - 1 Q ( &Phi; ) 0 * * * * * - h &OverBar; - 1 S 4 < 0
Q ( &Phi; ) = X I n I n Y > 0
其中,
则存在如步骤(4)中的参数化形式控制器,使得步骤(2)中的闭环系统渐近稳定。
本发明基于LMI时滞电力系统动态输出反馈控制器引入了自由参数矩阵对闭环系统进行适当的变换,得到了控制器存在的一般性条件,进而利用控制器参数化方法及给定的自由参数矩阵,得到了基于线性矩阵不等式的时滞相关的动态输出反馈控制器存在判据,并给出了控制器的具体形式。本发明研究了在时滞条件下,电力系统的动态输出反馈控制器的设计问题,首先利用自由参数矩阵对闭环系统进行适当变换,并结合Lyapunov-Krasovskii泛函得到了时滞电力系统控制器的稳定性判据;然后采用参数化的方法,将控制器参数与泛函参数的解归结为线性矩阵不等式形式,从而克服了求解非凸优化问题所导致的保守性。通过典型二阶系统和单机无穷大电力系统的仿真结果表明,本发明的动态输出反馈控制器具有一定的时滞不敏感性,提高了电力系统的稳定性。
附图说明
图1是本发明基于LMI时滞电力系统动态输出反馈控制器的流程图;
图2是典型2阶时滞系统状态变量x1的响应图;
图3是典型2阶时滞系统状态变量x2的响应图;
图4是单机无穷大系统结构图;
图5是励磁系统图;
图6是单机无穷大系统结构响应图;
图7是WSCC 3机9节点系统图;
图8是图6中3号发电机功角响应曲线图;
图9是图6中2号发电机功角响应曲线图。
具体实施方式
1.时滞电力系统模型:
本发明基于LMI时滞电力系统动态输出反馈控制器将电力系统模型考虑为如下四阶微分方程,并假设励磁系统输出电压存在一定延时,则系统方程可表示为:
&delta; &CenterDot; = &omega; B &omega; &omega; &CenterDot; = P m - P G 2 H E &CenterDot; q &prime; = 1 T d 0 &prime; { - E q &prime; - ( x d - x d &prime; ) I d + E f d ( t - h ) } E &CenterDot; f d = 1 T A { K A ( V r e f - V t ) - E f d } - - - ( 1 )
式中:
i d = E q &prime; - V 0 c o s &delta; x e + x d &prime; , i q = V 0 s i n &delta; x e + x q
Vd=xqiq,Vq=E′q-x′did,Pe=vdid+vqiq
V t = V d 2 + V q 2
δ-电机功角、ω-角速度、E′q-电抗后电势、Efd-励磁电势、PM-原动机输出功率、ωB-系统额定转速、T′d0-发电机定子时间常数、TA-励磁回路时间常数;KA-励磁回路放大系数;Vref-机端电压的参考值、xd-发电机稳态电抗、x′d-发电机暂态电抗;xe-线路电抗、V0-无穷大母线电压、PG-发电机输出功率、Vt-发电机机端电压、id-纵轴输出电流。
将式(1)线性化,可得如下状态空间模型:
x &CenterDot; ( t ) = A x ( t ) + A 1 x ( t - h ) ) x ( t ) = &phi; ( t ) t &Element; &lsqb; - h , 0 &rsqb; - - - ( 2 )
本发明的目的是设计全维输出动态反馈控制器,即
x ^ &CenterDot; ( t ) = K A x ^ ( t ) + K B y ( t ) u ( t ) = K C x ^ ( t ) + K D y ( t ) - - - ( 3 )
使得对于任意时滞h,满足闭环系统
&xi; &CenterDot; ( t ) = A &OverBar; &xi; ( t ) + A d &OverBar; &xi; ( t - h ) - - - ( 4 )
是渐近稳定的。这里
&xi; = x x ^ , J n = I n 0 , A d &OverBar; = &lsqb; A d 0 &rsqb; , A d &OverBar; = J n A d &OverBar; , A &OverBar; = A + BK D C BK C K B C K A
根据闭环系统(4)可变换为如下形式:
&xi; ( t ) = ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - ( A &OverBar; + A d &OverBar; + M ) &eta; ( - r ) - N &Integral; t - r t &lsqb; ( A &OverBar; + A d &OverBar; ) &xi; ( &theta; ) - A d &OverBar; &eta; ( - r ) &rsqb; d &theta; - - - ( 5 )
M,N满足如下约束的自由矩阵:
M + N + A &OverBar; = 0. - - - ( 6 )
2.如图1所示本发明电力系统输出动态反馈控制器的设计过程如下:(1)控制器的设计
首先构成如下Lyapunov-Krasovskii泛函:
V(ξ)=V1(ξ)+V2(ξ)+V3(ξ)+V4(ξ) (7)
其中,
V1(ξ)=ξT(t)Pξ(t),
V 2 ( &xi; ) = &Integral; r 0 &eta; t T ( &theta; ) ( S 1 + S 2 + r A d T &OverBar; S 4 A d &OverBar; ) &eta; t ( &theta; ) d &theta;
V 3 ( &xi; ) = &Integral; r 0 &Integral; &theta; t &xi; T ( &sigma; ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &xi; ( &sigma; ) d &sigma; d &theta;
V 4 ( &xi; ) = &Integral; r 0 &Integral; &theta; t &eta; &sigma; T ( - r ) A d T &OverBar; S 4 A d &OverBar; &eta; &sigma; ( - r ) ) &xi; ( &sigma; ) d &sigma; d &theta; ;
V1(ξ)沿着系统(7)解轨线的导数为:
其交叉项分别满足如下估计:
泛函(7)式中其余各项的时间导数为:
V &CenterDot; 2 ( &xi; ) = - &eta; t T ( - r ) ( S 1 + S 2 + r A d T &OverBar; S 4 A d &OverBar; ) &eta; t ( - r ) - - - ( 9 )
V &CenterDot; 3 ( &xi; ) = r&xi; T ( t ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - &Integral; r 0 &xi; T ( t + &theta; ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &times; &xi; ( t + &theta; ) d &theta; - - - ( 10 )
V &CenterDot; 4 ( &xi; ) = r&eta; t T ( - r ) A d T &OverBar; S 4 A d &OverBar; &eta; t ( - r ) - &Integral; r 0 &eta; t T ( &theta; - r ) A d T &OverBar; S 4 A d &OverBar; &eta; t ( &theta; - r ) d &theta; - - - ( 11 )
结合(8)-(11)式得:
V &CenterDot; ( &xi; ) &le; &xi; T ( t ) &lsqb; ( A &OverBar; + A d &OverBar; ) T P + P ( A &OverBar; + A d &OverBar; ) + r ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) + rPNS 3 - 1 N T P + rPNJ n S 4 - 1 J n T N T P + PMS 2 - 1 M T P + P ( A &OverBar; + A d &OverBar; ) S 1 - 1 ( A &OverBar; + A d &OverBar; ) T P &rsqb; &xi; T ( t ) < 0 - - - ( 12 )
由此,根据泛函微分方程稳定性理论,闭环系统(5)是渐近稳定的。
为方便求解,对上式做如下变化,设:S2=diag(S S22),S,S22∈Rn×n,根据schur引理,则(12)式等价于
&Xi; = &Xi; ( 1 , 1 ) P ( A &OverBar; + A &OverBar; d ) PJ n A d ( A &OverBar; + A &OverBar; d ) T S 3 P ( A &OverBar; + A &OverBar; d ) P ( A &OverBar; + A &OverBar; d ) J n * - S 1 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 S 3 0 0 * * * * - h &OverBar; - 1 S 3 0 * * * * * - h &OverBar; - 1 S 3 < 0 - - - ( 13 )
其中
令:S3=P,Q=P-1以及变换矩阵
T1=diag(Q Q In Q Q In)
T2=diag(L L In L L In)
经过变换可知,(13)式等价于下列不等式:
&Pi; = T 2 T T 1 T &Xi;T 1 T 2 = &Pi; ( 1 , 1 ) L T ( A &OverBar; + A &OverBar; d ) Q L L T J n A d L T Q ( A &OverBar; + A &OverBar; d ) T L L T ( A &OverBar; + A &OverBar; d ) Q L L T ( A &OverBar; + A &OverBar; d ) J n * - L T QS 1 Q L 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 L T Q L 0 0 * * * * - h &OverBar; - 1 L T Q L 0 * * * * * - h &OverBar; - 1 S 4 < 0 - - - ( 14 )
其中
(2)控制器的求解
为求解动态反馈控制器参数,设根据式(6)解得进而闭环系统(5)表达为:
&xi; ( t ) = ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - ( A &OverBar; + 2 A d &OverBar; ) &eta; ( - r ) + ( A &OverBar; + A d &OverBar; ) &Integral; - r t &lsqb; ( A &OverBar; + A d &OverBar; ) &xi; ( &theta; ) - A d &OverBar; &eta; ( - r ) &rsqb; d &theta;
引入如下参数集:
&Phi; = X &Element; R n &times; n , Y &Element; R n &times; n , R &Element; R n &times; n , U &Element; R n &times; n , V &Element; R n &times; n , W &Element; R n &times; n
其中X>0,Y>0为对称矩阵。
设Z=X-Y-1,动态反馈控制器即Lyapunov-Krasovskii泛函的参数化形式:
K D K C K B K A = I m 0 B - Y - 1 W U V R - Y ( A + A d ) X &times; I h - CXZ - 1 0 Z - 1 = W ( - W C X + U ) Z - 1 B W - Y - 1 V &lsqb; - B W C X + B U + Y - 1 V C X - Y - 1 R + ( A + A d ) X &rsqb; Z - 1 - - - ( 15 )
P - 1 ( &Phi; ) = Q ( &Phi; ) = X Z Z Z - - - ( 16 )
将参数化控制器(15)代入闭环系统(4)的系数矩阵,得到参数化闭环系数矩阵:
( A &OverBar; + A d &OverBar; ) ( &Phi; ) = E 11 E 12 E 21 E 22 - - - ( 17 )
其中:
Ε11=A+Ad+BWC
Ε12=(-BWCX+BU)Z-1
Ε21=BWC-Y-1VC
Ε22=[-BWCX+BU+Y-1VCX-Y-1R+(A+Ad)X]Z-1
将系统参数式(17)代入不等式(14),逐项计算可得
L T ( A &OverBar; + A &OverBar; d ) ( &Phi; ) Q ( &Phi; ) L = &Gamma; 1 ( &Phi; ) ,
LTJnAd=Γ2(Φ),
L T ( A &OverBar; + A &OverBar; d ) ( &Phi; ) J n = &Gamma; 3 ( &Phi; )
此时,整理以上结论,令(14)式中S1=LTQS1QL即可得到定理1。
定理1:如果存在参数集Φ及正定对称矩阵S1∈R2n×2n,S,S4∈Rn×n满足下列线性矩阵不等式:
&Gamma; 1 T ( &Phi; ) + &Gamma; ( &Phi; ) &Gamma; 1 ( &Phi; ) &Gamma; 2 ( &Phi; ) &Gamma; 1 T ( &Phi; ) &Gamma; 1 ( &Phi; ) &Gamma; 3 ( &Phi; ) * - S 1 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 Q ( &Phi; ) 0 0 * * * * - h &OverBar; - 1 Q ( &Phi; ) 0 * * * * * - h &OverBar; - 1 S 4 < 0 - - - ( 18 )
Q ( &Phi; ) = X I n I n Y > 0 - - - ( 19 )
其中:
&Gamma; 1 ( &Phi; ) = ( A + A d ) X + B U ( A + A d ) X + B W C R Y ( A + A d ) + V U ,
&Gamma; 2 ( &Phi; ) = A d Y A ,
&Gamma; 3 ( &Phi; ) = ( A + A d ) + B W C Y ( A + A d ) + V C
则存在如(15)式的动态反馈控制器,使得闭环系统(4)是渐近稳定的。
3.仿真分析
(1)典型2阶时滞系统算例
首先采用如下典型2阶时滞系统进行分析:
x &CenterDot; ( t ) = 0 0 0 1 x ( t ) + - 1 - 1 0 - 0.9 x ( t - h ) + 0 1 u ( t )
通过引入测量输出y(t)=[0 1]x(t),利用本发明结论,解得允许的时滞上界输出动态反馈控制器为:
x ^ &CenterDot; ( t ) = - 1 0.012 0.184 - 0.24 x ^ ( t ) + - 1.01 0.234 y ( t )
u ( t ) = &lsqb; 0.1836 - 0.02 &rsqb; x ^ ( t ) - 0.09 y ( t ) , t &GreaterEqual; 0
从图2和图3的仿真图可以看出,时滞系统的状态变量x1和x2随着时间的增大而趋近于稳定,并且稳定的时间基本相同,说明该方法在典型2阶时滞测试系统中具有可行性。
(2)单机无穷大系统算例:
为了验证本发明在电力系统上的有效性,采用图4和图5所示的单机无穷大系统进行算例分析。
系统状态方程如下:
x &CenterDot; ( t ) = A x ( t ) + A 1 x ( t - h ) + B u ( t ) y = C x ( t )
其中单机无穷大系统的状态矩阵参数A、A1、B、C分别为:
A = 0 377 0 0 - 0.14558 0 - 0.16658 0 - 0.62797 0 - 0.89508 0 - 75.197 0 - 17968 - 20 , A 1 = 0 0 0 0 0 0 0 0 0 0 0 0.23256 0 0 0 0 , B = 0 0 0 1 , C T = 0 0 0 1
利用本发明方法,可得到系统的最大时滞上界h=0.472s,动态输出控制器为:
x ^ &CenterDot; ( t ) = K A x ^ ( t ) + K B y ( t ) u ( t ) = K C x ^ ( t ) + K D y ( t )
所得控制矩阵参数KA、KB、KC、KD分别为:
K A = - 0.066 365.312 - 0.069 - 0.040 - 0.145 0.065 - 0.166 - 0.007 - 0.626 0.322 - 0.893 - 0.028 196.786 - 3.778 227.060 8.320 , K B = 0.031 0.007 0.261 - 10.855 , KC T = 270.493 - 4.043 2.022 10.756 , K D = 6.515
如图6所示即为单机无穷大系统结构的响应图。
(3)WSCC 3机9节点算例(如图7所示):
系统状态方程如下:
x &CenterDot; ( t ) = A x ( t ) + A 1 x ( t - h ) + B u ( t ) y = C x ( t )
式中:
A = 0 377 0 0 0 0 0 0 0 0 - 0.142 0 - 0.025 - 0.11 0 0.1 0 0.120 0.06 0 - 0.009 0 - 0.232 0.054 0.167 0.155 0 0.496 0.01 0 - 1.827 0 0.266 - 5.023 0 0.913 0 0.29 0.74 0 0 0 - 2307 962.3 - 50 0 0 0 0 0 0 0 0 0 0 0 377 0 0 0 0.216 0 0.206 0.121 0 - 0.347 - 0.008 - 0.071 - 0.291 0 0.144 0 0.378 0.017 0 - 0.006 0 - 0.109 0.025 0.125 2.372 0 0.430 1.828 0 - 5.548 0 - 0.242 - 14.26 0 - 274.9 0 - 879.6 9.67 0 - 139.9 0 - 2402.2 487.5 - 50
A 1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 257.83 0 161.82 - 600.5 0 - 191.14 0 - 1016.6 88.58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B=[0 0 0 0 1 0 0 0 0 0]T,C=[0 0 0 0 1 0 0 0 0 0]
利用本发明方法,可得到系统的最大时滞上界h=0.07s,动态输出控制器为:
x ^ &CenterDot; ( t ) = K A x ^ ( t ) + K B y ( t ) u ( t ) = K C x ^ ( t ) + K D y ( t )
式中:
K A = 0 377.1 - 0.01 0 0 0 - 0.059 - 0.02 0.007 0.091 - 0.142 0.003 - 0.026 - 0.11 6.30 0.1 - 0.008 0.118 0.06 0.002 0.030 - 0.95 - 0.012 0.059 0.166 0.159 0.97 0.81 - 0.098 0.901 - 1.82 0.070 0.258 - 5.02 0 0.912 - 0.075 0.267 0.75 - 0.008 - 1490 10120 - 5006 113.5 15.77 - 683 11694 - 145 4079 262.3 0.012 - 0.287 0.034 0.002 0 0 377.3 0.093 - 0.03 - 0.254 0.216 - 0.016 0.208 0.122 0 - 0.346 0.009 - 0.065 - 0.29 - 0.006 0.144 0.004 0.378 0.017 0 0 0 - 0.11 0.025 - 0.009 2.375 - 0.095 0.441 1.828 0 - 5.546 0.108 - 0.21 - 14.27 0.047 - 273.6 - 33.9 - 857.7 9.855 - 0.028 - 139.7 35.21 - 2390 483.5 14.32
KB=[-0.092 -0.002 -0.896 0.008 -520.7 0.256 0.007 0.134 -0.045 -64.12]T
KC=[-1230.9 9886.68 -2833.5 -246.9 65.59 -491.7 11932.2 -13492 3964483.3]
KD=-740.3。
利用本发明的控制器设计方法,可得到系统的最大时滞上界h=0.07s,动态输出控制器的功角响应曲线如图8和图9所示,说明该方法具有可行性。
以上实施例仅用于帮助理解本发明的核心思想,不能以此限制本发明,对于本领域的技术人员,凡是依据本发明的思想,对本发明进行修改或者等同替换,在具体实施方式及应用范围上所做的任何改动,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于LMI时滞电力系统动态输出反馈控制器,其特征在于:该控制器的建立计算过程如下:
(1)根据时滞电力系统建立如下状态空间模型:
x &CenterDot; ( t ) = A x ( t ) + A 1 x ( t - h ) ) x ( t ) = &phi; ( t ) t &Element; &lsqb; - h , 0 &rsqb; ;
(2)给定动态输出反馈控制器,即使得对于任意时滞h,满足闭环系统是渐近稳定的,其中,
根据则上述闭环系统可变换为如下形式:
M,N满足如下约束的自由矩阵:
(3)构成如下Lyapunov-Krasovskii泛函:
V(ξ)=V1(ξ)+V2(ξ)+V3(ξ)+V4(ξ)
其中,V1(ξ)=ξT(t)Pξ(t),
V 2 ( &xi; ) = &Integral; r 0 &eta; t T ( &theta; ) ( S 1 + S 2 + r A d T &OverBar; S 4 A d &OverBar; ) &eta; t ( &theta; ) d &theta;
V 3 ( &xi; ) = &Integral; r 0 &Integral; &theta; t &xi; T ( &sigma; ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &xi; ( &sigma; ) d &sigma; d &theta;
V 4 ( &xi; ) = &Integral; r 0 &Integral; &theta; t &eta; &sigma; T ( - r ) A d T &OverBar; S 4 A d &OverBar; &eta; &sigma; ( - r ) ) &xi; ( &sigma; ) d &sigma; d &theta; ;
计算该泛函中各项时间导数,得到如下不等式:
V &CenterDot; ( &xi; ) &le; &xi; T ( t ) &lsqb; ( A &OverBar; + A d &OverBar; ) T P + P ( A &OverBar; + A d &OverBar; ) + r ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) + rPNS 3 - 1 N T P + rPNJ n S 4 - 1 J n T N T P + PNS 2 - 1 M T P + P ( A &OverBar; + A d &OverBar; ) S 1 - 1 ( A &OverBar; + A d &OverBar; ) T P &rsqb; &xi; T ( t ) < 0
根据泛函微分方程稳定性理论,步骤(2)中的闭环系统是渐近稳定的;
(4)假定S2=diag(S S22),S,S22∈Rn×n,根据schur引理,则步骤(3)中的不等式等价于
其中,
令:S3=P,Q=P-1以及变换矩阵
T1=diag(Q Q In Q Q In)
T2=diag(L L In L L In),经过变换得:
&Pi; = T 2 T T 1 T &Xi;T 1 T 2 = &Pi; ( 1 , 1 ) L T ( A &OverBar; + A &OverBar; d ) Q L L T J n A d L T Q ( A &OverBar; + A &OverBar; d ) T L L T ( A &OverBar; + A &OverBar; d ) Q L L T ( A &OverBar; + A &OverBar; d ) J n * - L T QS 1 Q L 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 L T Q L 0 0 * * * * - h &OverBar; - 1 L T Q L 0 * * * * * - h &OverBar; - 1 S 4 < 0
其中,
(5)为求解动态输出反馈控制器参数,设根据步骤(2)中的约束自由矩阵得则闭环系统表达为:
&xi; ( t ) = ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - ( A &OverBar; + 2 A d &OverBar; ) &eta; ( - r ) + ( A &OverBar; + A d &OverBar; ) &Integral; - r t &lsqb; ( A &OverBar; + A d &OverBar; ) &xi; ( &theta; ) - A d &OverBar; &eta; ( - r ) &rsqb; d &theta;
引入如下参数集:
&Phi; = X &Element; R n &times; n , Y &Element; R n &times; n , R &Element; R n &times; n , U &Element; R n &times; n , V &Element; R n &times; n , W &Element; R n &times; n
其中,X>0,Y>0为对称矩阵;
设Z=X-Y-1,动态反馈控制器即为Lyapunov-Krasovskii泛函的参数化形式:
K D K C K B K A = I m 0 B - Y - 1 W U V R - Y ( A + A d ) X &times; I h - CXZ - 1 0 Z - 1 = W ( - W C X + U ) Z - 1 B W - Y - 1 V &lsqb; - B W C X + B U + Y - 1 V C X - Y - 1 R + ( A + A d ) X &rsqb; Z - 1
P - 1 ( &Phi; ) = Q ( &Phi; ) = X Z Z Z
将上述参数化形式控制器代入闭环系统的系数矩阵,得到参数化闭环系数矩阵:
( A &OverBar; + A d &OverBar; ) ( &Phi; ) = E 11 E 12 E 21 E 22
其中,E11=A+Ad+BWC
E12=(-BWCX+BU)Z-1
E21=BWC-Y-1VC
E22=[-BWCX+BU+Y-1VCX-Y-1R+(A+Ad)X]Z-1
将上述参数化闭环系数矩阵代入步骤(4)中的不等式,逐项计算可得:
L T ( A &OverBar; + A &OverBar; d ) ( &Phi; ) Q ( &Phi; ) L = &Gamma; 1 ( &Phi; )
LTJnAd=Γ2(Φ)
L T ( A &OverBar; + A d &OverBar; ) ( &Phi; ) J n = &Gamma; 3 ( &Phi; ) .
2.根据权利要求1所述的基于LMI时滞电力系统动态输出反馈控制器,其特征在于,步骤(2)泛函中各项时间导数的计算过程如下:V1(ξ)沿着Lyapunov-Krasovskii泛函解轨线的导数为:
其交叉项分别满足如下估计:
泛函中其余各项的时间导数为:
V &CenterDot; 2 ( &xi; ) = - &eta; t T ( - r ) ( S 1 + S 2 + r A d T &OverBar; S 4 A d &OverBar; ) &eta; t ( - r )
V &CenterDot; 3 ( &xi; ) = r&xi; T ( t ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &xi; ( t ) - &Integral; r 0 &xi; T ( t + &theta; ) ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) &times; &xi; ( t + &theta; ) d &theta;
V &CenterDot; 4 ( &xi; ) = r&eta; t T ( - r ) A d T &OverBar; S 4 A d &OverBar; &eta; t ( - r ) - &Integral; r 0 &eta; t T ( &theta; - r ) A d T &OverBar; S 4 A d &OverBar; &eta; t ( &theta; - r ) d &theta;
结合上述各式,可得不等式:
V &CenterDot; ( &xi; ) &le; &xi; T ( t ) &lsqb; ( A &OverBar; + A d &OverBar; ) T P + P ( A &OverBar; + A d &OverBar; ) + r ( A &OverBar; + A d &OverBar; ) T S 3 ( A &OverBar; + A d &OverBar; ) + rPNS 3 - 1 N T P + rPNJ n S 4 - 1 J n T N T P + PNS 2 - 1 M T P + P ( A &OverBar; + A d &OverBar; ) S 1 - 1 ( A &OverBar; + A d &OverBar; ) T P &rsqb; &xi; T ( t ) < 0 .
3.根据权利要求1所述的基于LMI时滞电力系统动态输出反馈控制器,其特征在于,根据步骤(5),令步骤(4)不等式中S1=LTQS1QL,得:如果存在参数集Φ及正定对称矩阵S1∈R2n ×2n,S,S4∈Rn×n满足下列线性矩阵不等式:
&Gamma; 1 T ( &Phi; ) + &Gamma; ( &Phi; ) &Gamma; 1 ( &Phi; ) &Gamma; 2 ( &Phi; ) &Gamma; 1 T ( &Phi; ) &Gamma; 1 ( &Phi; ) &Gamma; 3 ( &Phi; ) * - S 1 0 0 0 0 * * - S 0 0 0 * * * - h &OverBar; - 1 Q ( &Phi; ) 0 0 * * * * - h &OverBar; - 1 Q ( &Phi; ) 0 * * * * * - h &OverBar; - 1 S 4 < 0
Q ( &Phi; ) = X I n I n Y > 0
其中,
则存在如步骤(4)中的参数化形式控制器,使得步骤(2)中的闭环系统渐近稳定。
CN201610250006.3A 2016-04-19 2016-04-19 一种基于lmi时滞电力系统动态输出反馈控制器 Pending CN105720579A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610250006.3A CN105720579A (zh) 2016-04-19 2016-04-19 一种基于lmi时滞电力系统动态输出反馈控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610250006.3A CN105720579A (zh) 2016-04-19 2016-04-19 一种基于lmi时滞电力系统动态输出反馈控制器

Publications (1)

Publication Number Publication Date
CN105720579A true CN105720579A (zh) 2016-06-29

Family

ID=56161337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610250006.3A Pending CN105720579A (zh) 2016-04-19 2016-04-19 一种基于lmi时滞电力系统动态输出反馈控制器

Country Status (1)

Country Link
CN (1) CN105720579A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410795A (zh) * 2016-11-17 2017-02-15 河南理工大学 一种时滞电力系统带记忆反馈控制方法
CN107800147A (zh) * 2017-11-21 2018-03-13 武汉大学 一种基于参量Lyapunov理论的广域时滞阻尼输出反馈控制器
CN108879725A (zh) * 2018-07-09 2018-11-23 武汉大学 基于参量Lyapunov理论的考虑控制器饱和的广域时滞阻尼输出反馈控制器控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853005A (zh) * 2010-06-13 2010-10-06 天津大学 一种时滞电力系统无记忆状态反馈控制器设计方法
CN104932256A (zh) * 2015-05-15 2015-09-23 河南理工大学 基于优化迭代算法的时滞广域电力系统控制器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853005A (zh) * 2010-06-13 2010-10-06 天津大学 一种时滞电力系统无记忆状态反馈控制器设计方法
CN104932256A (zh) * 2015-05-15 2015-09-23 河南理工大学 基于优化迭代算法的时滞广域电力系统控制器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
钱伟: "时滞系统若干问题的研究", 《中国博士学位论文全文数据库(电子期刊)》 *
钱伟: "时滞系统若干问题的研究", 《中国博士学位论文全文数据库(电子期刊)信息科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410795A (zh) * 2016-11-17 2017-02-15 河南理工大学 一种时滞电力系统带记忆反馈控制方法
CN106410795B (zh) * 2016-11-17 2019-04-12 河南理工大学 一种时滞电力系统带记忆反馈控制方法
CN107800147A (zh) * 2017-11-21 2018-03-13 武汉大学 一种基于参量Lyapunov理论的广域时滞阻尼输出反馈控制器
CN108879725A (zh) * 2018-07-09 2018-11-23 武汉大学 基于参量Lyapunov理论的考虑控制器饱和的广域时滞阻尼输出反馈控制器控制方法
CN108879725B (zh) * 2018-07-09 2021-09-24 武汉大学 基于抗饱和广域时滞阻尼控制器参量Lyapunov控制方法

Similar Documents

Publication Publication Date Title
Abolvafaei et al. Maximum power extraction from a wind turbine using second-order fast terminal sliding mode control
CN107546769B (zh) 用于获得并网逆变型分布式电源的暂态稳定性的方法
Mahmud et al. Effects of large dynamic loads on power system stability
Abedinia et al. Optimal tuning of multi-machine power system stabilizer parameters using genetic-algorithm
CN113328447B (zh) 确定直驱风机系统振荡关键影响环节和参数的方法及系统
CN105720579A (zh) 一种基于lmi时滞电力系统动态输出反馈控制器
Zhang et al. Optimal frequency control for virtual synchronous generator based AC microgrids via adaptive dynamic programming
WO2018102720A1 (en) System and method for a fast power network simulator
CN109450310B (zh) 一种抑制扰动的风力发电机组h∞鲁棒控制方法
CN104036148A (zh) 最优潮流计算中自动校正不可行约束的扩展松弛内点方法
CN101853005A (zh) 一种时滞电力系统无记忆状态反馈控制器设计方法
Rinaldi et al. Higher order sliding mode observers and nonlinear algebraic estimators for state tracking in power networks
CN105449696B (zh) 一种统一潮流控制器多阻尼控制器分段式联合设计方法
Wan et al. Practical nonlinear excitation control for a single-machine infinite-bus power system based on a detailed model
CN113708367A (zh) 一种基于一致性算法的电力系统分布式协同控制方法
Kazma et al. ODE Transformations of Nonlinear DAE Power Systems
CN108199392A (zh) 一种基于多智能体理论的增强电力系统稳定性的h∞分散控制器设计方法
Changhua et al. Design of electric loading system in flight simulator based on PIDNN
Nguyen et al. ANFIS and Fuzzy tuning of PID controller for STATCOM to enhance power quality in multi-machine system under large disturbance
Ordaz-Padilla et al. Uncertainty modeling of a PSS3B Power System Stabilizer
Tang et al. Successive approximation procedure of optimal tracking control for nonlinear similar composite systems
Yu Design of a power system stabilizer using decentralized adaptive model following tracking control approach
Zhang et al. Time scale analysis and synthesis for Model Predictive Control under stochastic environments
Modi et al. Application of extremum seeking control to design power oscillation damping controller
Gao et al. Adaptive dynamic surface control of stochastic pure-feedback nonlinear systems including dynamic uncertainties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160629

RJ01 Rejection of invention patent application after publication