CN105715865B - Solenoid microvalve device - Google Patents

Solenoid microvalve device Download PDF

Info

Publication number
CN105715865B
CN105715865B CN201610173874.6A CN201610173874A CN105715865B CN 105715865 B CN105715865 B CN 105715865B CN 201610173874 A CN201610173874 A CN 201610173874A CN 105715865 B CN105715865 B CN 105715865B
Authority
CN
China
Prior art keywords
liquid metal
channel
micro
coil
flexible film
Prior art date
Application number
CN201610173874.6A
Other languages
Chinese (zh)
Other versions
CN105715865A (en
Inventor
詹士会
高猛
桂林
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Priority to CN201610173874.6A priority Critical patent/CN105715865B/en
Publication of CN105715865A publication Critical patent/CN105715865A/en
Application granted granted Critical
Publication of CN105715865B publication Critical patent/CN105715865B/en

Links

Abstract

本发明公开了一种电磁微阀装置,涉及微流控技术领域,所述装置包括:样本试剂流道、由室温液态金属填充的第一液态金属螺旋线圈微流道、由室温液态金属填充的第二液态金属螺旋线圈微流道和柔性薄膜。 The present invention discloses an electromagnetic microvalve device, relates to the field of microfluidics, the apparatus comprising: a sample reagent flow path, the liquid metal is filled by a first liquid metal temperature helical coil micro channel, a room filled with liquid metal The second helical coil liquid metal micro-channel and a flexible film. 本发明通过室温液态金属填充的液态金属螺旋线圈微流道之间的吸引力和排斥力来实现样本试剂流道的关闭和开启,能够快速实现控制流体流动的目的,且结构紧凑、灌注制作方便、成本低廉,并且易于集成,另外,由于填充于液态金属螺旋线圈微流道内的液态金属具有流动性和可变形性,在电磁驱动挤压关闭阀门和开启阀门的过程中,不会断裂,电连接稳定性好。 Attractive and repulsive forces between the present invention filled with liquid metal through a room temperature liquid metal spiral coil micro-channel achieved reagent sample flow channel opening and closing, can quickly achieve the purpose of controlling fluid flow, and compact structure and easy production perfusion , low cost, and ease of integration. Further, since the filler in the liquid metal within the liquid metal micro channel having a spiral coil fluidity and deformability of the electromagnetic drive valve opening and closing the valve extrusion process, it does not break, electrically connection stability.

Description

电磁微阀装置 Solenoid microvalve device

技术领域 FIELD

[0001] 本发明涉及微流控技术领域,特别涉及一种电磁微阀装置。 [0001] The present invention relates to the field of microfluidic control technology, and particularly relates to an electromagnetic microvalve device.

背景技术 Background technique

[0002] 电磁微阀利用电磁线圈产生电磁力挤压微流道、阻断微流动。 [0002] The solenoid microvalve using a solenoid generating an electromagnetic force pressing the micro-channel, micro-flow block. 现有电磁微阀主要采用铁芯线圈或薄膜线圈产生电磁力,在这类微阀中样品试剂微流道上、下侧分别设置一个线圈。 Conventional solenoid microvalve mainly corecoil or thin film coil generates an electromagnetic force, the micro reagent sample flow path in such a micro valve, a lower-side coil are provided. 当两侧线圈同时加载相同方向电流产生相同方向磁场时,两线圈会相互吸引挤压中间微流道,微阀关闭;反之,微阀开启。 When the same direction on both sides of the coil while loading current generating a magnetic field in the same direction, the two coils will be attracted to each other press the central micro-channel, micro-valve is closed; the other hand, the microvalve open. 可替代地,样品试剂上、下其中一侧的线圈还可为永磁铁。 Alternatively, the reagent on the sample, wherein the lower side of the coil may also be a permanent magnet. 铁芯线圈体积大,无法集成于阀内,不利于微流控系统集成与微型化;薄膜线圈虽可集成于阀内,但所需的鹏射、沉积等制作工艺成本昂贵、过程复杂。 Corecoil bulky, can not be integrated in the valve, it is not conducive to integration with microfluidic miniaturization; although the thin film coil may be integrated within the valve, but the production process cost radio Peng, deposition, etc. required expensive, complicated process.

发明内容 SUMMARY

[0003] 鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种电磁微阀装置。 [0003] In view of the above problems, the present invention is proposed in order to overcome the above problems or to provide a solution to at least partially an electromagnetic microvalve device of the above-described problems.

[0004]依据本发明的一个方面,提供了一种电磁微阀装置,所述装置包括:样本试剂流道、由室温液态金属填充的第一液态金属螺旋线圈微流道、由室温液态金属填充的第二液态金属螺旋线圈微流道和柔性薄膜; [0004] According to one aspect of the present invention, there is provided an electromagnetic microvalve device, said apparatus comprising: a sample flow channel agent, filled with a first liquid metal temperature of the liquid metal micro-coil helical flow path, the liquid metal is filled from room temperature a second helical coil liquid metal micro-channel and the flexible film;

[0005]所述第一液态金属螺旋线圈微流道和第二液态金属螺旋线圈微流道相对设置,所述第一液态金属螺旋线圈微流道设置于所述柔性薄膜的第一侧,所述样本试剂流道设于所述柔性薄膜的第二侧和第二液态金属螺旋线圈微流道之间。 [0005] The first liquid metal spiral coil and the second micro-channel liquid metal micro-channel spiral coil disposed opposite of the first helical coil liquid metal micro-channel provided on the first side of the flexible film, the reagent between said sample flow channel is provided on the second side of the flexible film and a second helical coil liquid metal micro channels.

[0006]可选地,所述第一液态金属螺旋线圈微流道和第二液态金属螺旋线圈微流道之间呈交错设置。 Disposed between a staggered [0006] Alternatively, the first liquid metal micro-channel spiral coil and a second helical coil liquid metal micro channels.

[0007]可选地,所述第二液态金属螺旋线圈微流道的圈数小于所述第一液态金属螺旋线圈微流道的圈数。 [0007] Alternatively, the number of turns of the second helical coil liquid metal micro-channel is less than the number of turns of the first helical coil liquid metal micro channel.

[0008]可选地,所述第一液态金属螺旋线圈微流道和第二液态金属螺旋线圈微流道均为圆环形、椭圆形或长方形。 [0008] Alternatively, the first liquid metal micro-channel spiral coil and a second helical coil liquid metal micro-channel are circular, oval or rectangular. _9]胃选地,所述第-液态金属螺旋线圈微流道、第二液态金属螺旋线圈醒道和样本试剂流道采用刻蚀工艺制作。 _9] Alternatively stomach, the second - liquid metal micro-channel helical coil, the second helical coil awake liquid metal reagent and sample flow path channel using an etching fabrication.

[0010]可选地,所述柔性薄膜为聚二甲基硅氧烷roMS制成的柔性薄膜,且所述柔性薄膜的厚度范围为100WI1〜1000M1; [0010] Alternatively, the flexible film is a flexible film made of polydimethylsiloxane Roms, and the flexible film to a thickness ranging 100WI1~1000M1;

[0011] 或, [0011] or,

[0012] 所述柔性薄膜为玻璃制成的薄片。 The sheet [0012] The flexible film is made of glass.

[0013]可选地,所述第一液^金属蟪旋线圈微流道和柔性薄膜之间、柔性薄膜和样本试剂流道之间、以及样本试雛道和第二液态金属螺旋线圈微流道之间均通过等离子键合方式进行封装。 Between [0013] Alternatively, the first liquid metal cicada spin ^ micro-channel coil and a flexible film, the flexible film between the sample and the reagent flow channel, and a sample path and the second liquid test young metal helical coil microfluidic between the channel are encapsulated by the plasma bonding method. _4],臟样本试纖谢_蝴高度与宽度之剛比例不大于1:2。 4], the test sample dirty fiber Xie _ butterfly just height to width ratio of no greater than 1: 2.

[0015] 可选地,所述室温液态金属为汞、镓、镓铟合金、镓铟锡合金或镓铟锡锌合金。 [0015] Alternatively, the temperature of liquid metal is mercury, gallium, gallium-indium alloy, gallium-indium-tin alloy, or zinc gallium indium tin alloy.

[0016] 可选地,所述室温液态金属中掺杂有金属纳米粉末。 [0016] Alternatively, the temperature in the liquid metal nanopowder doped with a metal.

[0017]本发明通过室温液态金属填充的液态金属螺旋线圈微流道之间的吸引力和排斥力来实现样本试剂流道的关闭和开启,能够快速实现控制流体流动的目的,且结构紧凑、灌注制作方便、成本低廉,并且易于集成,另外,由于填充于液态金属螺旋线圈微流道内的液态金属具有流动性和可变形性,在电磁驱动挤压关闭阀门和开启阀门的过程中,不会断裂, 电连接稳定性好。 [0017] The attractive and repulsive forces between the present invention filled with liquid metal through a room temperature liquid metal spiral coil to achieve the micro-channel opening and closing the reagent sample flow channel, can quickly achieve the purpose of controlling fluid flow, and compact, perfusion production easy, inexpensive, and easy to integrate, in addition, since the filler in the liquid metal within the liquid metal micro channel having a spiral coil fluidity and deformability of the electromagnetic drive valve opening and closing the valve extrusion process, not breaking the electrical connection and good stability.

附图说明 BRIEF DESCRIPTION

[0018]图1是本发明一种实施方式的电磁微阀装置在开启状态时的横向剖视示意图; [0019]图2是图1所示的电磁微阀装置在开启状态时的纵向剖视示意图; [0018] FIG. 1 is an electromagnetic microvalve device embodiment of the present invention, when the transverse cross-sectional view of an open state; [0019] FIG. 2 is a solenoid microvalve device shown in FIG. 1 a longitudinal cross-sectional view in the open state schematic diagram;

[0020]图3是图1所示的电磁微阀装置在关闭状态时的横向剖视示意图; [0020] FIG. 3 is a schematic transverse sectional view of the closed state when the solenoid microvalve device shown in Figure 1;

[0021]图4是图1所示的电磁微阀装置中第二液态金属螺旋线圈的结构示意图; [0021] FIG. 4 is a schematic view of the second liquid metal helical coil structure of an electromagnetic microvalve device shown in Figure 1;

[0022]图5是图1所示的电磁微阀装置中第一液态金属螺旋线圈的结构示意图。 [0022] FIG. 5 is a schematic diagram of a first liquid metal spiral coil structure of an electromagnetic microvalve device shown in FIG. 1.

[0023]其中:lj、第二液态金属螺旋线圈微流道的灌注进口; 1_2、第二液态金属螺旋线圈微流道的灌注出口; 2、第二液态金属螺旋线圈微流道;3、样本试剂流道;4、柔性薄膜;5、 第一液态金属螺旋线圈微流道;6_1、第一液态金属螺旋线圈微流道的灌注进口;6_2、第一液态金属螺旋线圈微流道的灌注出口; 2_1、第二液态金属螺旋线圈微流道的正极引线;2_ 2、第二液态金属螺旋线圈微流道的负极引线;5_1、第一液态金属螺旋线圈微流道的正极引线;5_2、第一液态金属螺旋线圈微流道的负极引线。 [0023] wherein: lj, the second liquid metal spiral coil perfusion inlet micro channel; 1_2, the perfusion outlet of the second helical coil liquid metal micro channel; 2, the second helical coil liquid metal micro-channel; 3 sample reagent flow channel; 4, flexible film; 5, a first spiral coil liquid metal micro-channel; 6_1, a first liquid metal spiral coil perfusion inlet micro channel; 6_2, the perfusion outlet of the first helical coil liquid metal micro channel ; 2_1, the positive lead of the second helical coil liquid metal micro channel; 2_ 2, a negative electrode lead of the second helical coil liquid metal micro channel; 5_1, the positive electrode lead of the first helical coil liquid metal micro channel; 5_2, second a negative electrode lead helical coil liquid metal micro channel.

具体实施方式 Detailed ways

[0024]下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。 [0024] The following embodiments and the accompanying drawings, specific embodiments of the present invention will be further described in detail. 以下实施例用于说明本发明,但不用来限制本发明的范围。 The following examples serve to illustrate the present invention but are not intended to limit the scope of the present invention.

[0025]图1是本发明一种实施方式的电磁微阀装置在开启状态时的横向剖视示意图;图2 是图1所示的电磁微阀装置在开启状态时的纵向剖视示意图;参照图1〜2,所述装置包括: 样本试剂流道3、由室温液态金属填充的第一液态金属螺旋线圈微流道5、由室温液态金属填充的第二液态金属螺旋线圈微流道2和柔性薄膜4; [0025] FIG. 1 is an electromagnetic microvalve device embodiment of the present invention, when the transverse cross-sectional view of an open state; FIG. 2 is a solenoid microvalve device shown in FIG 1 in a schematic longitudinal sectional view when opened state; reference FIG 1 to 2, said apparatus comprising: a reagent sample flow channel 3 is filled by a first liquid metal temperature of the liquid metal micro-channel spiral coil 5, filled with a second liquid metal temperature liquid metal micro-channel helical coil 2 and the flexible film 4;

[0026]所述第一液态金属螺旋线圈微流道5和第二液态金属螺旋线圈微流道2相对设置, 所述第一液态金属螺旋线圈微流道5设置于所述柔性薄膜4的第一侧,所述样本试剂流道3 设于所述柔性薄膜4的第二侧和第二液态金属螺旋线圈微流道2之间。 [0026] The first liquid metal helical coil 5 and the second micro-channel liquid metal micro-channel spiral coil 2 disposed opposite the first helical coil liquid metal micro-channel 5 disposed on the first flexible film 4 side, the reagent sample flow path 3 is provided between the second side of the flexible film 2 and the second liquid metal spiral coil 4 of the micro-channel.

[0027]为便于向所述第一液态金属螺旋线圈微流道5中灌注液态金属,可通过灌注进口6_1向第一液态金属螺旋线圈微流道5中灌注液态金属,填充满后多余液态金属从灌注出口6_2溢出。 [0027] In order to facilitate liquid perfusion liquid metal to the first metal spiral coil micro channel 5, pourable liquid to a first liquid metal micro-channel metal spiral coil 5 by perfusion inlet 6_1, after filling up the excess liquid metal overflow from the perfusion outlet 6_2.

[0028]相应地,可通过灌注进口11向第二液态金属螺旋线圈微流道2中灌注液态金属, 填充满后多余液态金属从灌注出口1_2溢出。 [0028] Accordingly, by infusion perfusion liquid metal inlet 11 into a second helical coil liquid metal micro-channel 2, after filling up the excess liquid metal overflows from the perfusion outlet 1_2.

[0029]本实施方式的电磁微阀装置的工作原理为:在所述第一液态金属螺旋线圈微流道5和第二液态金属螺旋线圈微流道2加载相同方向的电流时,这两个螺旋线圈微流道能产生串联电磁场、相互吸引,从而挤压柔性薄膜4和样本试剂流道3,切断样本试剂流道3内的试剂流动,参照图3,进而关闭阀门;当需要重新开启阀门时,只需要迅速改变其中任意一个螺旋线圈微流道的电流方向即可。 [0029] The working principle of the present embodiment is an electromagnetic microvalve device: when the first helical coil liquid metal micro-channel 5 and a second current is applied in the same direction spiral coil liquid metal micro-channel 2, the two spiral coils in series to produce the micro-channel field, attract each other, so as to press the flexible film 4 and the reagent sample flow channel 3, the cutting sample reagent reagent flow in the flow path 3, with reference to FIG. 3, and thus close the valve; when it is desired to reopen the valve when, only by rapidly changing the direction of current flow in any one helical coil to micro channel.

[0030]本实施方式通过室温液态金属填充的液态金属螺旋线圈微流道之间的吸引力和排斥力来实现样本试剂流道的关闭和开启,能够快速实现控制流体流动的目的,且结构紧凑、灌注制作方便、成本低廉,并且易于集成,另外,由于填充于液态金属螺旋线圈微流道内的液态金属具有流动性和可变形性,在电磁驱动挤压关闭阀门和开启阀门的过程中,不会断裂,电连接稳定性好。 [0030] The attractive and repulsive forces between the embodiment of the present embodiment is filled by the liquid metal temperature liquid metal spiral coil micro-channel achieved reagent sample flow channel opening and closing, can quickly achieve the purpose of controlling fluid flow, and compact facilitate perfusion production, low cost, and ease of integration. Further, since the filler in the liquid metal within the liquid metal spiral coil micro channel having fluidity and deformability, the electromagnetically driven pressing to close the valve and the valve opening process, do not break, good electrical connection stability.

[0031]可理解的是,由于柔性薄膜4设置于所述样本试剂流道3和第二液态金属螺旋线圈微流道2之间,能够有效地避免液态金属与样本试剂的直接接触。 [0031] appreciated that since the flexible film 4 is disposed between the reagent to the sample flow path 3 and the second helical coil liquid metal micro-channel 2, can effectively prevent direct contact with the sample liquid metal reagent.

[0032]需要说明的是,本实施方式中,所述第一液态金属螺旋线圈微流道5和第二液态金属螺旋线圈微流道2之间呈交错设置,也就是说,第一液态金属螺旋线圈微流道5与第二液态金属螺旋线圈微流道2的间隙相对,第二液态金属螺旋线圈微流道2与第一液态金属螺旋线圈微流道5的间隙相对,从而有效地增强了两个螺旋线圈微流道之间的电磁吸引力。 [0032] Incidentally, in this embodiment, a staggered disposed between the liquid metal 2 of the first helical coil 5 and the second micro-channel liquid metal micro-channel helical coil, i.e., a first liquid metal gap spiral coil 5 and the second micro-channel liquid metal helical coil relative to the micro-channel 2, the second liquid metal micro-channel spiral coil 2 opposite to the gap of the first liquid metal micro-channel spiral coil 5, thereby effectively enhancing electromagnetic attraction between the two helical coils microfluidic channel.

[0033]为进一步增强两个螺旋线圈微流道之间的电磁吸引力,本实施方式中,所述第二液态金属螺旋线圈微流道2的圈数可以小于所述第一液态金属螺旋线圈微流道5的圈数。 [0033] To further enhance the electromagnetic attraction between the two spiral coils microfluidic channels, according to the present embodiment, the number of turns of the second helical coil liquid metal micro-channel 2 may be smaller than the first liquid metal helical coil 5 the number of turns of the micro channel. [0034]为便于在生产过程中实现,本实施方式中,所述第一液态金属螺旋线圈微流道5和第二液态金属螺旋线圈微流道2均为圆环形,当然,还可为椭圆形或长方形,本实施方式对此不加以限制。 [0034] to facilitate the manufacturing process, the present embodiment, the first spiral coil liquid metal micro-channel 5 and the second helical coil liquid metal micro-channel 2 are circular, of course, also be oval or rectangular, this embodiment of the present embodiment is not limited thereto.

[0035]为便于制作,本实施方式中,所述电磁微阀装置采用微流控芯片(MEMS)微加工方式制作,例如:所述第一液态金属螺旋线圈微流道5、第二液态金属螺旋线圈微流道2和样本试剂流道3可采用刻蚀工艺制作。 [0035] For ease of production, according to the present embodiment, the solenoid microvalve device produced using the microfluidic control chip (MEMS) micro-machining, for example: a first helical coil liquid metal micro-channel 5, a second liquid metal a helical coil 2 and the sample micro-channel reagent flow path 3 can be made an etching process.

[0036]为便于制作所述柔性薄膜4,可采用旋涂工艺制作所述柔性薄膜4,所述柔性薄膜4 可为聚二甲基硅氧烷(PDMS)制成的柔性薄膜,为了保证所述柔性薄膜4的结构强度,所述柔性薄膜4的厚度范围为lOOum〜lOOOum,当然,所述柔性薄膜4还可为玻璃制成的薄片。 [0036] To facilitate the production of the flexible film 4, a spin coating process of making the flexible film 4, the flexible film 4 of the flexible film may be a polydimethyl siloxane (PDMS) is made, in order to ensure that the said structural strength of the flexible film 4, the flexible film thickness in the range of 4 lOOum~lOOOum, of course, the flexible film sheet 4 may also be made of glass.

[0037]在具体实现中,所述第一液态金属螺旋线圈微流道5、第二液态金属螺旋线圈微流道2和样本试剂流道3均优选选用PDMS制成, [0037] In a specific implementation, the first liquid is made of metal helical coil 5 micro-channel, the second liquid metal micro-channel spiral coils 2 and 3 are samples reagent flow passage is preferred to use the PDMS,

[0038] 为保证所述电磁微阀装置的稳定性,本实施方式中,所述第一液态金属螺旋线圈微流道5和柔性薄膜4之间、柔性薄膜4和样本试剂流道3之间、以及样本试剂流道3和第二液态金属螺旋线圈微流道2之间均通过等离子键合方式进行封装。 Between [0038] To ensure the stability of the micro-solenoid valve device, according to the present embodiment, the flexible membrane 4 and 5 between the first helical coil liquid metal micro-channel, the flexible film 4 and the reagent sample flow channel 3 , a reagent and a sample liquid flow path 3 and the second micro-channel metal spiral coil 2 have passed between the plasma bonding method for encapsulation.

[0039] 为便于切断样本试剂流道3内的试剂流动,故而,所述样本试剂流道3的横截面优先选择扁平半圆弧状,优选地,所述样本试剂流道3横截面的高度与宽度之间的比例不大于1:2,当然,所述样本试剂流道3横截面的高度不大于lOOwn。 [0039] For ease of cutting reagent sample flow in the flow channel reagent 3, therefore, the cross section of the flow channel 3 of sample reagent preference semicircular flat, preferably, the sample height and width of the cross section 3 reagent flow path ratio is not more than 1: 2, of course, the height of the sample 3 reagent flow channel cross-section is no greater than lOOwn.

[0040] 为保证液态金属在室温时处于液态,本实施方式中,所述室温液态金属为汞、镓、 镓铟合金、镓铟锡合金或镓铟锡锌合金,当然,优先地选择镓、镓铟合金或镓铟锡合金。 [0040] To ensure that the liquid metal is a liquid at room temperature, according to the present embodiment, the temperature of liquid metal is mercury, gallium, gallium-indium alloy, gallium-indium-tin alloy, or zinc gallium indium tin alloy, of course, to select gallium preferentially, gallium indium alloy or gallium indium tin alloy.

[0041] 为增强电磁驱动力,本实施方式中,所述室温液态金属中可掺杂有金属纳米粉末, 例如:铁、镍等金属的纳米粉末。 [0041] To enhance the electromagnetic driving force, according to the present embodiment, the temperature in the liquid metal may be doped with metal nano-powder, for example: nanopowder iron, nickel and the like metals.

[0042] 参照图4〜5,在具体实现时,可通过第二液态金属螺旋线圈微流道2的正极引线2_ 1和负极导线2_2向第二液态金属螺旋线圈微流道2加载电流,可通过第一液态金属螺旋线圈微流道5的正极引线5_1和负极引线5_2向第一液态金属螺旋线圈微流道5加载电流。 [0042] Referring to FIG. 4 to 5, In specific implementation, the positive electrode lead through the helical coil of the second liquid metal micro-channel 2 and the negative electrode lead 2_2 2_ 1 loaded to the second liquid metal micro-channel 2 helical coil current, 5_2 load current to a first liquid metal helical coil 5 through micro-channel 5_1 positive electrode lead and the negative lead of the first helical coil of liquid metal 5 of the micro-channel.

[0043]以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。 [0043] The above embodiments are merely illustrative of the present invention, and are not restrictive of the invention, relating to ordinary skill in the art, without departing from the spirit and scope of the present invention, can make various changes and modifications , all equivalent technical solutions also within the scope of the present invention, the scope of the present invention patent is defined by the appended claims.

Claims (9)

1. 一种电磁微阀装置,其特征在于,所述装置包括:样本试剂流道、由室温液态金属填充的第一液态金属螺旋线圈微流道、由室温液态金属填充的第二液态金属螺旋线圈微流道和柔性薄膜; 所述第一液态金属螺旋线圈微流道和第二液态金属螺旋线圈微流道相对设置,所述第一液态金属螺旋线圈微流道设置于所述柔性薄膜的第一侧,所述样本试剂流道设于所述柔性薄膜的第二侧和第二液态金属螺旋线圈微流道之间; 所述第一液态金属螺旋线圈微流道上设有灌注进口和灌注出口,使得通过灌注进口向第一液态金属螺旋线圈微流道中灌注液态金属,填充满后多余液态金属从灌注出口溢出; 所述第一液态金属螺旋线圈微流道和第二液态金属螺旋线圈微流道之间呈交错设置。 1. An electromagnetic microvalve device, characterized in that said apparatus comprising: a sample flow channel agent, filled with a first liquid metal temperature of the liquid metal micro-channel helical coil, filled with a second liquid metal temperature liquid metal coil micro-channel coil and a flexible film; liquid metal of the first spiral coil and the second micro-channel liquid metal micro-channel spiral coil disposed opposite of the first helical coil liquid metal micro-channel is disposed on the flexible film between the first side of the reagent sample flow channel provided in the second side of the flexible film and a second liquid metal micro-channel helical coil; the first liquid metal micro-coil helical flow path inlet and perfusion with perfusion outlet, such that the perfusion liquid inlet by pouring liquid metal to the first metal spiral coil in a micro channel, after filling up the excess liquid metal overflows from the perfusion outlet; the first liquid metal micro-channel spiral coil and a second helical coil liquid metal micro between the flow passage is provided in a staggered.
2. 如权利要求1所述的装置,其特征在于,所述第二液态金属螺旋线圈微流道的圈数小于所述第一液态金属螺旋线圈微流道的圈数。 2. The apparatus according to claim 1, wherein the number of turns of the second helical coil liquid metal micro-channel is less than the number of turns of the first helical coil liquid metal micro channel.
3. 如权利要求1或2所述的装置,其特征在于,所述第一液态金属螺旋线圈微流道和第二液态金属螺旋线圈微流道均为圆环形、椭圆形或长方形。 3. The apparatus of claim 1 or claim 2, wherein the first liquid metal micro-channel spiral coil and a second helical coil liquid metal micro-channel are circular, oval or rectangular.
4. 如权利要求1或2所述的装置,其特征在于,所述第一液态金属螺旋线圈微流道、第二液态金属螺旋线圈微流道和样本试剂流道采用刻蚀工艺制作。 4. The apparatus of claim 1 or claim 2, wherein said first spiral coil liquid metal micro-channel, the second helical coil liquid metal micro-channel sample and reagent flow path making use of an etching process.
5. 如权利要求1或2所述的装置,其特征在于,所述柔性薄膜为聚二甲基硅氧烷KIMS制成的柔性薄膜,且所述柔性薄膜的厚度范围为lOOwn〜lOOOwn; 或, 所述柔性薄膜为玻璃制成的薄片。 5. The apparatus of claim 1 or claim 2, wherein the flexible film is a flexible film made of polydimethylsiloxane KIMS, and the flexible film to a thickness ranging lOOwn~lOOOwn; or , the flexible film is a sheet of glass.
6. 如权利要求1或2所述的装置,其特征在于,所述第一液态金属螺旋线圈微流道和柔性薄膜之间、柔性薄膜和样本试剂流道之间、以及样本试剂流道和第二液态金属螺旋线圈微流道之间均通过等离子键合方式进行封装。 6. The apparatus of claim 1 or claim 2, characterized in that, between the flexible film and the sample reagent flow path between said first helical coil liquid metal micro-channel and the flexible film, and a sample and reagent flow path between the second liquid metal micro-channel spiral coil are encapsulated by the plasma bonding method.
7. 如权利要求1或2所述的装置,其特征在于,所述样本试剂流道横截面的高度与宽度之间的比例不大于1:2。 7. The apparatus of claim 1 or claim 2, wherein said reagent sample flow path cross-sectional ratio between the height and width no greater than 1: 2.
8. 如权利要求1或2所述的装置,其特征在于,所述室温液态金属为汞、镓、镓铟合金、镓铟锡合金或镓铟锡锌合金。 8. The apparatus of claim 1 or claim 2, wherein the liquid metal is mercury, gallium, gallium-indium alloy, gallium-indium-tin alloy or zinc alloy the gallium indium tin rt.
9. 如权利要求8所述的装置,其特征在于,所述室温液态金属中掺杂有金属纳米粉末。 9. The apparatus according to claim 8, wherein the temperature in the liquid metal nanopowder doped with a metal.
CN201610173874.6A 2016-03-24 2016-03-24 Solenoid microvalve device CN105715865B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610173874.6A CN105715865B (en) 2016-03-24 2016-03-24 Solenoid microvalve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610173874.6A CN105715865B (en) 2016-03-24 2016-03-24 Solenoid microvalve device

Publications (2)

Publication Number Publication Date
CN105715865A CN105715865A (en) 2016-06-29
CN105715865B true CN105715865B (en) 2018-04-27

Family

ID=56159158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610173874.6A CN105715865B (en) 2016-03-24 2016-03-24 Solenoid microvalve device

Country Status (1)

Country Link
CN (1) CN105715865B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435237A1 (en) * 1989-12-27 1991-07-03 Honeywell Inc. Electrostatic miniature valve and method for its fabrication
CN102740977A (en) * 2010-02-10 2012-10-17 索尼公司 Microchip and method of producing microchip
CN104140926A (en) * 2014-07-15 2014-11-12 大连医科大学附属第二医院 Device and method for full-automatically sorting circulating tumor cells on micro-fluidic chip
CN104625072A (en) * 2015-01-30 2015-05-20 上海交通大学 Method for 3D printing of electromagnetic coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435237A1 (en) * 1989-12-27 1991-07-03 Honeywell Inc. Electrostatic miniature valve and method for its fabrication
CN102740977A (en) * 2010-02-10 2012-10-17 索尼公司 Microchip and method of producing microchip
CN104140926A (en) * 2014-07-15 2014-11-12 大连医科大学附属第二医院 Device and method for full-automatically sorting circulating tumor cells on micro-fluidic chip
CN104625072A (en) * 2015-01-30 2015-05-20 上海交通大学 Method for 3D printing of electromagnetic coil

Also Published As

Publication number Publication date
CN105715865A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
Chang et al. Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels
Jeong et al. Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm
US6951632B2 (en) Microfluidic devices for introducing and dispensing fluids from microfluidic systems
Cho et al. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits
US6453928B1 (en) Apparatus, and method for propelling fluids
Suzuki et al. Integrated microfluidic system with electrochemically actuated on-chip pumps and valves
McFaul et al. Cell separation based on size and deformability using microfluidic funnel ratchets
US8388908B2 (en) Fluidic devices with diaphragm valves
US7052594B2 (en) Devices and methods for controlling fluid flow using elastic sheet deflection
US6834663B2 (en) Small scale actuators and methods for their formation and use
US6408884B1 (en) Magnetically actuated fluid handling devices for microfluidic applications
US20020148992A1 (en) Pneumatic valve interface for use in microfluidic structures
Yanagisawa et al. Electromagetically driven microvalve
US6619311B2 (en) Microfluidic regulating device
Hartshorne et al. Ferrofluid-based microchip pump and valve
US6991214B2 (en) Microvalve normally in a closed position
US20110114206A1 (en) Fluid Processing Device Including Size-Changing Barrier
US20060180223A1 (en) Electrically opended micro fluid-valve
Jeong et al. Fabrication and drive test of pneumatic PDMS micro pump
US6786708B2 (en) Laminated devices and methods of making same
US8403292B2 (en) Microvalve having magnetic wax plug and flux control method using magnetic wax
Fahrni et al. Micro-fluidic actuation using magnetic artificial cilia
US7942160B2 (en) Valves and pumps for microfluidic systems and method for making microfluidic systems
AU2009262555B2 (en) Microfluidic foil structure for metering of fluids
WO2002068823A1 (en) Uni-directional flow microfluidic components

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01