CN105698936A - 贴片式智能热释电红外传感器 - Google Patents

贴片式智能热释电红外传感器 Download PDF

Info

Publication number
CN105698936A
CN105698936A CN201610189480.XA CN201610189480A CN105698936A CN 105698936 A CN105698936 A CN 105698936A CN 201610189480 A CN201610189480 A CN 201610189480A CN 105698936 A CN105698936 A CN 105698936A
Authority
CN
China
Prior art keywords
ceramic
pyroelectric
infrared sensor
infrared
intelligence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610189480.XA
Other languages
English (en)
Inventor
张殿德
孙福田
白旭春
李雪
郑国恩
付浩
常吉华
文俊位
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANYANG SENBA OPTICAL ELECTRONIC CO Ltd
Original Assignee
NANYANG SENBA OPTICAL ELECTRONIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANYANG SENBA OPTICAL ELECTRONIC CO Ltd filed Critical NANYANG SENBA OPTICAL ELECTRONIC CO Ltd
Priority to CN201610189480.XA priority Critical patent/CN105698936A/zh
Publication of CN105698936A publication Critical patent/CN105698936A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及一种贴片式智能热释电红外传感器,由管帽和基板组成的封闭结构的外壳,管帽上表面具有窗口,所述窗口上镶嵌有红外光学滤光片;而管帽和基板之间形成收容空间,所述收容空间收纳并封装有红外敏感元、支撑部件及信号处理模块;所述红外敏感元靠支撑部件固定,所述支撑部件和信号处理模块直接固定在基板上。本发明的热释电红外传感器具有微型化、智能化、可输出多种控制信号的特点,这种封装结构适用于SMT自动贴片及回流焊工艺,有利于大批量自动化生产,提高制造效率,降低制造成本。

Description

贴片式智能热释电红外传感器
技术领域
本发明属于传感器的技术领域,具体地说,本发明涉及一种贴片式智能热释电红外传感器。
背景技术
热释电红外传感器是一种利用热释电效应原理制成的探测红外辐射的传感器,能够检测人或某些动物等发射出的红外线,经过滤波、放大等一系列动作后转换为电信号输出。
目前,市面上质量、效果都比较好的传统热释电红外传感器结构如图1所示,形成封闭结构的管座和管帽,该管帽的上表面窗口处有滤光片,封闭结构内设置有光学敏感元和固定该光学敏感元的支撑部件,在光学敏感元和支撑部件的下方有场效应管和固定场效应管的基板,基板上印刷有使各元器件电气连接的电路,管座内部向下延伸有三根碳钢或铁镍合金材料的引脚。其工作原理主要是通过光学敏感元将接收到的红外信号经场效应管进行阻抗变换后输出模拟信号。然而,现有技术的热释电红外传感器的管座内部向下延伸的三根碳钢或铁镍合金材料的引脚需要手工焊接,操作不便,生产效率低下,不利于流水线生产;引脚和后续处理电路的存在导致传感器体积较大,限制其微型化的发展;另外,传感器微信号放大电路输出的为模拟信号,难以适应光电行业数字化发展的必然趋势。
发明内容
为了解决现有技术中的上述技术问题,本发明的目的在于提供一种贴片式智能热释电红外传感器。
为了实现上述目的,本发明采用了以下技术方案:
一种贴片式智能热释电红外传感器,其特征在于包括:由管帽和基板组成的封闭结构的外壳,管帽上表面具有窗口,所述窗口上镶嵌有红外光学滤光片;而管帽和基板之间形成收容空间,所述收容空间收纳并封装有红外敏感元、支撑部件及信号处理模块;所述红外敏感元靠支撑部件固定,所述支撑部件和信号处理模块直接固定在基板上。
其中,所述的红外敏感元为1个或多个。
其中,所述红外敏感元采用的热释电陶瓷材料的化学组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:0.002≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1;其中,φ=0或者2.8≤φ≤5.5,所述的A为B2O3和Cr2O3的混合物,二者的摩尔比为1:1。
其中,所述基板为金属化陶瓷基板或环氧树脂PCB板。
其中,所述信号处理模块为数字智能控制电路芯片或MCU微控制器。
其中,所述红外光学滤光片的两个表面依次镀覆有红外增透膜和截止膜。
其中,所述红外光学滤光片为平面硅基、平面锗基或平面红外玻璃基滤光片;且其表面加工有菲涅尔条纹。
其中,所述红外光学滤光片为球面硅基、球面锗基或球面红外玻璃基滤光片。
与现有技术相比,本发明所述的机油自动冷却装置具有以下有益效果:
(1)本发明的传感器采用红外敏感元与红外光学滤光片,结合数字智能控制电路芯片模块或MCU微控制器,直接固定在封装材料内,实现了信号智能分析处理、数字化输出、抗干扰能力强等多种功能;采用更轻的金属化陶瓷基板和环氧树脂PCB板,并去除引脚,贴片形式封装,通过缩小尺寸,可轻易地将产品重量减轻一半,减少了材料,无需人工焊接引脚,加工方便,良品率更高,成本更低,最终使应用更趋完美,尤其适合小微型玩具、数码、隐蔽性安防等领域,市场前景广阔。
(2)本发明所述的热释电陶瓷材料不仅具有烧结温度低,烧结温度范围宽,机械性能优良的特点;而且在本发明的热释电陶瓷材料中存在FRL-FRH相变,通过La和Sr部分取代Pb,并通过二者的协同作用使得材料的相变温度低,自发极化小,因相变导致的晶格畸变不大,介电常数和介质损耗较低,热释电系数高,制作得到的被动红外热释电传感器噪声值低,灵敏度高,探测距离远;适合于制作热释电被动红外传感器及非致冷焦平面红外传感器等传感器。
附图说明
图1为现有技术中的热释电红外线传感器的结构示意图。
图2为本发明的热释电红外线传感器的结构示意图。
图3是本发明的热释电红外线传感器的电路原理图。
图4为实施例1的热释电红外线传感器的结构示意图。
图5为实施例2的热释电红外线传感器的结构示意图。
图6为本发明的基板的底部结构示意图。
图7为本发明的管帽的几种外形示意图。
图8是本发明制备的煅烧粉体及烧结热释电陶瓷的XRD图。
图9是本发明制备的热释电陶瓷断面显微结构图。
其中,各附图标记的含义分别为:1为基板,2为支撑部件,3为信号处理模块,4为红外光学敏感元,5为红外光学滤光片,6为管帽。
具体实施方式
以下将结合具体实施例对本发明所述的贴片式智能热释电红外传感器做进一步的阐述,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
如图2所示,本发明所述的贴片式智能热释电红外传感器,包括有形成封闭结构的基板1和管帽6,该管帽6的上表面设有红外光学滤光片5,所述封闭结构内收纳与封装红外敏感元4、固定该红外敏感元4的支撑部件2及信号处理模块3,支撑部件和信号处理模块3固定在基板1上,基板1上印刷有使各元器件电气连接的电路,基板1底部设置有焊盘,运用SMT自动贴片及回流焊工艺,应用于各种相关电路的组装。所述基板1为金属化陶瓷基板或环氧树脂PCB板。所述基板1底部设置有焊盘,运用SMT自动贴片及回流焊工艺,应用于各种相关电路的组装。所述红外敏感元4为一个或多个。如图3所示,所述的信号处理模块3可以是数字智能控制电路芯片模块,其内集成有信号放大电路、模数转换电路、低通/高通滤波电路和信号输出单元。所述的信号处理模块3还可以是MCU微控制器,是具有可编程能力的微电脑控制单元,借以实现更加智能化的传感器数据处理能力,包含模拟和数字信号的处理能力。所述的信号处理模块3采用DFN、SOP或COB等封装工艺封装而成。图6为本发明实施例采用的基板的底部结构示意图。图7为本发明实施例采用的管帽的几种外形示意图。
实施例1
如图4所示,基板1材料为金属化陶瓷基板,并作电磁屏蔽处理,以减少外界的电磁干扰。红外光学滤光片5为球状红外玻璃,并且在两面镀覆硅基镀增透膜和截止膜滤光片,镀膜后的球状红外玻璃切片后,嵌入管帽上的窗口处,并以树脂材料粘牢,替代传统的光学滤光片,体积小,满足微型化的要求。所述信号处理模块3是数字智能控制电路芯片模块,其内集成有信号放大电路、模数转换电路、低通/高通滤波电路和信号输出单元,实现智能化的需求。将该管帽6和基板1密封焊接,形成密封结构的贴片式智能热释电红外传感器。
实施例2
如图5所示,基板1材料为环氧树脂PCB板,并作电磁屏蔽处理,以减少外界的电磁干扰。红外光学滤光片5为平面红外玻璃,并且在两面镀覆硅基镀增透膜和截止膜滤光片,采用冷加工工艺或半导体刻蚀工艺,在表面加工出菲涅尔条纹,将其嵌入管帽上的窗口处,并以树脂材料粘牢,替代传统的光学滤光片,且体积小,满足微型化的要求。信号处理模块3是数字智能控制电路芯片模块,其内集成有信号放大电路、模数转换电路、低通/高通滤波电路和信号输出单元,实现智能化的需求。将该管帽6和基板1密封焊接,形成密封结构的贴片式智能热释电红外传感器。
在本发明中,本发明所述的热释电被动红外传感器用热释电陶瓷材料,其化学元素组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:0.002≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1;其中,φ=0或者2.8≤φ≤5.5,所述的A为B2O3和Cr2O3的混合物,二者的摩尔比为1:1。其中,所述的φat%系指A相对于(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3的摩尔百分比。所述热释电陶瓷材料通过以下方法制备得到:(1)以Pb的前驱体为PbO或Pb3O4,Zr的前驱体为ZrO2,Ti的前驱体为TiO2,Nb的前驱体为Nb2O5,Mn的前驱体为MnO2、MnO或者MnCO3,Sr的前驱体为SrCO3,La的前驱体为La2O3,并依据(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A的元素计量比准备粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在800~900℃,保温时间为1-2h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂选自Bi2O3、ZnO、Cr2O3、CuO、MgO或Al2O3中的至少一种,且所述烧结助剂的质量为所述陶瓷煅烧粉体的0~1.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入8~10wt%的粘合剂、0.8~1.2wt%的增塑剂和0.1~0.2wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1050-1200℃,保温时间为2-4h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为20min,极化电压为6KV/mm;极化后的样品放置24小时后,进行性能测试。从图8可以看出,煅烧粉体的主晶相为钙钛矿结构,而烧结后热释电陶瓷(110)方向的衍射峰值强度明显提高,为高结晶度的钙钛矿结构。从图9可以看出,晶粒大小为4~6μm,晶粒结晶完整,颗粒之间的间隙小,显微结构致密,获得的陶瓷密度高,达到了7.80g/cm3以上。本发明所述的热释电陶瓷材料不仅具有烧结温度低,烧结温度范围宽,机械性能优良的特点;而且在本发明的热释电陶瓷材料中存在FRL-FRH相变,通过La和Sr部分取代Pb,并通过二者的协同作用使得材料的相变温度低,自发极化小,因相变导致的晶格畸变不大,介电常数和介质损耗较低,热释电系数高,制作得到的被动红外热释电传感器噪声值低,灵敏度高,探测距离远。
实施例3
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.05。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在800℃,保温时间为2h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1100℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
实施例4
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.05。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
实施例5
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在800℃,保温时间为2h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1120℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
实施例6
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
实施例7
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂CuO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
实施例8
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:x=0.01,y=0.02,z=0.06,φ=2.8,并且所述的A为B2O3和Cr2O3的混合物,二者的摩尔比为1:1。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3、La2O3、B2O3和Cr2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂CuO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
实施例9
本实施例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:x=0.01,y=0.02,z=0.06,φ=5.5,并且所述的A为B2O3和Cr2O3的混合物,二者的摩尔比为1:1。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3、La2O3、B2O3和Cr2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂CuO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
利用实施例3~9所述的热释电陶瓷材料及制作的传感器性能的性能参数如表1所示。(20℃时测量)
表1
对比例1
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0,y=0.02,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2和SrCO3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在800℃,保温时间为2h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1100℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
对比例2
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.02,y=0,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在800℃,保温时间为2h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1100℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
对比例3
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0,y=0,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5和为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在800℃,保温时间为2h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1100℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
对比例4
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxIny)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、In2O3和La2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
对比例5
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-ySbxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1- zO3;其中:x=0.01,y=0.02,z=0.06。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、Sb2O3和SrCO3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂ZnO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
对比例6
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:x=0.01,y=0.02,z=0.06,φ=3.9,并且所述的A为B2O3。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3、La2O3和B2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂CuO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
对比例7
本对比例的热释电陶瓷材料,其组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:x=0.01,y=0.02,z=0.06,φ=3.9,并且所述的A为Cr2O3。所述热释电陶瓷材料通过以下方法制备得到:(1)以PbO、ZrO2、TiO2、Nb2O5、MnO2、SrCO3、La2O3和Cr2O3为原料,并依据元素计量比准备上述粉末原料,利用湿法球磨进行混合;(2)混合后的原料经压滤烘干后在900℃,保温时间为1h的条件下预烧形成陶瓷煅烧粉体;(3)将烧结助剂CuO加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料,所述烧结助剂的质量为所述陶瓷煅烧粉体的0.50wt%;(4)以陶瓷浆料的质量为基准,在陶瓷浆料内加入10wt%的粘合剂、1.0wt%的增塑剂和0.1wt%的脱模剂进行喷雾造粒形成陶瓷颗粒;(5)将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;6)采用先排胶,然后进行烧结,烧结温度为1080℃,保温时间为2h;(7)烧结后的陶瓷经切割,溅射银电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料,极化温度为150℃,极化时间为15min,极化电压为5KV/mm。
利用对比例1~5所述的热释电陶瓷材料及制作的传感器性能的性能参数如表2所示。(20℃时测量)
表2
由表1和表2的比较可知,通过La和Sr部分取代Pb,使得热释电陶瓷材料介电常数和介质损耗较低,制作得到的被动红外热释电传感器噪声值低,灵敏度高,探测距离远。实施例8~9的热释电材料在-30~50℃的温度范围内使得热释电系数大于7.0×10-8C/cm2·K;而实施例3~7以及对比例6~7得到的热释电材料仅能在20~35℃的温度范围内保持在7.0×10-8C/cm2·K以上。
对于本领域的普通技术人员而言,具体实施例只是对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (10)

1.一种贴片式智能热释电红外传感器,其特征在于包括:由管帽和基板组成的封闭结构的外壳,管帽上表面具有窗口,所述窗口上镶嵌有红外光学滤光片;而管帽和基板之间形成收容空间,所述收容空间收纳并封装有红外敏感元、支撑部件及信号处理模块;所述红外敏感元靠支撑部件固定,所述支撑部件和信号处理模块直接固定在基板上。
2.根据权利要求1所述的贴片式智能热释电红外传感器,其特征在于:所述的红外敏感元为1个或多个。
3.根据权利要求1或2所述的贴片式智能热释电红外传感器,其特征在于:所述红外敏感元采用的热释电陶瓷材料的组成为:(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A;其中:0.002≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1;其中,φ=0或者2.8≤φ≤5.5,所述的A为B2O3和Cr2O3的混合物,二者的摩尔比为1:1。
4.根据权利要求3所述的贴片式智能热释电红外传感器,其特征在于:所述热释电陶瓷材料由包括以下步骤的工艺制备得到:
混料:按照(Pb1-x-yLaxSry)(Mn1/3Nb2/3z(Zr0.94Ti0.06)1-zO3+φat%A的元素计量比准备粉末原料,并利用湿法球磨进行混合;
预烧:混合后的原料经压滤烘干后进行预烧形成陶瓷煅烧粉体;
研磨:将烧结助剂加入陶瓷煅烧粉体内,进行研磨混合形成陶瓷浆料;
喷雾造粒:在陶瓷浆料内加入粘合剂、增塑剂和脱模剂进行喷雾造粒形成陶瓷颗粒;
5)成型:将陶瓷颗粒进行预压、等静压成型形成陶瓷圆柱体;
6)烧结:采用先排胶,然后进行烧结;
7)烧结后的陶瓷经切割,上电极以及烧渗电极,并在硅油内加压极化后得到所述热释电陶瓷材料。
5.根据权利要求4所述的贴片式智能热释电红外传感器,其特征在于:步骤2)中预烧温度800-900℃,保温时间为1~2h;步骤3)中所述烧结助剂选自Bi2O3、ZnO、MgO、CuO、SiO2或Al2O3中的至少一种,且所述烧结助剂的质量为所述陶瓷煅烧粉体的0~1.50wt%;步骤6)中烧结温度为1050~1200℃,保温时间2-6h;步骤7)中极化温度为120~150℃,极化时间为10~30min,极化电压为5~6KV/mm。
6.根据权利要求1所述的贴片式智能热释电红外传感器,其特征在于:所述基板为金属化陶瓷基板或环氧树脂PCB板。
7.根据权利要求1所述的贴片式智能热释电红外传感器,其特征在于:所述信号处理模块为数字智能控制电路芯片或MCU微控制器。
8.根据权利要求1所述的贴片式智能热释电红外传感器,其特征在于:所述红外光学滤光片的两个表面依次镀覆有红外增透膜和截止膜。
9.根据权利要求1所述的贴片式智能热释电红外传感器,其特征在于:所述红外光学滤光片为平面硅基、平面锗基或平面红外玻璃基滤光片;且其表面加工有菲涅尔条纹。
10.根据权利要求1所述的贴片式智能热释电红外传感器,其特征在于:所述红外光学滤光片为球面硅基、球面锗基或球面红外玻璃基滤光片。
CN201610189480.XA 2016-03-30 2016-03-30 贴片式智能热释电红外传感器 Pending CN105698936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610189480.XA CN105698936A (zh) 2016-03-30 2016-03-30 贴片式智能热释电红外传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610189480.XA CN105698936A (zh) 2016-03-30 2016-03-30 贴片式智能热释电红外传感器

Publications (1)

Publication Number Publication Date
CN105698936A true CN105698936A (zh) 2016-06-22

Family

ID=56231837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610189480.XA Pending CN105698936A (zh) 2016-03-30 2016-03-30 贴片式智能热释电红外传感器

Country Status (1)

Country Link
CN (1) CN105698936A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404188A (zh) * 2016-08-26 2017-02-15 淄博博山新颖传感器厂 一种抗压抗冲击热释电红外探测器
CN106747436A (zh) * 2017-02-23 2017-05-31 南京云启金锐新材料有限公司 高纯高强度氧化锆陶瓷指纹识别贴片的生产方法
CN107949226A (zh) * 2017-12-29 2018-04-20 广州致远电子有限公司 一种表面贴装式隔离模块及其制作方法
CN108469305A (zh) * 2018-05-31 2018-08-31 中电科技德清华莹电子有限公司 一种贴片型热释电红外传感器
CN109217862A (zh) * 2018-10-29 2019-01-15 合肥泛米智能科技有限公司 一种多功能智能开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203479400U (zh) * 2013-08-28 2014-03-12 深圳键桥通讯技术股份有限公司 一种红外成像测温设备
CN104609858A (zh) * 2014-12-25 2015-05-13 南阳森霸光电股份有限公司 被动式热释电红外传感器用热释电陶瓷材料及其制备方法
CN204495470U (zh) * 2015-03-16 2015-07-22 国家电网公司 一种高压断路器热故障的光纤红外自动跳闸装置
CN204535856U (zh) * 2014-10-27 2015-08-05 南阳森霸光电股份有限公司 一种贴片式热释电红外传感器
CN105092046A (zh) * 2015-05-15 2015-11-25 中国计量科学研究院 一种自校准地表红外辐射测温系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203479400U (zh) * 2013-08-28 2014-03-12 深圳键桥通讯技术股份有限公司 一种红外成像测温设备
CN204535856U (zh) * 2014-10-27 2015-08-05 南阳森霸光电股份有限公司 一种贴片式热释电红外传感器
CN104609858A (zh) * 2014-12-25 2015-05-13 南阳森霸光电股份有限公司 被动式热释电红外传感器用热释电陶瓷材料及其制备方法
CN204495470U (zh) * 2015-03-16 2015-07-22 国家电网公司 一种高压断路器热故障的光纤红外自动跳闸装置
CN105092046A (zh) * 2015-05-15 2015-11-25 中国计量科学研究院 一种自校准地表红外辐射测温系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404188A (zh) * 2016-08-26 2017-02-15 淄博博山新颖传感器厂 一种抗压抗冲击热释电红外探测器
CN106404188B (zh) * 2016-08-26 2017-09-19 淄博博山新颖传感器厂 一种抗压抗冲击热释电红外探测器
CN106747436A (zh) * 2017-02-23 2017-05-31 南京云启金锐新材料有限公司 高纯高强度氧化锆陶瓷指纹识别贴片的生产方法
CN107949226A (zh) * 2017-12-29 2018-04-20 广州致远电子有限公司 一种表面贴装式隔离模块及其制作方法
CN108469305A (zh) * 2018-05-31 2018-08-31 中电科技德清华莹电子有限公司 一种贴片型热释电红外传感器
CN109217862A (zh) * 2018-10-29 2019-01-15 合肥泛米智能科技有限公司 一种多功能智能开关
CN109217862B (zh) * 2018-10-29 2024-04-19 合肥泛米智能科技有限公司 一种多功能智能开关

Similar Documents

Publication Publication Date Title
CN105698936A (zh) 贴片式智能热释电红外传感器
CN104609858B (zh) 被动式热释电红外传感器用热释电陶瓷材料及其制备方法
CN101913859B (zh) Li2Zn3Ti4O12微波介质陶瓷材料及其低温烧结方法
CN110282968A (zh) 一种微波介质陶瓷材料及其制备方法
CN103073302A (zh) 一种高电位梯度压敏陶瓷材料的低温烧结方法
CN108147813A (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN205719271U (zh) 一种新型封装结构的智能热释电红外传感器
CN103121842A (zh) 一种低介低损耗ltcc微波陶瓷材料及其制备方法
CN106064942B (zh) 高居里温度无铅snkbt压电陶瓷及其制备方法
CN102850051B (zh) 一种YFeO3 基双相磁电复合材料及其制备方法
CN101486569B (zh) 低温烧结微波陶瓷材料及其制备方法
CN107721421B (zh) 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN108863405B (zh) 一种ZnO压敏陶瓷添加剂及其制备方法和应用
CN101792319B (zh) 一种低温烧结的磁电复合陶瓷材料的制备方法
CN103951427B (zh) 一种片式多层陶瓷电容器用微波介质陶瓷材料
CN104987056A (zh) 一种新型的铁电-铁磁复合材料及其制备方法
CN105294103B (zh) 一种钒基温度稳定型微波介质陶瓷及其制备方法
CN113788676A (zh) 一种低温共烧改性NiTa2O6基微波介质陶瓷材料及其制备方法
CN105254291B (zh) 一种高品质因数中k值微波介质陶瓷及其制备方法
CN209230789U (zh) 红外线温度传感器
KR20120115809A (ko) NiZnCu 페라이트 및 이의 제조방법
CN114133239B (zh) 一种无铅热释电陶瓷材料及其制备方法
CN105399420B (zh) 一种Ti基高介电常数微波介质陶瓷及其制备方法
CN104944938A (zh) 一种中低烧结温度的微波介质陶瓷及其制备方法
CN105254300B (zh) 一种Co基温度稳定型微波介质陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 473300 Sen Ba Industrial Park, Xiangshan Road, Nanyang, Henan

Applicant after: Ssba sensing Polytron Technologies Inc

Address before: 473300 Sen Ba Industrial Park, Xiangshan Road, Nanyang, Henan

Applicant before: NANYANG SENBA OPTICAL ELECTRONIC CO., LTD.

CB02 Change of applicant information
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160622

WD01 Invention patent application deemed withdrawn after publication