CN105692705A - 一种圆形磁性锰铁氧体纳米片的制备方法 - Google Patents

一种圆形磁性锰铁氧体纳米片的制备方法 Download PDF

Info

Publication number
CN105692705A
CN105692705A CN201610228400.7A CN201610228400A CN105692705A CN 105692705 A CN105692705 A CN 105692705A CN 201610228400 A CN201610228400 A CN 201610228400A CN 105692705 A CN105692705 A CN 105692705A
Authority
CN
China
Prior art keywords
preparation
alcohol
nanometer sheet
ferrite nanometer
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610228400.7A
Other languages
English (en)
Other versions
CN105692705B (zh
Inventor
刘瑞江
武俊明
邓廷丽
吴春芳
谢敏祥
张继鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd
Original Assignee
JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd filed Critical JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd
Priority to CN201610228400.7A priority Critical patent/CN105692705B/zh
Publication of CN105692705A publication Critical patent/CN105692705A/zh
Application granted granted Critical
Publication of CN105692705B publication Critical patent/CN105692705B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于纳米材料制备技术领域,具体涉及一种圆形磁性锰铁氧体纳米片及其制备方法,其特征包括所述的圆形锰铁氧体纳米片的直径为35-70nm,其厚度为15-25nm。其制备过程包括以下步骤:常压下,将醇溶性金属锰盐和铁盐溶解在无水乙醇中形成均一溶液,无水乙醇的量控制在1mol铁盐对应1.5L无水乙醇,将溶液点火燃烧,燃烧结束将其置于程序控温炉中在250~800℃下煅烧0.5-8h,即可得到圆形磁性锰铁氧体纳米片。本方法绿色环保无污染,操作简单,产率高,生产周期短,产品均匀,易工业化。

Description

一种圆形磁性锰铁氧体纳米片的制备方法
技术领域
本发明涉及一种圆形磁性锰铁氧体纳米片的制备方法,属于纳米材料制备技术领域。
背景技术
一维纳米结构材料对材料科学的研究发挥着重要的作用,因其应用广泛成为一类很有前景的理想纳米材料。在过去的十几年里,一维纳米结构材料,如纳米片、纳米管、纳米纤维等等,特别是氧化铁基纳米晶体材料,因其独特的性质及其在各个领域广泛的实际应用引起了大量科研人员的兴趣和研究。
磁性MnFe2O4纳米材料本来就是一种环境友好,具有较低居里温度和适中饱和磁化强度以及高化学稳定性的重要的尖晶石铁氧体软磁材料;因其具有的纳米材料特性及其本身的优势,广泛应用于生物医药、环境保护、器械和军事等领域。文献报到,磁性MnFe2O4纳米材料可用作药物输送载体、电化学传感器、磁共振成像系统、肿瘤热疗、微波吸收、重金属传感器、催化和光催化、微波反应装置、磁贮存器等众多方面,因其具有很大的比表面积,常常被用于环境污水重金属的移除处理和雷达吸波装置等等,显示出了磁性MnFe2O4纳米材料是一种非常有前景的磁性纳米材料。
虽然磁性MnFe2O4纳米材料的制备方法很多,如声化学技术、微波协助球磨法、热解法、溶剂热法、水热法、超声法、溶胶-凝胶法、溶胶-凝胶自燃法、共沉淀法等等。并且可以制备出多种形貌的磁性MnFe2O4纳米材料,但目前圆形磁性MnFe2O4纳米片材料及其制备方法未见报道。
发明内容
发明目的:为解决现有技术中存在的技术问题,本发明提供了一种圆形磁性锰铁氧体纳米片的制备方法,通过采用溶液燃烧-凝胶煅烧相结合的方法制备了圆形磁性锰铁氧体纳米片,操作程序简捷,制备过程简单,制备周期短,产率高,产品均匀,且对设备要求低,可大规模生产。
技术方案:为实现上述技术目的,本发明提出的一种圆形磁性锰铁氧体纳米片的制备方法,包括如下步骤:
(1)将醇溶性金属锰盐和醇溶性铁盐溶于无水乙醇中,搅拌至金属铁盐和锰盐完全溶解,制得均匀的前驱体溶液;
(2)将前驱体溶液置于坩埚中在空气条件下直接点火燃烧至乙醇燃烧结束,火自然熄灭,制得其前驱体凝胶;
(3)将盛有前驱体凝胶的坩埚置于程序控温炉中,升温并保温煅烧,热处理后自然冷却得圆形磁性锰铁氧体纳米片。
优选地,所述醇溶性锰盐为硝酸锰(Mn(NO3)3·4H2O),所述醇溶性铁盐为硝酸铁(Fe(NO3)3·9H2O)。
具体地,步骤(1)中所述醇溶性金属锰盐和醇溶性铁盐的摩尔比为1∶2。
步骤(1)中所述无水乙醇的量控制在1mol醇溶性铁盐对应1.5L无水乙醇。
步骤(3)中,升温并煅烧具体操作为:升温速率为0.5~10℃/min,保温煅烧温度为250~800℃。
步骤(3)中保温煅烧时间为0.5~8h。
通过上述任一项所述的制备方法制备得到的圆形磁性锰铁氧体纳米片同样在本发明的保护范围之内。
作为优选的实施方案,所述的圆形锰铁氧体纳米片的直径为35-70nm,其厚度为15-25nm。
有益效果:与现有技术相比,本发明首次采用溶胶燃烧-凝胶煅烧法制备出了圆形磁性锰铁氧体纳米片,采用本发明制备的圆形纳米片的直径为35-70nm,其厚度为15-25nm,形貌均匀,性能稳定,产率高,易于工业化生产。
附图说明
图1为实施例1制备的圆形磁性锰铁氧体纳米片的扫描电镜照片(图中标尺大小为100nm)及其对应的EDX图。
图2为实施例1制备的圆形磁性锰铁氧体纳米片的磁滞回线图;
图3为实施例1制备的圆形磁性锰铁氧体纳米片的透射电镜照片;其中图中标尺大小为50nm。
具体实施方式
下面结合具体实施例和附图内容对本发明作进一步的阐述,以使本领域技术人员更好的理解本发明的技术方案。
实施例1
向30mL无水乙醇中加入8.08g硝酸铁和2.51g硝酸锰,磁力搅拌溶解1h形成前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到其前驱体凝胶,将凝胶置于程序控温炉中,以3℃/min的升温速率,在400℃下煅烧2h,自然冷却至室温后取出,得圆形磁性锰铁氧体纳米片。
图1为本实施例所述条件下制备的圆形磁性锰铁氧体纳米片的扫描电镜照片及其对应的EDX图,从其EDX图可以看到,所得磁性锰铁氧体纳米片元素比例。
图2为本实施例所述条件下制备的圆形磁性锰铁氧体纳米片的磁滞回线图,其磁滞回线显示,磁性锰铁氧体纳米片具有典型的软磁特性,其饱和磁化强度为21.7Am2/kg。
图3为本实施例所述条件下制备的圆形磁性锰铁氧体纳米片的透射电镜照片,从电镜可以看出,圆形磁性锰铁氧体纳米片的平均直径约为43nm,其平均厚度约为14nm。
实施例2
向45mL无水乙醇中加入12.12g硝酸铁和3.77g硝酸锰,磁力搅拌溶解2h形成前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到其前驱体凝胶,将凝胶置于程序控温炉中,以0.5℃/min的升温速率,在250℃下煅烧8h,自然冷却至室温后取出,得圆形磁性锰铁氧体纳米片,经检测,其饱和磁化强度为17.2Am2/kg,平均直径约为35nm,其平均厚度约为24nm。
实施例3
向15mL无水乙醇中加入4.04g硝酸铁和1.26g硝酸锰,磁力搅拌溶解4h形成前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到其前驱体凝胶,将凝胶置于程序控温炉中,以10℃/min的升温速率,在800℃下煅烧0.5h,自然冷却至室温后取出,得圆形磁性锰铁氧体纳米片,经检测,其饱和磁化强度为32.3Am2/kg,平均直径约为66nm,其平均厚度约为23nm。
实施例4
向45mL无水乙醇中加入12.12g硝酸铁和3.77g硝酸锰,磁力搅拌溶解2h形成前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到其前驱体凝胶,将凝胶置于程序控温炉中,以2℃/min的升温速率,在300℃下煅烧4h,自然冷却至室温后取出,得圆形磁性锰铁氧体纳米片,经检测,其饱和磁化强度为19.8Am2/kg,平均直径约为40nm,其平均厚度约为15nm。
实施例5
向15mL无水乙醇中加入4.04g硝酸铁和1.26g硝酸锰,磁力搅拌溶解4h形成前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到其前驱体凝胶,将凝胶置于程序控温炉中,以5℃/min的升温速率,在600℃下煅烧2h,自然冷却至室温后取出,得圆形磁性锰铁氧体纳米片,经检测,其饱和磁化强度为26.5Am2/kg,平均直径约为58nm,其平均厚度约为19nm。
实施例6
向30mL无水乙醇中加入8.08g硝酸铁和2.51g硝酸锰,磁力搅拌溶解1h形成前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到其前驱体凝胶,将凝胶置于程序控温炉中,以1℃/min的升温速率,在500℃下煅烧1h,自然冷却至室温后取出,得圆形磁性锰铁氧体纳米片,经检测,其饱和磁化强度为23.1Am2/kg,平均直径约为51nm,其平均厚度约为16nm。

Claims (8)

1.一种圆形磁性锰铁氧体纳米片的制备方法,其特征在于,包括如下步骤:
(1)将醇溶性金属锰盐和醇溶性铁盐溶于无水乙醇中,搅拌至金属铁盐和锰盐完全溶解,制得均匀的前驱体溶液;
(2)将前驱体溶液置于坩埚中在空气条件下直接点火燃烧至乙醇燃烧结束,火自然熄灭,制得其前驱体凝胶;
(3)将盛有前驱体凝胶的坩埚置于程序控温炉中,升温并保温煅烧,热处理后自然冷却得圆形磁性锰铁氧体纳米片。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述醇溶性锰盐为硝酸锰,所述醇溶性铁盐为硝酸铁。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述醇溶性金属锰盐和醇溶性铁盐的摩尔比为1∶2。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述无水乙醇的量控制在1mol醇溶性铁盐对应1.5L无水乙醇。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,升温并煅烧具体操作为:升温速率为0.5~10℃/min,保温煅烧温度为250~800℃。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中保温煅烧时间为0.5~8h。
7.权利要求1~6任一项所述的制备方法制备得到的圆形磁性锰铁氧体纳米片。
8.根据权利要求7所述的圆形磁性锰铁氧体纳米片,其特征在于,所述的圆形锰铁氧体纳米片的直径为35-70nm,其厚度为15-25nm。
CN201610228400.7A 2016-04-13 2016-04-13 一种圆形磁性锰铁氧体纳米片的制备方法 Active CN105692705B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610228400.7A CN105692705B (zh) 2016-04-13 2016-04-13 一种圆形磁性锰铁氧体纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610228400.7A CN105692705B (zh) 2016-04-13 2016-04-13 一种圆形磁性锰铁氧体纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN105692705A true CN105692705A (zh) 2016-06-22
CN105692705B CN105692705B (zh) 2017-04-26

Family

ID=56218756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610228400.7A Active CN105692705B (zh) 2016-04-13 2016-04-13 一种圆形磁性锰铁氧体纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN105692705B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786130A (zh) * 2019-01-09 2019-05-21 桂林电子科技大学 一种超级电容器用MnFe2O4纳米片阵列及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625919A (zh) * 2009-04-30 2010-01-13 中国计量学院 一种新型结构的介孔纳米磁性材料的制备方法
CN103922411A (zh) * 2014-04-17 2014-07-16 陕西科技大学 一种微波水热法制备片状Cr2WO6纳米晶的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101625919A (zh) * 2009-04-30 2010-01-13 中国计量学院 一种新型结构的介孔纳米磁性材料的制备方法
CN103922411A (zh) * 2014-04-17 2014-07-16 陕西科技大学 一种微波水热法制备片状Cr2WO6纳米晶的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHMED FARAZ ET AL: ""Synthesis, Structural, and Magnetic Characterization of Mn1-xNixFe2O4 Spinel Nanoferrites"", 《J SUPERCOND NOV MAGN》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786130A (zh) * 2019-01-09 2019-05-21 桂林电子科技大学 一种超级电容器用MnFe2O4纳米片阵列及制备方法
CN109786130B (zh) * 2019-01-09 2021-05-04 桂林电子科技大学 一种超级电容器用MnFe2O4纳米片阵列及制备方法

Also Published As

Publication number Publication date
CN105692705B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Vinosha et al. Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications
Silambarasu et al. Room-temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe 2 O 4 nanocatalysts
Manikandan et al. Structural, optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method
Rouhani et al. The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol‐gel autocombustion method
Hema et al. The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles
Cannas et al. Synthesis and characterization of CoFe2O4 nanoparticles dispersed in a silica matrix by a sol− gel autocombustion method
Deshpande et al. Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties
Rajesh et al. High-surface-area nanocrystalline cerium phosphate through aqueous sol− gel route
Shobana et al. Structural studies on the yttrium-doped cobalt ferrite powders synthesized by sol–gel combustion method
CN109745996A (zh) 一种高比表面积纳米级铁酸锰催化剂的制备方法
CN101508468B (zh) 一种铁酸盐纳米超结构多孔材料及其制备方法
Ianoş et al. Fine tuning of CoFe2O4 properties prepared by solution combustion synthesis
Malyshev et al. Electromagnetic properties of Li0. 4Fe2. 4Zn0. 2O4 ferrite sintered by continuous electron beam heating
Malyshev et al. Microstructure, electromagnetic and dielectric properties of zinc substituted lithium ferrites prepared by radiation-thermal heating
CN104909412B (zh) 一种磁性Fe2O3/Fe3O4纳米异质体颗粒的制备方法
Kooti et al. Glycine-assisted fabrication of zinc and manganese ferrite nanoparticles
Jacobsohn et al. Multifunction Gd2O3: Eu nanocrystals produced by solution combustion synthesis: Structural, luminescent, and magnetic characterization
CN101412542A (zh) 硬脂酸溶液燃烧法制备钙钛矿型纳米LaFe0.5Mn0.5O3
Gadkari et al. Influence of rare earth ion (Y3+) on the magnetic and dc electrical properties of high density nanocrystalline MgCd ferrites
CN105692705B (zh) 一种圆形磁性锰铁氧体纳米片的制备方法
Jadhav et al. Effect of different additives on the size control and emission properties of Y2O3: Eu3+ nanoparticles prepared through the coprecipitation method
Katoch et al. Crystal structure, synthesis, properties and potential applications of cobalt spinel ferrite: A brief review
CN105905949B (zh) 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法
CN113120968A (zh) 一种磁性Fe3O4/Fe2O3异质体中空纳米棒材料及制备方法和应用
CN100398453C (zh) 硬脂酸凝胶燃烧法制备钙钛矿型纳米LaCoO3

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant