CN105680936B - 一种非直视紫外光通信单次散射过程路径损耗计算方法 - Google Patents

一种非直视紫外光通信单次散射过程路径损耗计算方法 Download PDF

Info

Publication number
CN105680936B
CN105680936B CN201610121597.4A CN201610121597A CN105680936B CN 105680936 B CN105680936 B CN 105680936B CN 201610121597 A CN201610121597 A CN 201610121597A CN 105680936 B CN105680936 B CN 105680936B
Authority
CN
China
Prior art keywords
point
angle
scattering
max
infinitesimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610121597.4A
Other languages
English (en)
Other versions
CN105680936A (zh
Inventor
宋鹏
宋菲
王建余
熊扬宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN201610121597.4A priority Critical patent/CN105680936B/zh
Publication of CN105680936A publication Critical patent/CN105680936A/zh
Application granted granted Critical
Publication of CN105680936B publication Critical patent/CN105680936B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal

Abstract

本发明公开了一种非直视紫外光通信单次散射过程路径损耗计算方法,具体按照以下步骤实施:步骤1:设定发射端和接收端的参数,定义区域V′,公共散射体求出V′的范围;步骤2:将区域V′分为若干个微元V",在球坐标系中,得到微元的坐标;步骤3:遍历区域V′分割成的若干个微元V",判断微元V"是否在公共散射体V内,如果在公共散射体V内计算被微元V"散射后被Rx接收到的能量,将被微元V"散射后被Rx接收到的能量相加,计算得到Rx接收到的总能量,求出路径损耗。本发明一种非直视紫外光通信单次散射过程路径损耗计算方法,仿真时间短,能够很容易的计算出通信系统的路径损耗,与MC方法的仿真结果拟合度高。

Description

一种非直视紫外光通信单次散射过程路径损耗计算方法
技术领域
本发明属于紫外光通信技术领域,具体涉及一种非直视紫外光通信单次散射过程路径损耗计算方法。
背景技术
紫外光通信就是把紫外光作为信息传输的载体,将需要传输的信息加载到紫外光上,以实现信息的发送和接收。在无线激光通信中,采用的是直视的通信方式,即发射端与接收端必须对准。非直视通信是指发射端发射出的紫外光子在大气中传输时,由于紫外光波长很短,被大气粒子散射而能够绕过障碍物到达接收端的过程。只要发射端发散角能够与接收端接收视场角在空中形成公共散射体,那么非直视(non-line-of-sight,NLOS)通信就变得可能。当直视通信无法实现时,NLOS通信则能保证发射端和接收端之间通信的畅通。
关于NLOS紫外光大气传输的理论模型现在采用的主要方法有单次散射近似法和蒙特卡罗(Monte Carlo,MC)方法。经典的单次散射模型通过三重积分求通信系统的路径损耗(path loss,PL),但是,在仿真过程中复杂的三重积分很难实现。如果用简化公式来代替三重积分,要求公共散射体是闭合的,发散角和接收视场角比较小。MC方法是一种以概率统计理论为基础的计算方法,可以通过MC方法来对单次散射传输过程进行仿真,但是存在计算量大,耗时久的问题。
发明内容
本发明的目的是提供一种非直视紫外光通信单次散射过程路径损耗计算方法,解决了现有的经典单次散射模型仿真困难和MC算法仿真时间过长的问题。
本发明所采用的技术方案是,一种非直视紫外光通信单次散射过程路径损耗计算方法,具体按照以下步骤实施:
步骤1:设定发射端和接收端的参数,定义区域V′,公共散射体求出V′的范围;
步骤2:将区域V′分为若干个微元V",在球坐标系中,得到微元的坐标;
步骤3:遍历区域V′分割成的若干个微元V",判断微元V"是否在公共散射体V内,如果在公共散射体V内计算被微元V"散射后被Rx接收到的能量,将被微元V"散射后被Rx接收到的能量相加,计算得到Rx接收到的总能量,求出路径损耗。
本发明的特点还在于,
步骤1具体为:
在紫外光NLOS通信中,CT和CR分别表示发射端Tx的发散角圆锥和接收端Rx的视场角FOV圆锥,点T为CT的顶点,点R为CR的顶点,点H为CT的任意横切面的圆心,点L为CR的任意横切面的圆心,即TH为CT的中心轴线,RL为CR的中心轴线,发射端发散半角为发射仰角为TH和其在XOY平面投影的夹角θt,坐标原点O与点T重合,接收端视场半角为接收仰角为RL和其在XOY平面投影的夹角θr,TH在XOY平面的投影与X轴的夹角αt是CT的偏轴角,RL在XOY平面的投影与X轴的夹角αr是CR的偏轴角,d是点T到点R的直线距离,(θtt)和(θrr)确定了CT和CR的方向;
发散角圆锥和FOV圆锥的公共区域为公共散射体V,即V=CT∩CR,点S为公共散射体V内的散射点,发射端发射一个光子,光子在点S被散射,在以坐标原点为参考点,由方位角、顶角和距离构成球面坐标系下,OS与Z轴的夹角θ为光子入射的顶角,OS在XOY平面的投影与X轴的夹角α为方位角,从发射端T到点S的距离为r,光子的入射方向和指向接收端的散射方向构成的夹角为散射角βs,ζ为散射点S和点R的连线与RL构成的夹角,r'是从点S到接收端R的距离;
光子在传输的过程中,遇到V内的体积微元δV发生散射,到达Rx的能量dEr为:
其中是Rx的立体角,Et是发射光束能量,Ar是接收探测面面积,P(cosβs)是散射相函数,ke是消光系数,吸收系数ka和散射系数ks之和构成了通信过程中大气的消光系数ke,即ke=ks+ka
散射相函数P(cosβs)是瑞利散射相函数PR(cosβs)和米氏散射相函数PM(cosβs)的加权和:
其中,ks R是瑞利散射的散射系数,ks M是米氏散射的散射系数,ks=ks R+ks M;瑞利散射相函数PR(cosβs)为:
米氏散射相函数PM(cosβs)为:
其中,γ、g和f是模型参数;
在球坐标系中,体积微元为δV=r2sinθδθδαδr,
则,被公共散射体V散射后被Rx接收到的总能量Er为:
定义区域V′,范围为[θminmax]、[αminmax]、[rmin,rmax],使
θmin和θmax为:
过点H做线GH平行于XOY平面,G点为线GH与CT的交点,G点在XOY平面的投影为G',在线TH上选取任意一点E,E点在XOY平面的投影为E',应用三角定理,则,αmin和αmax为:
对于共面的情况,公共散射体的体积是最大的,TP是发散角圆锥的中心轴线,RQ是FOV圆锥的中心轴线,P点在XOY平面的投影为P',Q点在XOY平面的投影为Q',点K、M、U、W为CT和CR的四个交点,∠PTP′=θt,∠QRQ′=θr,∠UTP和∠PTM等于∠KRQ和∠QRM等于所以,对于△UTR,由正弦函数可得,UT为:
同样的,
rmin=min[UT,MT],rmax=max[WT,KT](10)
对于无界的公共散射体V,rmax→∞,
至此,区域V′的范围可得。
步骤2具体为:
设置3个整数Nr、Nα、Nθ,区域[rmin,rmax]、[αminmax]和[θminmax]分别被分为Nr、Nα、Nθ等份,因此区域V′被分为了NrNαNθ个微元V",另Nr、Nα、Nθ均等于N,那么区域V′就被分为了N3个微元V",假设3个整数i、j、k,且1≤i,j,k≤N,i为区域[rmin,rmax]被分的第i份,j为区域[αminmax]被分的第j份,k为区域[θminmax]被分的第k份,[i,j,k]代表一个微元V",A、B、C、D为区域V′内的一微元V"的四个顶点,点S是V"的中心,设置3个变量ru,αu,θu,BC的长度ru=(rmax-rmin)/N;∠ATB=(θmaxmin)/N=θu;点B和点D在XOY平面的投影分别为B'和D',∠B′TD′=(αmaxmin)/N=αu,在球坐标系中,点S、A、B、C、D的坐标可由如下公式得到:
[rSS,qS]=[rmin+ru(i-1/2),αminu(j-1/2),qmin+qu(k-1/2)]
[rAA,qA]=[rmin+ru(i-1),αminuj,qmin+qu(k-1)]
[rBB,qB]=[rmin+ru(i-1),αminuj,qmin+quk] (11)
[rCC,qC]=[rmin+rui,αminuj,qmin+quk]
[rDD,qD]=[rmin+ru(i-1),αminu(j-1),qmin+quk]
在笛卡尔坐标系中,点S的坐标可由如下公式得到:
[xS,yS,zS]=[rS sin(qS)cos(αS),rS sin(qS)sin(αS),rS cos(qS)] (12)。
步骤3具体为:
已知点T的坐标为(0,0,0),点R的坐标为(d,0,0),定义[T→E]和[R→F]是点T到点E和点R到点F的单元方向矢量,定义[T→S]和[R→S]是点T到点S和点R到点S的矢量,公式如下所示:
[T→E]=[cosqtcosαt,cosqtsinαt,sinqt]
[R→F]=[cosqrcosαr,cosqrsinαr,sinqr] (13)
[T→S]=[xS,yS,zS]
[R→S]=[xS-d,yS,zS]
如果为真,那么中心点S在区域V内;
因为微元V"非常小,可以将微元近似认为就是点S,则散射角βs近似为:
其中[S→R]=[d-xS,-yS,-zS],
由公式(2)可得被微元V"散射后被Rx接收到的能量EV"r为:
其中,ζ=∠SRF,r'=|R→S|;
遍历区域V′分割成的N3个微元V",如果为真,由公式(16)可以计算得出EV"r,因此,Rx接收到的总能量Er为:
路径损耗PL可为:
PL=10lg(Et/Er) (18)。
本发明的有益效果是:本发明一种非直视紫外光通信单次散射过程路径损耗计算方法,实现了NLOS紫外光通信单次散射过程路径损耗的计算,不需要根据发射端和接收端的几何参数,把三重积分分成多种情况,对模型中的几何参数无限制。路径损耗计算方法中遍历微元法中积分的上限和下限为定值,被积函数被简化,将分区域三重积分运算转化为乘法运算的累加和。本发明一种非直视紫外光通信单次散射过程路径损耗计算方法,仿真时间短,能够很容易的计算出通信系统的路径损耗,与MC方法的仿真结果拟合度高。
附图说明
图1是本发明路径损耗计算方法中NLOS非共面传输模型图;
图2是本发明路径损耗计算方法中NLOS共面传输模型图;
图3是紫外光非直视非共面传输模型的仿真图;
图4是本发明实施例中紫外光单次散射遍历微元法路径损耗仿真结果对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种非直视紫外光通信单次散射过程路径损耗计算方法,具体按照以下步骤实施:
步骤1:设定发射端和接收端的参数,定义区域V′,公共散射体求出V′的范围。
在紫外光NLOS(non-line-of-sight,非直视)通信中,NLOS非共面单次散射模型图如图1所示。CT和CR分别表示发射端(Tx)的发散角圆锥和接收端(Rx)的视场角(field ofview,FOV)圆锥。点T为CT的顶点,点R为CR的顶点,点H为CT的任意横切面的圆心,点L为CR的任意横切面的圆心,即TH为CT的中心轴线,RL为CR的中心轴线。发射端发散半角为发射仰角为TH和其在XOY平面投影的夹角θt,坐标原点O与点T重合。接收端视场半角为接收仰角为RL和其在XOY平面投影的夹角θr。TH在XOY平面的投影与X轴的夹角αt是CT的偏轴角,RL在XOY平面的投影与X轴的夹角αr是CR的偏轴角。d是点T到点R的直线距离。(θtt)和(θrr)确定了CT和CR的方向。
定义发散角圆锥和FOV圆锥的公共区域为公共散射体V,也就是V=CT∩CR。定义点S为公共散射体V内的散射点。发射端发射一个光子,光子在点S被散射。在以坐标原点为参考点,由方位角、顶角和距离构成球面坐标系下,定义关于这一段射线的各个参数:OS与Z轴的夹角θ为光子入射的顶角,OS在XOY平面的投影与X轴的夹角α为方位角,从发射端T到点S的距离定义为r。定义光子的入射方向和指向接收端的散射方向构成的夹角为散射角βs。ζ为散射点S和点R的连线和RL构成的夹角。r'是从点S到接收端R的距离。
光子在传输的过程中,遇到V内的体积微元δV发生散射,到达Rx的能量可由如下公式得到
其中是Rx的立体角,Et是发射光束能量,Ar是接收探测面面积,P(cosβs)是散射相函数,ke是消光系数,吸收系数ka和散射系数ks之和构成了通信过程中大气的消光系数ke,也就是ke=ks+ka
散射相函数P(cosβs)是瑞利散射(分子)相函数PR(cosβs)和米氏散射(气溶胶)相函数PM(cosβs)的加权和:
其中,ks R是瑞利散射的散射系数,ks M是米氏散射的散射系数,ks=ks R+ks M。瑞利散射和米氏散射的相函数分别为:
其中,γ、g和f是模型参数。波长为266nm时,(γ,g,f)为(0.017,0.72,0.5),(ka,ks R,ks M)为(0.74,0.24,0.25)×10-3m-1
在球坐标系中,体积微元为δV=r2sinθδθδαδr。因此,被公共散射体V散射后被Rx接收到的总能量Er为:
定义区域V′,范围为[θminmax]、[αminmax]、[rmin,rmax],让从图1可知θmin和θmax
接下来,分析αmin和αmax。如图1所示,过点H做线GH平行于XOY平面,G点为线GH与CT的交点,G点在XOY平面的投影为G',在线TH上选取任意一点E,E点在XOY平面的投影为E',应用三角定理,所以,我们可以得到αmin和αmax,公式如下所示:
最后,我们给出rmin和rmax的设置。对于共面的情况,如图2所示,此时公共散射体的体积是最大的,TP是发散角圆锥的中心轴线,RQ是FOV圆锥的中心轴线,P点在XOY平面的投影为P',Q点在XOY平面的投影为Q'。点K、M、U、W为CT和CR的四个交点。∠PTP′=θt,∠QRQ′=θr,∠UTP和∠PTM等于∠KRQ和∠QRM等于所以, 对于△UTR,由正弦函数可得,UT为
同样的,
rmin=min[UT,MT],rmax=max[WT,KT] (10)
对于无界的公共散射体V,rmax→∞。
至此,区域V′的范围可得。
步骤2:将区域V′分为若干个微元V",在球坐标系中,得到微元的坐标
设置3个整数Nr、Nα、Nθ,区域[rmin,rmax]、[αminmax]和[θminmax]分别被分为Nr、Nα、Nθ等份,因此区域V′被分为了NrNαNθ个微元V",如果让Nr、Nα、Nθ都等于N,那么区域V′就被分为了N3个微元V",假设3个整数i、j、k,且1≤i,j,k≤N,i代表的是区域[rmin,rmax]被分的第i份,j代表的是区域[αminmax]被分的第j份,k代表的是区域[θminmax]被分的第k份,[i,j,k]代表一个微元V"。如图1所示,A、B、C、D为区域V′内的一微元V"的四个顶点,点S是V"的中心。设置3个变量ru,αu,θu,BC的长度ru=(rmax-rmin)/N;∠ATB=(θmaxmin)/N=θu;点B和点D在XOY平面的投影分别为B'和D',∠B′TD′=(αmaxmin)/N=αu。在球坐标系中,点S、A、B、C、D的坐标可由如下公式得到:
[rSS,qS]=[rmin+ru(i-1/2),αminu(j-1/2),qmin+qu(k-1/2)]
[rAA,qA]=[rmin+ru(i-1),αminuj,qmin+qu(k-1)]
[rBB,qB]=[rmin+ru(i-1),αminuj,qmin+quk] (11)
[rCC,qC]=[rmin+rui,αminuj,qmin+quk]
[rDD,qD]=[rmin+ru(i-1),αminu(j-1),qmin+quk]
在笛卡尔坐标系中,点S的坐标可由如下公式得到:
[xS,yS,zS]=[rSsin(qS)cos(αS),rSsin(qS)sin(αS),rScos(qS)] (12)
步骤3:遍历区域V′分割成的若干个微元V",判断微元V"是否在公共散射体V内,如果在公共散射体V内计算被微元V"散射后被Rx接收到的能量,将被微元V"散射后被Rx接收到的能量相加,计算得到Rx接收到的总能量,求出路径损耗。
已知点T的坐标为(0,0,0),点R的坐标为(d,0,0),定义[T→E]和[R→F]是点T到点E和点R到点F的单元方向矢量,定义[T→S]和[R→S]是点T到点S和点R到点S的矢量,公式如下所示:
[T→E]=[cosqtcosαt,cosqtsinαt,sinqt]
[R→F]=[cosqrcosαr,cosqrsinαr,sinqr] (13)
[T→S]=[xS,yS,zS]
[R→S]=[xS-d,yS,zS]
如果为真,那么中心点S在区域V内。
图3为紫外光非直视非共面传输模型的仿真图,图中*表示的是微元的中心点,判断微元是否在区域V内,如果不在区域V内,则不在图中显示;如果在区域V内,则在图中显示。
因为微元V"非常小,可以将微元近似认为就是点S,则散射角βs近似为:
其中[S→R]=[d-xS,-yS,-zS],
由公式(2)可得被微元V"散射后被Rx接收到的能量EV"r为:
其中,ζ=∠SRF,r'=|R→S|。
遍历区域V′分割成的N3个微元V",如果为真,由公式(16)可以计算得出EV"r,所以将该方法定义为遍历微元法。因此,Rx接收到的总能量Er可由如下公式计算得到
路径损耗可由如下公式计算得到
PL=10lg(Et/Er) (18)
实施例
为了验证遍历微元法的性能,我们将该算法与MC单次散射方法进行了相关的路径损耗的仿真和比较。
设置Rx的探测面半径为1.5×10-2m,d=100m,θt=30°,θr=60°,αt=0°,αr={0°,10°,20°,30°,40°}。仿真结果对比图如图4所示,左边的纵坐标是路径损耗(PL),右边的纵坐标是公共散射体体积|V|。图中的四条曲线分别表示的是利用蒙特卡罗MC多次散射方法得到的路径损耗的变化曲线、利用MC单次散射方法得到的路径损耗变化曲线、利用遍历微元法得到的路径损耗变化曲线以及利用遍历微元法得到的公共散射体体积变化曲线。注意到随着αr的增加,PL增加,|V|逐渐减小,由遍历微元法得到的PL曲线与MC单次散射方法得到的PL曲线匹配度很高,并且略大于MC多次散射方法得到的PL曲线。
在MC仿真中,设置发射端发射的光子数为106,通过MC方法计算PL所需的平均时间为107.514秒。基于之前对遍历微元法的分析,将N设置为60。用同一台电脑,设置相同的参数,采用遍历微元法计算PL仅需11.078秒。结果显示遍历微元法能够节省89.70%的时间。
通过验证可以看出遍历微元法仿真结果与MC方法仿真结果匹配度非常高,并且仿真时间更短。

Claims (3)

1.一种非直视紫外光通信单次散射过程路径损耗计算方法,其特征在于,具体按照以下步骤实施:
步骤1:设定发射端和接收端的参数,定义区域V′,公共散射体求出V′的范围;
所述步骤1具体为:
在紫外光NLOS通信中,CT和CR分别表示发射端Tx的发散角圆锥和接收端Rx的视场角FOV圆锥,点T为CT的顶点,点R为CR的顶点,点H为CT的任意横切面的圆心,点L为CR的任意横切面的圆心,即TH为CT的中心轴线,RL为CR的中心轴线,发射端发散半角为发射仰角为TH和其在XOY平面投影的夹角θt,坐标原点O与点T重合,接收端视场半角为接收仰角为RL和其在XOY平面投影的夹角θr,TH在XOY平面的投影与X轴的夹角αt是CT的偏轴角,RL在XOY平面的投影与X轴的夹角αr是CR的偏轴角,d是点T到点R的直线距离,(θtt)和(θrr)确定了CT和CR的方向;
发散角圆锥和FOV圆锥的公共区域为公共散射体V,即V=CT∩CR,点S为公共散射体V内的散射点,发射端发射一个光子,光子在点S被散射,在以坐标原点为参考点,由方位角、顶角和距离构成球面坐标系下,OS与Z轴的夹角θ为光子入射的顶角,OS在XOY平面的投影与X轴的夹角α为方位角,从发射端T到点S的距离为r,光子的入射方向和指向接收端的散射方向构成的夹角为散射角βs,ζ为散射点S和点R的连线与RL构成的夹角,r'是从点S到接收端R的距离;
光子在传输的过程中,遇到V内的体积微元δV发生散射,到达Rx的能量δEr为:
其中是Rx的立体角,Et是发射光束能量,Ar是接收探测面面积,P(cosβs)是散射相函数,ke是消光系数,吸收系数ka和散射系数ks之和构成了通信过程中大气的消光系数ke,即ke=ks+ka
散射相函数P(cosβs)是瑞利散射相函数PR(cosβs)和米氏散射相函数PM(cosβs)的加权和:
其中,ks R是瑞利散射的散射系数,ks M是米氏散射的散射系数,ks=ks R+ks M;瑞利散射相函数PR(cosβs)为:
米氏散射相函数PM(cosβs)为:
其中,γ、g和f是模型参数;
在球坐标系中,体积微元为δV=r2sinθδθδαδr,
则,被公共散射体V散射后被Rx接收到的总能量Er为:
定义区域V′,范围为[θminmax]、[αminmax]、[rmin,rmax],使
θmin和θmax为:
过点H做线GH平行于XOY平面,G点为线GH与CT的交点,G点在XOY平面的投影为G',在线TH上选取任意一点E,E点在XOY平面的投影为E',应用三角定理,则,αmin和αmax为:
对于共面的情况,公共散射体的体积是最大的,TP是发散角圆锥的中心轴线,RQ是FOV圆锥的中心轴线,P点在XOY平面的投影为P',Q点在XOY平面的投影为Q',点K、M、U、W为CT和CR的四个交点,∠PTP′=θt,∠QRQ′=θr,∠UTP和∠PTM等于∠KRQ和∠QRM等于所以,对于△UTR,由正弦函数可得,UT为:
同样的,
rmin=min[UT,MT],rmax=max[WT,KT] (10)
对于无界的公共散射体V,rmax→∞,
至此,区域V′的范围可得;
步骤2:将区域V′分为若干个微元V",在球坐标系中,得到微元的坐标;
步骤3:遍历区域V′分割成的若干个微元V",判断微元V"是否在公共散射体V内,如果在公共散射体V内计算被微元V"散射后被Rx接收到的能量,将被微元V"散射后被Rx接收到的能量相加,计算得到Rx接收到的总能量,求出路径损耗。
2.根据权利要求1所述的一种非直视紫外光通信单次散射过程路径损耗计算方法,其特征在于,所述步骤2具体为:
设置3个整数Nr、Nα、Nθ,区域[rmin,rmax]、[αminmax]和[θminmax]分别被分为Nr、Nα、Nθ等份,因此区域V′被分为了NrNαNθ个微元V",令Nr、Nα、Nθ均等于N,那么区域V′就被分为了N3个微元V",假设3个整数i、j、k,且1≤i,j,k≤N,i为区域[rmin,rmax]被分的第i份,j为区域[αminmax]被分的第j份,k为区域[θminmax]被分的第k份,[i,j,k]代表一个微元V",A、B、C、D为区域V′内的一微元V"的四个顶点,点S是V"的中心,设置3个变量ru,αu,θu,BC的长度ru=(rmax-rmin)/N;∠ATB=(θmaxmin)/N=θu;点B和点D在XOY平面的投影分别为B'和D',∠B′TD′=(αmaxmin)/N=αu,在球坐标系中,点S、A、B、C、D的坐标可由如下公式得到:
在笛卡尔坐标系中,点S的坐标可由如下公式得到:
[xS,yS,zS]=[rSsin(θS)cos(αS),rSsin(θS)sin(αS),rScos(θS)] (12)。
3.根据权利要求2所述的一种非直视紫外光通信单次散射过程路径损耗计算方法,其特征在于,所述步骤3具体为:
已知点T的坐标为(0,0,0),点R的坐标为(d,0,0),定义[T→E]和[R→F]是点T到点E和点R到点F的单元方向矢量,定义[T→S]和[R→S]是点T到点S和点R到点S的矢量,公式如下所示:
如果为真,那么中心点S在区域V内;
因为微元V"非常小,可以将微元近似认为就是点S,则散射角βs近似为:
其中[S→R]=[d-xS,-yS,-zS],
由公式(2)可得被微元V"散射后被Rx接收到的能量EV"r为:
其中,ζ=∠SRF,r'=|R→S|;
遍历区域V′分割成的N3个微元V",如果为真,由公式(16)可以计算得出EV"r,因此,Rx接收到的总能量Er为:
路径损耗PL可为:
PL=10lg(Et/Er) (18)。
CN201610121597.4A 2016-03-03 2016-03-03 一种非直视紫外光通信单次散射过程路径损耗计算方法 Expired - Fee Related CN105680936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610121597.4A CN105680936B (zh) 2016-03-03 2016-03-03 一种非直视紫外光通信单次散射过程路径损耗计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610121597.4A CN105680936B (zh) 2016-03-03 2016-03-03 一种非直视紫外光通信单次散射过程路径损耗计算方法

Publications (2)

Publication Number Publication Date
CN105680936A CN105680936A (zh) 2016-06-15
CN105680936B true CN105680936B (zh) 2018-10-02

Family

ID=56307854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610121597.4A Expired - Fee Related CN105680936B (zh) 2016-03-03 2016-03-03 一种非直视紫外光通信单次散射过程路径损耗计算方法

Country Status (1)

Country Link
CN (1) CN105680936B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108918352A (zh) * 2018-05-16 2018-11-30 中国民航大学 一种内混合气溶胶光散射特性的计算方法
CN112543051B (zh) * 2019-09-23 2022-09-06 清华大学深圳国际研究生院 一种非视距通信链路误码率计算方法
CN111628822B (zh) * 2020-06-04 2021-03-26 清华大学 一种紫外光通信非视距链路中单次散射路径损耗的近似计算方法
CN111967122A (zh) * 2020-06-16 2020-11-20 西安理工大学 一种基于离散累积求和的紫外光散射模拟方法
CN112187358B (zh) * 2020-10-22 2021-11-05 西安工程大学 移动场景下无线紫外光通信散射信道仿真方法
CN112468230B (zh) * 2020-11-19 2022-08-09 西安华企众信科技发展有限公司 一种基于深度学习的无线紫外光散射信道估计方法
CN114204985A (zh) * 2021-11-12 2022-03-18 西安理工大学 无线紫外光非直视通信中光子检测概率快速估算方法
CN114531201A (zh) * 2021-12-27 2022-05-24 西安理工大学 非直视紫外光通信单散射的路径损耗模型的简化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025765A1 (en) * 1999-10-04 2001-04-12 Edax Inc. Methods for identification and verification
CN104079349A (zh) * 2014-07-03 2014-10-01 中国船舶重工集团公司第七一七研究所 一种紫外光通信光学系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025765A1 (en) * 1999-10-04 2001-04-12 Edax Inc. Methods for identification and verification
CN104079349A (zh) * 2014-07-03 2014-10-01 中国船舶重工集团公司第七一七研究所 一种紫外光通信光学系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Non-line-of-sight ultraviolet communication performance in atmospheric turbulence;Zuo Yong等;《China Communication》;20131122;第10卷(第11期);第52页右栏最后1段-第53页右栏倒数第2段,以及图1 *
紫外光通信大气传输特性和调制技术研究;赵明宇;《中国博士学位论文全文数据库 信息科技辑》;20131215(第12(2013)期);第31页倒数第2段-第37页倒数第3段,以及图3-3 *
非直视紫外光非共面通信系统性能分析;宋鹏等;《西安工程大学学报》;20150830;第29卷(第4期);全文 *

Also Published As

Publication number Publication date
CN105680936A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105680936B (zh) 一种非直视紫外光通信单次散射过程路径损耗计算方法
CN108365903B (zh) 一种基于随机散射簇的三维Massive MIMO信道建模方法
CN105721085B (zh) 一种太赫兹室内通信信道的建模方法
CN104994517B (zh) 一种高空平台mimo通信系统三维信道建模方法
CN106850087B (zh) 一种开阔地环境的信道建模方法及装置
CN108718224A (zh) 一种无线通信信道仿真计算方法
WO2023169590A1 (zh) 一种适用于全频段全场景的6g普适信道建模方法
CN102447518A (zh) 一种用于临近空间高超声速条件下的信道综合处理方法
CN112636821B (zh) 水下无线光通信光信道仿真方法及仿真系统
Choudhary et al. Pathloss analysis of NLOS underwater wireless optical communication channel
CN107171703B (zh) 一种能够模拟室内多天线通信系统中衰落信号传播特性的方法
Cao et al. Simplified closed-form single-scatter path loss model of non-line-of-sight ultraviolet communications in noncoplanar geometry
Yao et al. A geometric-stochastic integrated channel model for hypersonic vehicle: A physical perspective
CN105372653B (zh) 面向岸基空管雷达系统中一种高效转弯机动目标跟踪方法
CN107356906A (zh) 一种利用布儒斯特效应的超低空目标镜像干扰抑制方法
Zuo et al. A bistatic scattering evaluation method of the chaff cloud in airflow based on VRT
CN106707251B (zh) 应答机功率校准方法及装置
Jain et al. Efficient time domain HF geolocation using multiple distributed receivers
CN111967122A (zh) 一种基于离散累积求和的紫外光散射模拟方法
CN106291490A (zh) 一种用于反演表面波导的海杂波功率计算方法和装置
CN106291491A (zh) 一种用于反演蒸发波导的海杂波功率计算方法和装置
Xu et al. Monte-Carlo based modeling for ultraviolet non-line-of-sight communication channels with typical obstacles
Latif et al. Simulation of radio signals from cosmic-ray cascades in air and ice as observed by in-ice Askaryan radio detectors.
Mosleh et al. Enhanced Distance Utilized ToA/RSS to Estimate Position using Trilateration in Outdoor
Ahmad Geometric sensitivity of beacon placement using airborne mobile anchors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181002