CN105693245A - 一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法 - Google Patents

一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法 Download PDF

Info

Publication number
CN105693245A
CN105693245A CN201610022924.0A CN201610022924A CN105693245A CN 105693245 A CN105693245 A CN 105693245A CN 201610022924 A CN201610022924 A CN 201610022924A CN 105693245 A CN105693245 A CN 105693245A
Authority
CN
China
Prior art keywords
lanthanum oxide
oxide transparent
yttrium lanthanum
transparent ceramic
serves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610022924.0A
Other languages
English (en)
Inventor
邵英杰
杨秋红
归琰
袁野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610022924.0A priority Critical patent/CN105693245A/zh
Publication of CN105693245A publication Critical patent/CN105693245A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明涉及一种改善Er3+的3μm发光性能的掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,属特种陶瓷制造工艺技术领域。本发明采用高纯Y2O3为原料,La2O3为烧结助剂,Er2O3作为激活离子,Nd2O3作为敏化离子,采用传统陶瓷制备工艺在较低的温度条件下,通过合适的烧结制度,固相烧结法制备了(NdxEr0.01Y0.89-xLa0.1)2O3透明陶瓷。根据检测实验证实,把低浓度的Nd3+作为敏化离子,能在显著提高Er3+在氧化镧钇透明陶瓷中3μm波段的发光强度的同时有效抑制其1.5μm波段的发光。因此共掺低浓度敏化离子Nd3+,是一种能极大改善Er3+在氧化镧钇透明陶瓷中的3μm波段发光性能的方法,为Er3+在氧化镧钇透明陶瓷中实现3μm波段的高效激光运转提供可能。

Description

一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法
技术领域
本发明涉及一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,属于特种陶瓷制造工艺技术领域。
背景技术
众所周知,Er3+在1.5μm波段的激光输出有众多优良的性能,包括人眼安全,是一个良好的大气传输窗口等。然而,近年来发现,Er3+的3μm中红外激光也具有优良的性能,它在激光手术、有毒气体监测、红外对抗和自由空间通讯等诸多方面都有应用潜力。然而,由于Er3+3μm激光上能级的寿命小于下能级的寿命,难以形成激光运转所需的必要条件——粒子数反转——而产生所谓的“自终止效应”,而要形成Er3+3μm激光的粒子数反转,必须抑制其1.5μm的发光或增强其3μm的发光。近20年来,对改善Er3+3μm激光性能的研究从未间断过:1992年,Stoneman,R.C.等人在GSGG中实现了斜效率为36%的Er3+2.8μm的激光输出,证实Er3+3μm高效率激光运转的可行性;1997年,WyssC等人在LiYF4中实现了50%斜效率的Er3+3μm激光输出;1999年ChenD-W等人在YAG中实现了Er3+的3μm的瓦级激光输出。然而,以上实现Er3+的3μm激光输出的样品都要求Er3+的高掺杂以消除Er3+3μm激光的自终止效应,而高掺杂会显著降低激光介质的热学性能。因此,一种新的途径,即共掺敏化离子(Pr3+、Tm3+)以提高Er3+的中红外光谱性能,被广泛采用和研究了。诸多此类报道指出,通过共掺Pr3+,Tm3+确实能有效抑制Er3+1.5μm的发光,但同时也抑制了其3μm的发光,最后即使形成了粒子数反转,其激光斜效率也非常之低,所以把Pr3+,Tm3+作为Er3+3μm的敏化离子只是一种折衷的做法,难以形成高效激光运转。近年来,把Nd3+作为增强Er3+3μm发光的敏化离子,被诸多报道了。在这些报道中,因Nd3+与Er3+存在有效的能量传递,能在抑制Er3+1.5μm的发光的同时增加Er3+3μm的发光强度,这意味着Nd3+是能实现Er3+3μm高效激光运转的一种理想的敏化离子。
此外,Y2O3属于立方晶系,无本征双折射现象;热导率高(13.6W/m·K);声子能量低(591cm-1)。所以,Y2O3是Er3+的3μm激光运转的理想基质。但是由于Y2O3的熔点高达2430℃,且在2280℃附近会发生立方相向六方相的多晶转变,因而难以生长出大尺寸和高光学质量的Y2O3单晶。随着陶瓷制备技术及纳米制粉技术的发展,Y2O3透明陶瓷的烧结温度可降低为1700℃左右。此外,由于La2O3的加入,可以加速气孔的排除,降低透明陶瓷烧结温度并且有效抑制陶瓷晶粒过分长大,因此氧化镧钇透明陶瓷是一种性能优良的激光介质材料。
此前,Er/Nd共掺的氧化镧钇透明陶瓷的中红外激光性能已被研究过,结果指出,Nd3+在抑制了1.5μm发光的同时,也抑制了3μm波段的发光。然而,以上研究并未考虑Nd3+浓度对敏化作用的重要影响。本发明首次通过共掺不同浓度的敏化离子Nd3+调控了Er3+在氧化镧钇透明陶瓷中1.5μm和3μm波段的发光强度。
发明内容
本发明的目的在于提供一种方法来改善Er3+掺杂的氧化镧钇透明陶瓷的3μm发光性能。整体思路是通过共掺杂不同浓度Nd3+来同时调控Er3+掺杂的氧化镧钇透明陶瓷2.7μm的发光强度和其1.5μm的发光强度,为Er3+在氧化镧钇透明陶瓷中实现3μm激光运转提供可能。
1.本发明一种掺有Nd和Er的氧化镧钇透明陶瓷,其特征在于具有以下组分及其化学表达式:
(NdxEr0.01Y0.89-xLa0.1)2O3
其中,x为原子摩尔分数,x=0.001~0.01;
2.本发明一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,其特征在于其具有以下的工艺过程和步骤:
a.采用高纯99.99%Y2O3,99.99%Er2O3,99.99%Nd2O3和99.99%La2O3为原料;Y2O3为基体材料;La2O3为烧结助剂,掺入量为10at.%;Er2O3作为激活离子,掺入量为1at.%;Nd2O3作为敏化离子,掺入量为0.1~0.1at.%;
b.将按在步骤a中的配方配制好的基体材料和掺杂材料进行搅拌,充分均匀混和,混合料在无水乙醇中用ZrO2球磨子湿法混磨5小时;
c.将在步骤b中经混磨后的混合料在90℃温度下烘干,然后在1200℃下预烧8~10小时,煅烧环境为空气气氛,从而制得(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)粉体;
d.再次将c中制得的粉体、无水乙醇和ZrO2球磨子放入球磨罐中进行湿法球磨5h;
e.将球磨好的粉体在烘箱内,90℃,24h烘干,然后将粉料进行造粒,过40目筛;
f.将造粒后的粉料干压成型,随后在200MP冷等静压下压成片状式样;
g.将f中制得的片状生坯放在放在氢气炉中烧结,烧结温度范围1550-1650℃,烧结时间40-45个小时最终得到致密的(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)透明陶瓷。
附图说明
图1为本发明中(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)透明陶瓷的3μm左右的发射光谱图。
图2为本发明中(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)透明陶瓷的1.5μm左右的发射光谱图。
具体实施方式
现将本发明的具体实施例叙述于后。
实施例1
本实施例一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,其具体工艺步骤如下:
a.采用高纯99.99%Y2O3,99.99%Er2O3,99.99%Nd2O3和99.99%La2O3为原料;Y2O3为基体材料;La2O3为烧结助剂,掺入量为10at.%;Er2O3作为激活离子,掺入量为1at.%;Nd2O3作为敏化离子,掺入量为0.1at.%;
b.将按在步骤a中的配方配制好的基体材料和掺杂材料进行搅拌,充分均匀混和,混合料在无水乙醇中用ZrO2球磨子湿法混磨5小时;
c.将在步骤b中经混磨后的混合料在90℃温度下烘干,然后在1200℃下预烧8~10小时,煅烧环境为空气气氛,从而制得(Nd0.001Er0.01Y0.889La0.1)2O3粉体;
d.再次将c中制得的粉体、无水乙醇和ZrO2球磨子放入球磨罐中进行湿法球磨5h;
e.将球磨好的粉体在烘箱内,90℃,24h烘干,然后将粉料进行造粒,过40目筛;
f.将造粒后的粉料干压成型,随后在200MP冷等静压下压成片状式样;
g.将f中制得的片状生坯放在放在氢气炉中烧结,烧结温度范围1550-1650℃,烧结时间40-45个小时,最终得到致密的(Nd0.001Er0.01Y0.889La0.1)2O3透明陶瓷。
实施例2
本实施例一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,其具体工艺步骤如下:
a.采用高纯99.99%Y2O3,99.99%Er2O3,99.99%Nd2O3和99.99%La2O3为原料;Y2O3为基体材料;La2O3为烧结助剂,掺入量为10at.%;Er2O3作为激活离子,掺入量为1at.%;Nd2O3作为敏化离子,掺入量为0.2at.%;
b.将按在步骤a中的配方配制好的基体材料和掺杂材料进行搅拌,充分均匀混和,混合料在无水乙醇中用ZrO2球磨子湿法混磨5小时;
c.将在步骤b中经混磨后的混合料在90℃温度下烘干,然后在1200℃下预烧8~10小时,煅烧环境为空气气氛,从而制得(Nd0.002Er0.01Y0.888La0.1)2O3粉体;
d.再次将c中制得的粉体、无水乙醇和ZrO2球磨子放入球磨罐中进行湿法球磨5h;
e.将球磨好的粉体在烘箱内,90℃,24h烘干,然后将粉料进行造粒,过40目筛;
f.将造粒后的粉料干压成型,随后在200MP冷等静压下压成片状式样;
g.将f中制得的片状生坯放在放在氢气炉中烧结,烧结温度范围1550-1650℃,烧结时间40-45个小时,最终得到致密的(Nd0.002Er0.01Y0.888La0.1)2O3透明陶瓷。
实施例3
本实施例一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,其具体工艺步骤如下:
a.采用高纯99.99%Y2O3,99.99%Er2O3,99.99%Nd2O3和99.99%La2O3为原料;Y2O3为基体材料;La2O3为烧结助剂,掺入量为10at.%;Er2O3作为激活离子,掺入量为1at.%;Nd2O3作为敏化离子,掺入量为0.5at.%;
b.将按在步骤a中的配方配制好的基体材料和掺杂材料进行搅拌,充分均匀混和,混合料在无水乙醇中用ZrO2球磨子湿法混磨5小时;
c.将在步骤b中经混磨后的混合料在90℃温度下烘干,然后在1200℃下预烧8~10小时,煅烧环境为空气气氛,从而制得(Nd0.005Er0.01Y0.885La0.1)2O3粉体;
d.再次将c中制得的粉体、无水乙醇和ZrO2球磨子放入球磨罐中进行湿法球磨5h;
e.将球磨好的粉体在烘箱内,90℃,24h烘干,然后将粉料进行造粒,过40目筛;
f.将造粒后的粉料干压成型,随后在200MP冷等静压下压成片状式样;
g.将f中制得的片状生坯放在放在氢气炉中烧结,烧结温度范围1550-1650℃,烧结时间40-45个小时,最终得到致密的(Nd0.005Er0.01Y0.885La0.1)2O3透明陶瓷。
实施例4
本实施例一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,其具体工艺步骤如下:
a.采用高纯99.99%Y2O3,99.99%Er2O3,99.99%Nd2O3和99.99%La2O3为原料;Y2O3为基体材料;La2O3为烧结助剂,掺入量为10at.%;Er2O3作为激活离子,掺入量为1at.%;Nd2O3作为敏化离子,掺入量为1at.%;
b.将按在步骤a中的配方配制好的基体材料和掺杂材料进行搅拌,充分均匀混和,混合料在无水乙醇中用ZrO2球磨子湿法混磨5小时;
c.将在步骤b中经混磨后的混合料在90℃温度下烘干,然后在1200℃下预烧8~10小时,煅烧环境为空气气氛,从而制得(Nd0.01Er0.01Y0.88La0.1)2O3粉体;
d.再次将c中制得的粉体、无水乙醇和ZrO2球磨子放入球磨罐中进行湿法球磨5h;
e.将球磨好的粉体在烘箱内,90℃,24h烘干,然后将粉料进行造粒,过40目筛;
f.将造粒后的粉料干压成型,随后在200MP冷等静压下压成片状式样;
g.将f中制得的片状生坯放在放在氢气炉中烧结,烧结温度范围1550-1650℃,烧结时间40-45个小时,最终得到致密的(Nd0.01Er0.01Y0.88La0.1)2O3透明陶瓷。
本发明各实施例组分配比见表1,各实例制备了透过率良好的(NdxEr0.01Y0.89- xLa0.1)2O3(x=0.001~0.01)透明陶瓷,发射光谱通过法国JobinYvonSpex公司生产的荧光光谱仪Fluorolog-3检测。图1是(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)透明陶瓷的2.7μm左右的发射光谱图。由图可知,低浓度共掺杂的Nd3+能显著提高Er3+在氧化镧钇透明陶瓷中2.7μm左右的发光强度——0.1at.%Nd3+共掺的样品2.7μm左右的发光强度是单掺Er3+的两倍多。图2为(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)透明陶瓷的1.5μm左右的发射光谱图。由图可知共掺杂Nd3+能极大的抑制Er3+在氧化镧钇透明陶瓷中1.5μm左右的发光,并且Nd3+的掺杂浓度越高,抑制效果越明显,1at.%Nd共掺的样品甚至已经检测不到1.5μm左右的荧光峰。以上结果表面,共掺杂低浓度的Nd,能在显著地提高Er3+在氧化镧钇透明陶瓷中2.7μm左右发光强度的同时强烈抑制1.5μm左右的发光,是为Er3+3μm激光的高效运转提供可能的一种有效的途径。

Claims (2)

1.一种掺有Nd和Er的氧化镧钇透明陶瓷,其特征在于具有以下组分及其化学表达式:
(NdxEr0.01Y0.89-xLa0.1)2O3
其中,x为原子摩尔分数,x=0.001~0.01。
2.一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法,其特征在于其具有以下的工艺过程和步骤:
a.采用高纯99.99%Y2O3,99.99%Er2O3,99.99%Nd2O3和99.99%La2O3为原料;Y2O3为基体材料;La2O3为烧结助剂,掺入量为10at.%;Er2O3作为激活离子,掺入量为1at.%;Nd2O3作为敏化离子,掺入量为0.1~1at.%;
b.将按在步骤a中的配方配制好的基体材料和掺杂材料进行搅拌,充分均匀混和,混合料在无水乙醇中用ZrO2球磨子湿法混磨5小时;
c.将在步骤b中经混磨后的混合料在90℃温度下烘干,然后在1200℃下预烧8~10小时,煅烧环境为空气气氛,从而制得(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)粉体;
d.再次将c中制得的粉体、无水乙醇和ZrO2球磨子放入球磨罐中进行湿法球磨5h;
e.将球磨好的粉体在烘箱内,90℃,24h烘干,然后将粉料进行造粒,过40目筛;
f.将造粒后的粉料干压成型,随后在200MP冷等静压下压成片状式样;
g.将f中制得的片状生坯放在放在氢气炉中烧结,烧结温度范围1550-1650℃,烧结时间40-45个小时,最终得到致密的(NdxEr0.01Y0.89-xLa0.1)2O3(x=0.001~0.01)透明陶瓷。
CN201610022924.0A 2016-01-14 2016-01-14 一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法 Pending CN105693245A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610022924.0A CN105693245A (zh) 2016-01-14 2016-01-14 一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610022924.0A CN105693245A (zh) 2016-01-14 2016-01-14 一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN105693245A true CN105693245A (zh) 2016-06-22

Family

ID=56227314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610022924.0A Pending CN105693245A (zh) 2016-01-14 2016-01-14 一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN105693245A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742463A (zh) * 2023-08-15 2023-09-12 长春理工大学 一种双波长泵浦键合晶体的中红外激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699281A (zh) * 2005-05-17 2005-11-23 上海大学 掺Nd3+的氧化镧钇激光陶瓷的制备方法
CN103073293A (zh) * 2013-01-17 2013-05-01 上海大学 Er3+和Nd3+共掺的氧化镧钇闪烁透明陶瓷材料的制备方法
CN103964849A (zh) * 2013-10-15 2014-08-06 上海大学 用于激光的Er3+、Pr3+和Tm3+三掺氧化镧钇透明陶瓷的制备方法
CN104150904A (zh) * 2014-05-09 2014-11-19 上海大学 用于中红外激光的Er3+单掺氧化镧钇透明陶瓷的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699281A (zh) * 2005-05-17 2005-11-23 上海大学 掺Nd3+的氧化镧钇激光陶瓷的制备方法
CN103073293A (zh) * 2013-01-17 2013-05-01 上海大学 Er3+和Nd3+共掺的氧化镧钇闪烁透明陶瓷材料的制备方法
CN103964849A (zh) * 2013-10-15 2014-08-06 上海大学 用于激光的Er3+、Pr3+和Tm3+三掺氧化镧钇透明陶瓷的制备方法
CN104150904A (zh) * 2014-05-09 2014-11-19 上海大学 用于中红外激光的Er3+单掺氧化镧钇透明陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOBO ZHUANG ET AL.: "Enhanced emission of 2.7μm from Er3+/Nd3+-codoped LiYF4 single crystals", 《MATERIALS SCIENCE AND ENGINEERING B》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742463A (zh) * 2023-08-15 2023-09-12 长春理工大学 一种双波长泵浦键合晶体的中红外激光器
CN116742463B (zh) * 2023-08-15 2024-04-02 长春理工大学 一种双波长泵浦键合晶体的中红外激光器

Similar Documents

Publication Publication Date Title
Tang et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs
Ikesue et al. Synthesis of Nd3+, Cr3+‐codoped YAG ceramics for high‐efficiency solid‐state lasers
Yu et al. Fabrication of Nd: YAG transparent ceramics using powders synthesized by citrate sol-gel method
CN102978701B (zh) 一种Er3+/Yb3+共掺杂氟化钇锂单晶体及其制备方法
CN106673652A (zh) 一种具有核壳结构的氧化钇基激光陶瓷及其制备方法
CN102978700B (zh) 一种Er3+/Pr3+共掺杂氟化钇锂单晶体及其制备方法
CN102311258A (zh) 激活离子受控掺杂的钇铝石榴石基激光透明陶瓷材料及其制备方法
CN106753371A (zh) 一种钬镱共掺杂钨酸铋荧光粉及其制备方法
Ning et al. New double-sintering aid for fabrication of highly transparent ytterbium-doped yttria ceramics
CN113773081A (zh) 一种透明陶瓷及其制备方法
CN101148357A (zh) 掺Yb3+的氧化镧钇上转换发光透明激光陶瓷的制备方法
Wang et al. Fabrication of highly transparent Er3+, Yb3+: Y2O3 ceramics with La2O3/ZrO2 as sintering additives and the near-infrared and upconversion luminescence properties
CN1285538C (zh) Mg、Ti共掺的Al2O3晶体材料及其透明激光陶瓷的制备方法
CN107324805A (zh) 一种多组分石榴石基激光透明陶瓷材料及其制备方法
Kim et al. Effect of ZnO and TiO2 doping on the sintering behavior of Y2O3 ceramics
CN106588014B (zh) 一种发光增强的Tm3+掺杂氧化镥基透明陶瓷及制备方法
CN106830935A (zh) 一种Nd敏化的氧化钇基激光陶瓷及其制备方法
CN102674839A (zh) 一种掺Tm3+氧化镧钇激光透明陶瓷材料的制备方法
CN105693245A (zh) 一种掺有Nd和Er的氧化镧钇透明陶瓷的制备方法
Zhang et al. High transparency Cr, Nd: LuAG ceramics prepared with MgO additive
CN103073295B (zh) Er3+和Tm3+共掺的氧化镧钇闪烁透明陶瓷材料的制备方法
CN102674837A (zh) Er3+:Lu2O3透明陶瓷
Jiang et al. Synthesis and properties of Yb: Sc2O3 transparent ceramics
Wang et al. Fabrication of Er3+/Yb3+ co-doped Y2O3 transparent ceramics by solid-state reaction method and its up-conversion luminescence
CN115353389A (zh) Ho离子参杂倍半氧化物透明陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160622