CN105905949B - 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法 - Google Patents

一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法 Download PDF

Info

Publication number
CN105905949B
CN105905949B CN201610229201.8A CN201610229201A CN105905949B CN 105905949 B CN105905949 B CN 105905949B CN 201610229201 A CN201610229201 A CN 201610229201A CN 105905949 B CN105905949 B CN 105905949B
Authority
CN
China
Prior art keywords
magnetic
composite nanorod
preparation
composite
absolute ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610229201.8A
Other languages
English (en)
Other versions
CN105905949A (zh
Inventor
刘瑞江
邓廷丽
吴春芳
武俊明
章之俊
于庆梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd
Original Assignee
JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd filed Critical JIANGSU ZHONGXING PHARMACEUTICAL CO Ltd
Priority to CN201610229201.8A priority Critical patent/CN105905949B/zh
Publication of CN105905949A publication Critical patent/CN105905949A/zh
Application granted granted Critical
Publication of CN105905949B publication Critical patent/CN105905949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明属于一维或准一维无机非金属纳米磁性复合材料制备领域技术,具体涉及一种磁性Fe3O4/Fe2O3复合纳米棒的简捷制备方法,本发明以硝酸铁和无水乙醇为原料,且2mmol硝酸铁对应无水乙醇的量为1mL,搅拌溶解制得前驱体溶液,将前驱体溶液在空气中点火燃烧制得凝,将凝胶在升温速率为0.5‑15℃/min条件下,150‑400℃煅烧0.1‑10h,自然冷却至室温即可得磁性Fe3O4/Fe2O3复合纳米棒。本发明制备方法简单、快捷、方便,原料丰富,成本低,设备要求不高,产品形貌均匀。

Description

一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法
技术领域
本发明涉及一种磁性Fe3O4/Fe2O3复合纳米棒的简捷制备方法,属于一维或准一维无机非金属纳米复合材料制备技术领域。
背景技术
作为一种环境友好的磁性纳米材料,氧化铁纳米材料具有很多独特的物理化学性质,能在环境条件下稳定存在,这些独特的性质使其被广泛应用于电极材料、催化剂、传感器、磁共振成像等多个领域。由于其成本低,环保,生物相容性好,在生物体中表现出无毒或低毒的特性,因此,氧化铁纳米材料在生物医药领域也得到了广泛的应用,如用于基因和药物传递载体、细胞分离、DNA萃取、热疗等等。
一维或准一维纳米材料对材料科学的研究发挥着重要的作用,并且因其各种各样的应用成为一类很有前景的理想纳米材料。在过去的几十年里,一维纳米结构材料,如纳米棒、纳米管、纳米纤维、纳米片等等,因其独特的特性及其在各个领域广泛的实际应用引起了大量科研人员的兴趣和研究。
目前,关于磁性Fe3O4/Fe2O3复合纳米棒制备的报道很少,虽已有文献资料报道单一成分的Fe2O3纳米棒的制备,但这些方法耗时都较长,且因成分的影响产品的饱和磁化强度较小。当然,有文献(J.Magn.Magn.Mater.,2004,272-276: 1776-1777)报道,将Fe2O3在95%氩气和5%氢气氛围中350℃还原0.5-6h,之后在氦气保护下1100℃煅烧3h,制得磁性Fe3O4/Fe2O3纳米复合颗粒,其制备过程复杂,工艺控制难度大,使用氢气还原,操作控制要求较高,对设备的要求也很高,以确保气体不会泄露,且若操作不当还会带来安全隐患;同时,使用稀有气体保护,污染环境,制备成本高;若采用上述两种方法进行工艺制备磁性Fe3O4/Fe2O3复合纳米棒,工艺过程复杂且不经济,生产安全性不高。
发明内容
发明目的:为解决现有技术中存在的技术问题,本发明一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法,简化了工艺操作程序,生产周期短,真正实现了简捷安全快速生产的优势。
技术方案:为实现上述技术目的,本发明提出一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法,包括如下步骤:
(1)将硝酸铁溶于无水乙醇中,搅拌至完全溶解,制得前驱体溶液;
(2)将前驱体溶液直接点火燃烧至火自然熄灭,制得其凝胶;
(3)将凝胶置于程序控温炉中,升温并保温煅烧,热处理后自然冷却至室温得磁性Fe3O4/Fe2O3复合纳米棒。
优选地,步骤(1)中,硝酸铁和无水乙醇的用量为每2mmol硝酸铁对应无水乙醇的量为1mL。
优选地,步骤(3)中,所述保温煅烧的条件为:煅烧温度150-400℃,升温速率为0.5-15℃/min。
优选地,步骤(3)中,所述保温煅烧时间为0.1-10h。
有益效果:与现有技术相比,本发明首次采用溶液燃烧—凝胶煅烧法制备出磁性Fe2O3/Fe3O4纳米棒。采用本方法制备磁性Fe2O3/Fe3O4纳米棒,只需要硝酸铁和无水乙醇为原料,原料种类少,具有过程易控制,装置和工艺简单,无还原过程,操作方便,成本低,无污染,所需设备要求不高,制备周期短,煅烧温度低,产品形貌均匀、收率高,制备时间短等优点,可通过控制前驱体溶液中无水乙醇与硝酸铁的比例以及煅烧的机制有效地控制目标产物的组成、微观结构和性能。
附图说明
图1为实施例1制备的磁性Fe3O4/Fe2O3复合纳米棒的扫描电镜照片,图中标尺大小为100nm;
图2为实施例1制备的磁性Fe3O4/Fe2O3复合纳米棒的透射电镜照片全景图,图中标尺大小为100nm;
图3为实施例1制备的磁性Fe3O4/Fe2O3复合纳米棒的透射电镜照片放大图,图中标尺大小为20nm;
图4为实施例1制备的磁性Fe3O4/Fe2O3复合纳米棒的X射线衍射谱与Fe2O3标准PDF卡片(JCPDS No.33-0664)和Fe3O4标准PDF卡片(JCPDS No.03-0863) 对比图;
图5为实施例1制备的磁性Fe3O4/Fe2O3复合纳米棒的X射线能谱图;
图6为实施例1制备的磁性Fe3O4/Fe2O3复合纳米棒的磁滞回线图。
具体实施方式
下面结合具体实施例和附图内容对本发明作进一步的阐述,以使本领域技术人员更好的理解本发明的技术方案。
实施例1磁性Fe3O4/Fe2O3复合纳米棒的制备。
向15mL无水乙醇中加入12.12g硝酸铁,磁力搅拌溶解2h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将凝胶置于程序控温炉中,以10.0℃/min的升温速率升温至250℃,在250℃下保温煅烧0.1h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。
图1~3为本实施例制备的磁性Fe3O4/Fe2O3复合纳米棒的扫描电镜照片、透射电镜照片全景图和透射电镜照片放大图,从电镜图可以看出,磁性Fe3O4/Fe2O3复合纳米棒平均直径约10nm,长度约为50nm。
图4为本实施例所述条件下制备的磁性Fe3O4/Fe2O3复合纳米棒的X射线衍射谱与Fe2O3标准PDF卡片(JCPDS No.33-0664)和Fe3O4标准PDF卡片(JCPDS No.03-0863)对比图;从图中可以看出,产物的绝大部分衍射峰位置和Fe2O3标准PDF卡片衍射峰位置对应,在30°和43°衍射角度上出现了Fe3O4特征衍射峰,表明了Fe3O4成分的存在;同时,磁性Fe2O3/Fe3O4复合纳米棒在33°和35.6°两个衍射角度处的衍射峰比例明显比标准Fe2O3的衍射强度比例小,说明了33.5°处存在Fe3O4的衍射峰。
图5为本实施例所述条件下制备的磁性Fe3O4/Fe2O3复合纳米棒的X射线能谱图。从其EDX图可以看到所得磁性Fe3O4/Fe2O3复合纳米棒元素比例。
图6为本实施例所述条件下制备的磁性Fe3O4/Fe2O3复合纳米棒的磁滞回线图;其磁滞回线显示,磁性Fe3O4/Fe2O3复合纳米棒具有典型的软磁特性,其饱和磁化强度高达142.6Am2/kg。
实施例2磁性Fe3O4/Fe2O3复合纳米棒的制备。
向10mL无水乙醇中加入8.08g硝酸铁,磁力搅拌溶解2h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将得到的凝胶置于程序控温炉中,以3.0℃/min的升温速率升温至400℃,在400℃下保温煅烧2h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。制备的磁性 Fe3O4/Fe2O3复合纳米棒的饱和磁化强度高达99.3Am2/kg。
实施例3
向20mL无水乙醇中加入16.16g硝酸铁,磁力搅拌溶解4h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将凝胶置于程序控温炉中,以0.5℃/min的升温速率升温至150℃,在150℃下保温煅烧10h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。制备的磁性Fe3O4/Fe2O3复合纳米棒的饱和磁化强度高达90.8Am2/kg。
实施例4
向30mL无水乙醇中加入24.24g硝酸铁,磁力搅拌溶解5h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将凝胶置于程序控温炉中,以1.0℃/min的升温速率升温至200℃,在200℃下保温煅烧8h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。制备的磁性Fe3O4/Fe2O3复合纳米棒的饱和磁化强度高达111.5Am2/kg。
实施例5
向20mL无水乙醇中加入16.16g硝酸铁,磁力搅拌溶解4h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将凝胶置于程序控温炉中,以5.0℃/min的升温速率升温至300℃,在300℃下保温煅烧1h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。制备的磁性Fe3O4/Fe2O3复合纳米棒的饱和磁化强度高达129.4Am2/kg。
实施例6
向15mL无水乙醇中加入12.10g硝酸铁,磁力搅拌溶解3h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将凝胶置于程序控温炉中,以1.0℃/min的升温速率升温至250℃,在250℃下保温煅烧0.5h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。制备的磁性Fe3O4/Fe2O3复合纳米棒的饱和磁化强度高达141.0Am2/kg。
实施例7
向10mL无水乙醇中加入8.08g硝酸铁,磁力搅拌溶解2h制得前驱体溶液,将溶液置于坩埚中,点火燃烧,待到火尽,得到凝胶,将凝胶置于程序控温炉中,以15.0℃/min的升温速率升温至350℃,在350℃下保温煅烧5h,自然冷却至室温后取出,研磨得磁性Fe3O4/Fe2O3复合纳米棒。制备的磁性Fe3O4/Fe2O3复合纳米棒的饱和磁化强度高达120.3Am2/kg。
本发明首次采用溶液燃烧一凝胶煅烧法制备出磁性Fe2O3/Fe3O4纳米棒。采用本方法制备磁性Fe2O3/Fe3O4纳米棒,只需要硝酸铁和无水乙醇为原料,原料种类少,具有过程易控制,装置和工艺简单,无还原过程,操作方便,成本低,无污染,所需设备要求不高,制备周期短,煅烧温度低,产品形貌均匀、收率高,制备时间短等优点,可通过控制煅烧的机制有效地控制目标产物的组成、微观结构和性能。

Claims (3)

1.一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法,其特征在于,包括如下步骤:
(1)将硝酸铁溶于无水乙醇中,搅拌至完全溶解,制得前驱体溶液,其中,硝酸铁和无水乙醇的用量为每2 mmol硝酸铁对应无水乙醇的量为1 mL;
(2)将前驱体溶液直接点火燃烧至火自然熄灭,制得其凝胶;
(3)将凝胶置于程序控温炉中,升温并保温煅烧,热处理后自然冷却至室温得磁性Fe3O4/Fe2O3复合纳米棒。
2.根据权利要求1所述的磁性Fe3O4/Fe2O3复合纳米棒的制备方法,其特征在于,步骤(3)中,所述保温煅烧的条件为:煅烧温度150-400℃,升温速率为0.5-15℃/min。
3. 根据权利要求1所述的磁性Fe3O4/Fe2O3复合纳米棒的制备方法,其特征在于步骤(3)中,所述保温煅烧时间为0.1-10 h。
CN201610229201.8A 2016-04-13 2016-04-13 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法 Active CN105905949B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610229201.8A CN105905949B (zh) 2016-04-13 2016-04-13 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610229201.8A CN105905949B (zh) 2016-04-13 2016-04-13 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法

Publications (2)

Publication Number Publication Date
CN105905949A CN105905949A (zh) 2016-08-31
CN105905949B true CN105905949B (zh) 2017-12-15

Family

ID=56746612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610229201.8A Active CN105905949B (zh) 2016-04-13 2016-04-13 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法

Country Status (1)

Country Link
CN (1) CN105905949B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847524B (zh) * 2020-07-23 2023-07-04 国家能源集团科学技术研究院有限公司 一种Fe3O4/Fe2O3磁性异质体纳米管及其制备方法
CN111926006B (zh) * 2020-07-23 2024-03-19 国家能源集团科学技术研究院有限公司 一种自组装免标记磁性纳米cyp2c9*3基因探针及其制备方法
CN111874956B (zh) * 2020-08-04 2023-10-10 国家能源集团科学技术研究院有限公司 一种Fe3O4@Fe2O3磁性复合纳米棒的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993115A (zh) * 2009-08-26 2011-03-30 同济大学 四氧化三铁磁性纳米颗粒的制备方法
EP2502882A1 (en) * 2009-11-20 2012-09-26 Toda Kogyo Corporation Magnetic iron oxide microparticle powder, aqueous dispersion containing magnetic particles, and process for production of same
CN104876285A (zh) * 2015-05-12 2015-09-02 江苏大学 一种磁性镍铁氧体纳米棒的构筑方法
CN104909412A (zh) * 2015-05-12 2015-09-16 江苏大学 一种磁性Fe2O3/Fe3O4纳米异质体颗粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993115A (zh) * 2009-08-26 2011-03-30 同济大学 四氧化三铁磁性纳米颗粒的制备方法
EP2502882A1 (en) * 2009-11-20 2012-09-26 Toda Kogyo Corporation Magnetic iron oxide microparticle powder, aqueous dispersion containing magnetic particles, and process for production of same
CN104876285A (zh) * 2015-05-12 2015-09-02 江苏大学 一种磁性镍铁氧体纳米棒的构筑方法
CN104909412A (zh) * 2015-05-12 2015-09-16 江苏大学 一种磁性Fe2O3/Fe3O4纳米异质体颗粒的制备方法

Also Published As

Publication number Publication date
CN105905949A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties
Chen et al. Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling
CN105905949B (zh) 一种磁性Fe3O4/Fe2O3复合纳米棒的制备方法
Dhinesh Kumar et al. Facile hydrothermal synthesis and characterization of LaFeO 3 nanospheres for visible light photocatalytic applications
Makhlouf et al. Direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel
CN105755541B (zh) 一种利用微波诱发燃烧合成反应合成氧化锌晶须的方法
Guo et al. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis
CN104909412B (zh) 一种磁性Fe2O3/Fe3O4纳米异质体颗粒的制备方法
Wu et al. Enhanced infrared radiation properties of CoFe2O4 by doping with Y3+ via sol–gel auto-combustion
Wu et al. Sol–gel synthesis and sintering of nano-size Li2TiO3 powder
CN104261478B (zh) 一种Mn3O4纳米线或纳米棒的制备方法
CN102924083B (zh) 一种碳化锆陶瓷粉体的制备方法
Shen et al. Sol–gel synthesis and spark plasma sintering of Ba0. 5Sr0. 5TiO3
Baker et al. Flame spray synthesis of Lu2O3 nanoparticles
CN102557151B (zh) 一步还原制备纳米四氧化三铁粉末的方法
Nakano et al. Rapid synthesis of Eu3+-doped LNT (Li–Nb–Ti–O) phosphor by millimeter-wave heating
CN106745306A (zh) 一种α‑Fe2O3磁性纳米棒的制备方法
CN107021520B (zh) 一种氧化钇粉体及其制备方法
CN104927760B (zh) 一种磁性异质结构纤维及其制备方法与应用
Liu et al. Synthesis of SiC@ Al2O3 core–shell nanoparticles for dense SiC sintering
Siddiqui et al. Sol–gel synthesis, characterization and microwave absorbing properties of nano sized spherical particles of La0. 8Sr0. 2Mn0. 8Fe0. 2O3
CN106315686B (zh) 一种仙人球状磁性Fe3O4/Fe2O3纳米异质体材料及其制备方法
CN104876285A (zh) 一种磁性镍铁氧体纳米棒的构筑方法
CN101648726B (zh) 一种LuO(OH)纳米棒和Lu2O3纳米棒发光粉体的水热合成方法
Wu et al. Influence of praseodymium doping concentration on the structural and optical properties of strontium molybdate crystals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant