CN105712393A - 氧化锌/单质碳核壳结构的制备方法 - Google Patents
氧化锌/单质碳核壳结构的制备方法 Download PDFInfo
- Publication number
- CN105712393A CN105712393A CN201610160921.3A CN201610160921A CN105712393A CN 105712393 A CN105712393 A CN 105712393A CN 201610160921 A CN201610160921 A CN 201610160921A CN 105712393 A CN105712393 A CN 105712393A
- Authority
- CN
- China
- Prior art keywords
- zinc oxide
- shell structure
- carbon core
- gas
- elemental carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 127
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 64
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 37
- 239000011258 core-shell material Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title abstract description 16
- 229960001296 zinc oxide Drugs 0.000 title 1
- 239000002105 nanoparticle Substances 0.000 claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 26
- 239000008103 glucose Substances 0.000 claims abstract description 26
- 239000002243 precursor Substances 0.000 claims abstract description 13
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000003763 carbonization Methods 0.000 claims abstract description 11
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 8
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 claims description 6
- 239000007822 coupling agent Substances 0.000 claims description 5
- 235000011187 glycerol Nutrition 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 40
- 230000035945 sensitivity Effects 0.000 abstract description 21
- 238000005516 engineering process Methods 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 10
- 238000012360 testing method Methods 0.000 abstract description 6
- 239000000383 hazardous chemical Substances 0.000 abstract description 5
- 239000006087 Silane Coupling Agent Substances 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 37
- 239000000243 solution Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000002131 composite material Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000011540 sensing material Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明公开了一种氧化锌/单质碳核壳结构的制备方法,用于解决现有方法制备的氧化锌气敏材料灵敏度低的技术问题。技术方案是采用硅烷偶联剂3?氨基丙基三乙氧基硅烷对氧化锌纳米颗粒表面进行修饰,然后将葡萄糖分子联接到修饰过的氧化锌纳米颗粒表面制备出前驱体材料,最后加热碳化葡萄糖分子得到氧化锌/单质碳核壳结构。由于免除了危化品的使用,生产过程更加安全;经测试,本发明方法制备的氧化锌/单质碳核壳结构性质稳定,具有良好的气敏性能,特别是对低浓度的丙酮气体灵敏度有明显提高,其对100ppm丙酮气体灵敏度由背景技术的26.1提高到38~43;气敏元件的稳定性由背景技术的30天延长至70~90天,稳定性显著提升。
Description
技术领域
本发明涉及一种核壳结构的制备方法,特别涉及一种氧化锌/单质碳核壳结构的制备方法。
背景技术
随着人们对于工业环境下安全生产及大气环境治理等方面要求的提高,对有毒、有害及易燃易爆气体的监测提出了更高的要求。种类多样,功能各异的气敏传感器在人们的生产生活中应用越来越广泛。因此,各种气体敏感材料的研究也一直是当前研究的热点,其中发展具有灵敏度高、响应和回复时间快、选择性高和性质稳定的气敏传感器材料是迫切需要解决的问题。当前除了对半导体二元金属氧化物进行纳米化提高其气敏性能之外,对二元金属氧化物进行掺杂及复合制备特殊形貌及结构的材料研究也日益增多。其中,氧化锌作为一种常用的半导体气体敏感材料,制备特殊形貌及复合结构对提高其气敏性能具有显著的意义。
文献“Q.Qi,T.Zhang,etal.Selectiveacetonesensorbasedondumbbell-likeZnOwithrapidresponseandrecovery.SensorsandActuatorsB:Chemical,2008,134,166-170.”报道了采用溶液合成法制备了哑铃状氧化锌气敏材料。该方法为二水乙酸锌和六亚甲基四胺的混合溶液在90℃下加热回流2h,最后离心干燥得到哑铃状氧化锌材料,其中,该方法所用的六亚甲基四胺为易燃、易制爆危险化学品,这在实际大规模工业生产中存在一定的安全问题;此外,使用该材料对易挥发性有机物丙酮气体进行了气敏测试,结果显示对于100ppm的丙酮气体,其灵敏度仅为26.1,这在实际应用中不利于对低浓度有害气体的有效检测;最后,其气敏元件的稳定性较短,仅为30天,稳定性不够高会导致实际应用中成本增加和检测结果不可靠。
发明内容
为了克服现有方法制备的氧化锌气敏材料灵敏度低的不足,本发明提供一种氧化锌/单质碳核壳结构的制备方法。该方法通过硅烷偶联剂3-氨基丙基三乙氧基硅烷对氧化锌纳米颗粒表面进行修饰,然后将葡萄糖分子联接到修饰过的氧化锌纳米颗粒表面制备出前驱体材料,最后进行加热碳化葡萄糖分子得到氧化锌/单质碳核壳结构。本发明方法中免除了危化品的使用,有利于解决大规模生产中的安全问题;同时,气敏测试结果表明,本发明方法制备的氧化锌/单质碳核壳结构性质稳定,具有良好的气敏性能,特别是对低浓度的丙酮气体灵敏度有明显提高,其对100ppm丙酮气体灵敏度由背景技术的26.1提高到38~43;气敏元件的稳定性由背景技术的30天延长至70~90天,稳定性显著提升。
本发明解决其技术问题所采用的技术方案:一种氧化锌/单质碳核壳结构的制备方法,其特点是包括以下步骤:
步骤一、将二水乙酸锌和氢氧化钠按摩尔比1:1~1:3溶解在乙醇中形成摩尔浓度为0.58~0.92mol/L的溶液,所得溶液在50~70℃油浴锅中搅拌反应12~36h,制得氧化锌纳米颗粒;
步骤二、将步骤一制得的氧化锌纳米颗粒与偶联剂3-氨基丙基三乙氧基硅烷按摩尔比1:4~1:6分散在二甲基亚砜中形成摩尔浓度为1.39~1.59mol/L的溶液,所得溶液在100~140℃油浴锅中搅拌反应2~4h,制得表面氨基修饰的氧化锌纳米颗粒;
步骤三、将步骤二制得的氨基修饰的氧化锌纳米颗粒与葡萄糖按摩尔比1:2~1:4分散在乙醇中形成摩尔浓度为0.9~1.1mol/L的溶液,所得溶液在50~70℃油浴锅中搅拌反应2~4h,制得前驱体氧化锌/葡萄糖纳米颗粒;
步骤四、将步骤三制得的前驱体氧化锌/葡萄糖纳米颗粒均匀分散在甘油中加热使葡萄糖分子完全碳化,碳化温度为160~200℃,碳化时间为20~40min,制得氧化锌/单质碳核壳结构。
本发明的有益效果是:该方法通过硅烷偶联剂3-氨基丙基三乙氧基硅烷对氧化锌纳米颗粒表面进行修饰,然后将葡萄糖分子联接到修饰过的氧化锌纳米颗粒表面制备出前驱体材料,最后进行加热碳化葡萄糖分子得到氧化锌/单质碳核壳结构。本发明方法中免除了危化品的使用,有利于解决大规模生产中的安全问题;同时,气敏测试结果表明,本发明方法制备的氧化锌/单质碳核壳结构性质稳定,具有良好的气敏性能,特别是对低浓度的丙酮气体灵敏度有明显提高,其对100ppm丙酮气体灵敏度由背景技术的26.1提高到38~43;气敏元件的稳定性由背景技术的30天延长至70~90天,稳定性显著提升。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明实施例1~3所制备氧化锌/单质碳核壳结构的X射线衍射图谱。
图2是本发明实施例2所制备氧化锌/单质碳核壳结构的透射电镜图片。
图3是本发明实施例1~3所制备氧化锌/单质碳核壳结构的气敏元件在100ppm丙酮气体中的响应灵敏度。
图4是本发明实施例1~3所制备的氧化锌/单质碳核壳结构的气敏元件暴露在100ppm丙酮气体中的稳定性天数。
具体实施方式
以下实施例参照图1-4。
实施例1:
步骤一、将0.023mol二水乙酸锌和0.023mol氢氧化钠按摩尔比1:1溶解在乙醇中形成摩尔浓度为0.58mol/L的溶液,所得溶液在50℃油浴锅中搅拌反应36h,反应制得氧化锌纳米颗粒;
步骤二、将步骤一制得的0.025mol氧化锌纳米颗粒与0.10mol偶联剂3-氨基丙基三乙氧基硅烷按摩尔比1:4分散在二甲基亚砜中形成摩尔浓度为1.39mol/L的溶液,所得溶液在100℃油浴锅中搅拌反应4h,反应制得表面氨基修饰的氧化锌纳米颗粒;
步骤三、将步骤二制得的0.015mol氨基修饰的氧化锌纳米颗粒与0.030mol葡萄糖按摩尔比1:2分散在乙醇中形成摩尔浓度为0.9mol/L的溶液,所得溶液在50℃油浴锅中搅拌反应4h,反应制得前驱体氧化锌/葡萄糖纳米颗粒;
步骤四、将步骤三制得的前驱体氧化锌/葡萄糖纳米颗粒均匀分散在甘油中加热使葡萄糖分子完全碳化,碳化温度为160℃,碳化时间为40min,反应制得氧化锌/单质碳核壳结构。
从图1(a)可以看出实施例1制备的样品为氧化锌和单质碳的复合相,没有其他杂质的衍射峰出现。经气敏性能测试,从图3可以看出实施例1制备的氧化锌/单质碳核壳结构对100ppm丙酮气体灵敏度由背景技术的26.1提高到38。从图4可以看出实施例1制备的氧化锌/单质碳核壳结构的气敏元件暴露在100ppm丙酮气体中稳定性由背景技术的30天延长至70天。
实施例2:
步骤一、将0.023mol二水乙酸锌和0.046mol氢氧化钠按摩尔比1:2溶解在乙醇中形成摩尔浓度为0.77mol/L的溶液,所得溶液在60℃油浴锅中搅拌反应24h,反应制得氧化锌纳米颗粒;
步骤二、将步骤一制得的0.025mol氧化锌纳米颗粒与0.125mol偶联剂3-氨基丙基三乙氧基硅烷按摩尔比1:5分散在二甲基亚砜中形成摩尔浓度为1.5mol/L的溶液,所得溶液在120℃油浴锅中搅拌反应3h,反应制得表面氨基修饰的氧化锌纳米颗粒;
步骤三、将步骤二制得的0.015mol氨基修饰的氧化锌纳米颗粒与0.045mol葡萄糖按摩尔比1:3分散在乙醇中形成摩尔浓度为1mol/L的溶液,所得溶液在60℃油浴锅中搅拌反应3h,反应制得前驱体氧化锌/葡萄糖纳米颗粒;
步骤四、将步骤三制得的前驱体氧化锌/葡萄糖纳米颗粒均匀分散在甘油中加热使葡萄糖分子完全碳化,碳化温度为180℃,碳化时间为30min,反应制得氧化锌/单质碳核壳结构。
从图1(b)可以看出实施例2制备的样品为氧化锌和单质碳的复合相,且没有其他杂质的衍射峰出现。从图2可以看出实施例2制备的氧化锌纳米颗粒的直径为20~30nm,单质碳包覆在氧化锌纳米颗粒表面的厚度为1~2nm,单质碳均匀分散在纳米氧化锌表面形成结构和性质稳定的氧化锌/单质碳核壳结构。经气敏性能测试,从图3可以看出实施例2制备的氧化锌/单质碳核壳结构对100ppm丙酮气体灵敏度由背景技术的26.1提高到43,灵敏度有较大程度提升,有利于提高对低浓度丙酮气体的检测。从图4可以看出实施例2制备的氧化锌/单质碳核壳结构的气敏元件暴露在100ppm丙酮气体中稳定性由背景技术的30天延长至90天,稳定性显著提升。
实施例3:
步骤一、将0.023mol二水乙酸锌和0.069mol氢氧化钠按摩尔比1:3溶解在乙醇中形成摩尔浓度为0.92mol/L的溶液,所得溶液在70℃油浴锅中搅拌反应12h,反应制得氧化锌纳米颗粒;
步骤二、将步骤一制得的0.025mol氧化锌纳米颗粒与0.15mol偶联剂3-氨基丙基三乙氧基硅烷按摩尔比1:6分散在二甲基亚砜中形成摩尔浓度为1.59mol/L的溶液,所得溶液在140℃油浴锅中搅拌反应2h,反应制得表面氨基修饰的氧化锌纳米颗粒;
步骤三、将步骤二制得的0.015mol氨基修饰的氧化锌纳米颗粒与0.060mol葡萄糖按摩尔比1:4分散在乙醇中形成摩尔浓度为1.1mol/L的溶液,所得溶液在70℃油浴锅中搅拌反应2h,反应制得前驱体氧化锌/葡萄糖纳米颗粒;
步骤四、将步骤三制得的前驱体氧化锌/葡萄糖纳米颗粒均匀分散在甘油中加热使葡萄糖分子完全碳化,碳化温度为200℃,碳化时间为20min,反应制得氧化锌/单质碳核壳结构。
从图1(c)可以看出实施例3制备的样品为氧化锌和单质碳的复合相,没有其他杂质的衍射峰出现。经气敏性能测试,从图3可以看出实施例3制备的氧化锌/单质碳核壳结构对100ppm丙酮气体灵敏度由背景技术的26.1提高到40。从图4可以看出实施例3制备的氧化锌/单质碳核壳结构的气敏元件暴露在100ppm丙酮气体中稳定性由背景技术的30天延长至80天。
本发明提供了一种氧化锌/单质碳核壳结构的制备方法,具体为化学偶联法制备氧化锌/单质碳核壳结构。该方法的制备过程去除了危化品的使用,有利于解决大规模生产中的安全问题,同时,氧化锌/单质碳核壳结构具有良好的气敏性能,特别是有利于检测低浓度的丙酮气体,而且,气敏元件的稳定性显著提高。因此本发明氧化锌/单质碳核壳结构的制备方法有利于工业生产的推广使用。
Claims (1)
1.一种氧化锌/单质碳核壳结构的制备方法,其特征在于包括以下步骤:
步骤一、将二水乙酸锌和氢氧化钠按摩尔比1:1~1:3溶解在乙醇中形成摩尔浓度为0.58~0.92mol/L的溶液,所得溶液在50~70℃油浴锅中搅拌反应12~36h,制得氧化锌纳米颗粒;
步骤二、将步骤一制得的氧化锌纳米颗粒与偶联剂3-氨基丙基三乙氧基硅烷按摩尔比1:4~1:6分散在二甲基亚砜中形成摩尔浓度为1.39~1.59mol/L的溶液,所得溶液在100~140℃油浴锅中搅拌反应2~4h,制得表面氨基修饰的氧化锌纳米颗粒;
步骤三、将步骤二制得的氨基修饰的氧化锌纳米颗粒与葡萄糖按摩尔比1:2~1:4分散在乙醇中形成摩尔浓度为0.9~1.1mol/L的溶液,所得溶液在50~70℃油浴锅中搅拌反应2~4h,制得前驱体氧化锌/葡萄糖纳米颗粒;
步骤四、将步骤三制得的前驱体氧化锌/葡萄糖纳米颗粒均匀分散在甘油中加热使葡萄糖分子完全碳化,碳化温度为160~200℃,碳化时间为20~40min,制得氧化锌/单质碳核壳结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610160921.3A CN105712393B (zh) | 2016-03-21 | 2016-03-21 | 氧化锌/单质碳核壳结构的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610160921.3A CN105712393B (zh) | 2016-03-21 | 2016-03-21 | 氧化锌/单质碳核壳结构的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105712393A true CN105712393A (zh) | 2016-06-29 |
CN105712393B CN105712393B (zh) | 2017-04-19 |
Family
ID=56158031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610160921.3A Active CN105712393B (zh) | 2016-03-21 | 2016-03-21 | 氧化锌/单质碳核壳结构的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105712393B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106946284A (zh) * | 2017-04-25 | 2017-07-14 | 济南大学 | 一种发散式哑铃型氧化锌的制备方法 |
CN109932399A (zh) * | 2017-12-15 | 2019-06-25 | Tcl集团股份有限公司 | 纳米复合材料及其制备方法和应用 |
CN113125518A (zh) * | 2021-04-12 | 2021-07-16 | 山东科技大学 | 一氧化碳气敏微胶囊、制备方法及识别采空区火源的方法 |
TWI880673B (zh) * | 2024-03-14 | 2025-04-11 | 崑山科技大學 | 具有摻銅氧化釩薄膜覆蓋氧化鋅奈米柱的氫氣感測器及其製作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101100562A (zh) * | 2007-05-15 | 2008-01-09 | 广西民族大学 | 机械力化学湿法制备表面修饰磷酸锌微粉的方法 |
CN101549289A (zh) * | 2009-05-12 | 2009-10-07 | 武汉大学 | 一种推进剂用核壳催化剂及其制备方法 |
CN101628731A (zh) * | 2009-07-28 | 2010-01-20 | 西北工业大学 | 氧化锌纳米颗粒的制备方法 |
CN104275173A (zh) * | 2014-07-30 | 2015-01-14 | 浙江师范大学 | 碳包覆金属掺杂氧化锌复合光催化纳米材料及其制备方法 |
CN105126855A (zh) * | 2015-07-15 | 2015-12-09 | 浙江大学 | ZnO/ZnFe2O4/C纳米结构空心球及其制备方法 |
-
2016
- 2016-03-21 CN CN201610160921.3A patent/CN105712393B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101100562A (zh) * | 2007-05-15 | 2008-01-09 | 广西民族大学 | 机械力化学湿法制备表面修饰磷酸锌微粉的方法 |
CN101549289A (zh) * | 2009-05-12 | 2009-10-07 | 武汉大学 | 一种推进剂用核壳催化剂及其制备方法 |
CN101628731A (zh) * | 2009-07-28 | 2010-01-20 | 西北工业大学 | 氧化锌纳米颗粒的制备方法 |
CN104275173A (zh) * | 2014-07-30 | 2015-01-14 | 浙江师范大学 | 碳包覆金属掺杂氧化锌复合光催化纳米材料及其制备方法 |
CN105126855A (zh) * | 2015-07-15 | 2015-12-09 | 浙江大学 | ZnO/ZnFe2O4/C纳米结构空心球及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106946284A (zh) * | 2017-04-25 | 2017-07-14 | 济南大学 | 一种发散式哑铃型氧化锌的制备方法 |
CN109932399A (zh) * | 2017-12-15 | 2019-06-25 | Tcl集团股份有限公司 | 纳米复合材料及其制备方法和应用 |
CN109932399B (zh) * | 2017-12-15 | 2021-11-02 | Tcl科技集团股份有限公司 | 纳米复合材料及其制备方法和应用 |
CN113125518A (zh) * | 2021-04-12 | 2021-07-16 | 山东科技大学 | 一氧化碳气敏微胶囊、制备方法及识别采空区火源的方法 |
CN113125518B (zh) * | 2021-04-12 | 2022-08-30 | 山东科技大学 | 一氧化碳气敏微胶囊、制备方法及识别采空区火源的方法 |
TWI880673B (zh) * | 2024-03-14 | 2025-04-11 | 崑山科技大學 | 具有摻銅氧化釩薄膜覆蓋氧化鋅奈米柱的氫氣感測器及其製作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105712393B (zh) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Construction of Zn/Ni bimetallic organic framework derived ZnO/NiO heterostructure with superior N-propanol sensing performance | |
Sui et al. | Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (benzene, toluene, and xylene) and the sensing mechanism | |
Sun et al. | Selective oxidizing gas sensing and dominant sensing mechanism of n-CaO-decorated n-ZnO nanorod sensors | |
CN105712393B (zh) | 氧化锌/单质碳核壳结构的制备方法 | |
CN108663417B (zh) | 一种针对低浓度NO2气体的新型In2O3/Sb2O3复合空心纳米管气敏材料 | |
CN105181762B (zh) | 一种基于Co‑Sn复合氧化物半导体敏感材料的乙醇传感器 | |
CN104502418B (zh) | 基于ZnO/α-Fe2O3复合氧化物半导体的丙酮气体传感器及其制备方法 | |
CN108328649A (zh) | 一种硫掺杂二氧化锡纳米材料、气敏元器件及制备方法 | |
CN109001263A (zh) | 一种基于MOF模板合成ZnO负载三氧化二铁纳米异质结构的气敏元件的方法 | |
CN106587134A (zh) | 贵金属掺杂的花状CuO纳米材料的制备方法及其制备气敏元件的方法 | |
Hu et al. | The nano-composite of Co-doped g-C3N4 and ZnO sensors for the rapid detection of BTEX gases: stability studies and gas sensing mechanism | |
CN108545777A (zh) | 一种锑-铈修饰的二硫化钼/氧化铟四元气敏材料及其制备方法 | |
CN105136977B (zh) | 一种二硫化钼基双金属纳米复合材料构建的气体传感器的制备方法 | |
CN104925869A (zh) | 铁酸铋粉体的制备方法 | |
ZA Warshagha et al. | Synthesis of ZnO Co-doped Ph-g-C3N4 for enhanced photocatalytic organic pollutants removal under visible light | |
Matsoso et al. | Room temperature ammonia vapour detection on hBN flakes | |
Ghuge et al. | Bismuth-based gas sensors: a comprehensive review | |
Cui et al. | Au Modified Hollow Cube Sn‐MOF Derivatives for Highly Sensitive, Great Selective, and Stable Detection of n‐Butanol at Room Temperature | |
Shim et al. | Synthesis of MnS/MnO Decorated N, S‐Doped Carbon Derived from a Mn (II)‐Coordinated Polymer for the Catalytic Oxidation of H2O2 and Bisphenol A | |
CN110806431B (zh) | 基于原位聚合二元纳米复合材料的氨气传感器制备方法及应用 | |
Qin et al. | Constructing Z-scheme WO3–CeO2 heterojunctions for selective sensing of NO2 or acetone gas under UV light irradiation | |
CN106872533B (zh) | 一种基于石墨化碳化氮/二氧化锡复合材料的电阻型丙酮传感器、制备方法及其应用 | |
Zhang et al. | Enhanced acetone gas sensing performance of ZnO polyhedrons decorated with LaFeO3 nanoparticles | |
Song et al. | Metal–organic framework-derived porous hollow Co3O4/ZnO nanofibers for H2S sensing | |
CN114604903A (zh) | 一种硫化钴/还原氧化石墨烯复合物及在气体传感器中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |