CN105656300A - Dc-dc转换器 - Google Patents

Dc-dc转换器 Download PDF

Info

Publication number
CN105656300A
CN105656300A CN201510826867.7A CN201510826867A CN105656300A CN 105656300 A CN105656300 A CN 105656300A CN 201510826867 A CN201510826867 A CN 201510826867A CN 105656300 A CN105656300 A CN 105656300A
Authority
CN
China
Prior art keywords
voltage
output
electric capacity
circuit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510826867.7A
Other languages
English (en)
Other versions
CN105656300B (zh
Inventor
增子裕之
高田幸辅
出口充康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN105656300A publication Critical patent/CN105656300A/zh
Application granted granted Critical
Publication of CN105656300B publication Critical patent/CN105656300B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供即使电源电压从比DC-DC转换器的期望的输出电压低的电压上升到正常的电压时,在输出电压也不会发生过冲的DC-DC转换器。设为如下构成,即,具备:100%DUTY检测电路,检测PWM比较器的100%DUTY状态;电源电压上升检测电路,检测电源电压的上升;以及放电控制电路,使误差放大器的输出电压下降,在处于100%DUTY状态误差放大器的输出电压比既定电压高时,若被输入电源电压上升检测信号则使误差放大器的输出电压下降。

Description

DC-DC转换器
技术领域
本发明涉及输出恒压的DC-DC转换器,更详细的是涉及防止输出电压的过冲的技术。
背景技术
图6是现有的DC-DC转换器的电路图。
现有的DC-DC转换器,包括:电源端子101;接地端子102;基准电压电路111,输出基准电压VREF;分压电路112,对输出端子103的输出电压VOUT进行分压;误差放大器110,输出比较分压电压VFB和基准电压VREF的结果的电压VERR;斜波发生电路114,产生斜波VRAMP;PWM比较器113,比较电压VERR和斜波VRAMP而输出信号PWM;输出缓冲器115;输出晶体管116;以及软起动电路119。
关于现有的DC-DC转换器的动作进行说明。
若对电源端子101施加电压VDD,则误差放大器110比较分压电压VFB和基准电压VREF,输出电压VERR。PWM比较器113比较电压VERR和斜波VRAMP,向输出缓冲器115输出信号PWM。输出缓冲器115在软起动电路119的输出信号的控制下,向输出晶体管116输出信号PWM。软起动电路119具有如下功能,即若对电源端子101施加电压VDD,则输出缓缓上升。从而,通过输出缓冲器115使输出晶体管116缓缓导通,抑制DC-DC转换器的输出电压VOUT的过冲。
【现有技术文献】
【专利文献】
【专利文献1】日本特开2011-55692号公报。
发明内容
【发明要解决的课题】
然而,现有的DC-DC转换器,具有以下那样的课题。
在电源电压VDD比DC-DC转换器的输出设定电压低的情况下,误差放大器110输出的电压VERR成为接近电源电压VDD的值,PWM比较器113成为100%DUTY状态,即输出晶体管116不进行开关而成为常时导通状态。若电源电压VDD从该状态急剧上升,则在电压VERR返回到稳定值为止的时间,DC-DC转换器的输出电压VOUT会过冲。
本发明为解决以上那样的课题而构思,提供即使PWM比较器113处于100%DUTY状态,也能防止输出电压VOUT的过冲的DC-DC转换器。
【用于解决课题的方案】
为了解决现有的课题,本发明的DC-DC转换器设为以下那样的构成。
DC-DC转换器,具备:100%DUTY检测电路,检测PWM比较器的100%DUTY状态;电源电压上升检测电路,检测电源电压的上升;以及放电控制电路,使误差放大器的输出电压下降,在处于100%DUTY状态误差放大器的输出电压比既定电压高时,若输出电源电压上升检测信号则使误差放大器的输出电压下降。
【发明效果】
本发明的DC-DC转换器如上述那样地构成,所以具有如下效果,即,即使电源电压从比DC-DC转换器的期望的输出电压低的电压上升到正常的电压时,在输出电压也不会发生过冲。
附图的简单说明
【图1】是本实施方式的DC-DC转换器的电路图。
【图2】是示出100%DUTY检测电路的一个示例的电路图。
【图3】是示出本发明的DC-DC转换器的动作的图。
【图4】是示出本实施方式的DC-DC转换器的其他示例的电路图。
【图5】是示出图4相关的DC-DC转换器的动作的图。
【图6】是现有的DC-DC转换器的电路图。
用于实施发明的方式
图1是本实施方式的DC-DC转换器的电路图。
本实施方式的DC-DC转换器100,具备:电源端子101;接地端子102;基准电压电路111,输出基准电压VREF;分压电路112,对输出端子103的输出电压VOUT进行分压;误差放大器110,输出比较分压电压VFB和基准电压VREF的结果的电压VERR;斜波发生电路114,产生斜波VRAMP;PWM比较器113,比较电压VERR和斜波VRAMP而输出信号PWM;输出缓冲器115;输出晶体管116;100%DUTY检测电路118;电源电压上升检测电路120;放电控制电路121;以及相位补偿电路117,具备相位补偿电容Cc和相位补偿电阻Rc。
100%DUTY检测电路118,输入端子与PWM比较器113的输出端子连接,输出端子与放电控制电路121的输入端子连接。
电源电压上升检测电路120,具备串联连接在电源端子101与接地端子102之间的开关131和电容130,将它们的连接点设为nodeA。
放电控制电路121,具备:开关135,用nodeA的电压控制;第二基准电压电路132,产生多少比斜波的波高值高的第二基准电压VREF2;比较器133,比较第二基准电压VREF2和电压VERR;以及NAND134,输入比较器133的输出和100%DUTY检测电路118的检测信号。
开关135,一端与接地端子102连接,另一端与相位补偿电路117的电容Cc和电阻Rc的连接点连接。NAND134向电源电压上升检测电路120的开关131输出放电控制信号。
图2是示出100%DUTY检测电路118的一个示例的电路图。
100%DUTY检测电路118,具备电容201、恒流电路202和开关203,开关203的控制端子为输入端子,恒流电路202和开关203的连接点为输出端子。恒流电路202,以对电容201进行充电的方式连接。开关203,以使电容201放电的方式连接。
100%DUTY检测电路118,利用恒流电路202对电容201进行充电,利用开关203使电容201放电。开关203,利用信号PWM控制。从而,在信号PWM重复高电平(Hi)和低电平(Lo)的通常的动作状态,使电容201放电,输出端子维持低电平(Lo)的状态。而且,若信号PWM成为100%DUTY而维持高电平(Hi),则电容201不放电,所以,当电容201的电压超过反相电路的阈值时,输出端子输出高电平(Hi)。即,100%DUTY检测电路118成为100%DUTY检测状态。
接着,说明本实施方式的DC-DC转换器的动作。
图3是示出本实施方式的DC-DC转换器的动作的图。
直至时刻T1,电源电压VDD成为比DC-DC转换器的期望的输出电压VOUTtar低的电压,分压电压VFB成为比基准电压VREF低的电压。误差放大器110的输出电压VERR为高电平(Hi),不与斜波VRAMP相交,所以信号PWM维持高电平(Hi)状态。从而,输出晶体管116处于导通状态,所以输出电压VOUT为电源电压VDD。此时,100%DUTY检测电路118处于100%DUTY检测状态,输出成为高电平(Hi)。另外,电压VERR比比较器133的反相输入即第二基准电压VREF2高,所以比较器133的输出为高电平(Hi)。从而,将100%DUTY检测电路118的输出和比较器133的输出作为输入的NAND134的输出成为低电平(Lo),电源电压上升检测电路120的开关131成为截止。另外,nodeA维持开关131导通时的接地电位。
在从时刻T1到时刻T2之间,若电源电压VDD缓缓上升,则电源电压上升检测电路120的nodeA利用电容130的耦合跟随电源电压VDD而上升。nodeA上升因此放电控制电路121的开关135以跟随nodeA的方式导通,释放相位补偿电容Cc的电荷,使电压VERR下降。
在时刻T2,若电压VERR成为比基准电压VREF2低的电压,则比较器133的输出成为低电平(Lo)。NAND134的输出成为高电平(Hi),使电源电压上升检测电路120的开关131导通,所以nodeA成为接地电位。从而,放电控制电路121,开关135截止而停止相位补偿电容Cc的放电。即,误差放大器110输出与输入的分压电压VFB对应的电压VERR。
在时刻T3,电压VERR与斜波VRAMP相交,PWM比较器113的输出PWM成为矩形波,DC-DC转换器的开关动作开始。因为电源电压VDD上升过程中电压VERR成为接近正常值的值,输出电压VOUT比较缓慢地接近期望的输出电压VOUT的值。从而,即使电源电压VDD恢复到正常值,在输出电压VOUT也不会发生过冲。
如以上说明的那样,依据本实施方式的DC-DC转换器,即使电源电压VDD从比DC-DC转换器的期望的输出电压低的电压、即从PWM比较器113成为100%DUTY状态的状态,恢复到正常的电源电压时,也能防止输出电压VOUT的过冲。
图4是示出本实施方式的DC-DC转换器的其他示例的电路图。
图4的DC-DC转换器100,具备:电源端子101;接地端子102;基准电压电路111,输出基准电压VREF;分压电路112,对输出端子103的输出电压VOUT进行分压;误差放大器110,输出比较分压电压VFB和基准电压VREF的结果的电压VERR;斜波发生电路114,产生斜波VRAMP;PWM比较器113,比较电压VERR和斜波VRAMP输出信号PWM;输出缓冲器115;输出晶体管116;100%DUTY检测电路118;电源电压上升检测电路120;放电控制电路121a;以及相位补偿电路117。
100%DUTY检测电路118,输入端子与PWM比较器113的输出端子连接,反相输出端子与电源电压上升检测电路120的开关131的控制端子连接。
放电控制电路121a,具备:第二基准电压电路132,产生多少比斜波的波高值高的第二基准电压VREF2;比较器133,比较第二基准电压VREF2和电压VERR;比较器136,同相输入端子与nodeA连接,具有偏置电压Vos的反相输入端子与接地端子102连接;AND137,对比较器133的输出和比较器136的输出进行AND运算;以及开关135,用AND137的输出nodeB控制。
接着,说明图4的DC-DC转换器的动作。
图5是示出图4相关的DC-DC转换器的动作的图。
直至时刻T1,电源电压VDD成为比DC-DC转换器的期望的输出电压VOUTtar低的电压,分压电压VFB成为比基准电压VREF低的电压。误差放大器110的输出电压VERR为高电平(Hi),不与斜波VRAMP相交,所以信号PWM维持高电平(Hi)状态。从而,输出晶体管116处于导通状态,所以输出电压VOUT为电源电压VDD。此时,100%DUTY检测电路118处于100%DUTY检测状态,反相输出成为低电平(Lo)。电源电压上升检测电路120的开关131接受100%DUTY检测电路118的输出信号而成为截止。另外,nodeA维持开关131导通时的电压接地电位。即,放电控制电路121a的比较器136的输出成为低电平(Lo)。另外,电压VERR比比较器133的反相输入即第二基准电压VREF2高,所以比较器133的输出为高电平(Hi)。从而,AND137的输出nodeB为低电平(Lo),开关135成为截止。
从时刻T1到时刻T2之间,若电源电压VDD缓缓上升,则电源电压上升检测电路120的nodeA的电压利用电容130的耦合跟随电源电压VDD而上升。若nodeA的电压上升而比比较器136的偏置电压Vos高,则比较器136的输出成为高电平(Hi)。另外,比较器133的输出,维持高电平(Hi)。即,AND137的输出nodeB成为高电平(Hi)。从而,放电控制电路121a的开关135导通,所以释放相位补偿电容Cc的电荷,使电压VERR下降。
在时刻T2,若电压VERR成为比基准电压VREF2低的电压,则比较器133的输出成为低电平(Lo)。AND137的输出nodeB成为低电平(Lo),停止相位补偿电容Cc的放电。即,误差放大器110,输出与输入的分压电压VFB对应的电压VERR。
在时刻T3,电压VERR与斜波VRAMP相交,PWM比较器113的输出PWM成为矩形波,DC-DC转换器的开关动作开始。因为在电源电压VDD上升过程中电压VERR成为接近正常值的值,输出电压VOUT比较缓慢地接近正常的输出电压VOUT的值。从而,即便电源电压VDD恢复到正常值,在输出电压VOUT也不会发生过冲。
如以上说明的那样,依据本实施方式的DC-DC转换器,即使电源电压VDD从比DC-DC转换器的期望的输出电压低的电压、即从PWM比较器113成为100%DUTY状态的状态,恢复到正常的电压时,也能防止输出电压VOUT的过冲。
此外,本发明利用电压模式的DC-DC转换器的电路进行了说明,但是电流模式的DC-DC转换器也能适用,能得到同样的效果。在电流模式的情况下,在图3的说明动作的图中,以三角波说明的斜波VRAMP是反馈输出晶体管116的电流的电压。
标号说明
110 误差放大器;111、132 基准电压电路;112 分压电路;113 PWM比较器;114 斜波发生电路;115 输出缓冲器;116 输出晶体管;117 相位补偿电路;118 100%DUTY检测电路;120 电源电压上升检测电路;121、121a 放电控制电路;133、136 比较器;202 电流源。

Claims (5)

1.一种DC-DC转换器,共特征在于,具备:
误差放大器,放大对输出晶体管输出的电压进行分压后的分压电压与基准电压之差而输出电压VERR;
斜波发生电路,产生斜波;
PWM比较器,比较所述电压VERR和所述斜波,输出信号PWM;
100%DUTY检测电路,检测所述信号PWM已成为100%DUTY,输出100%DUTY检测信号;
相位补偿电容及相位补偿电阻,设在所述误差放大器的输出端子;
电源电压上升检测电路,检测电源电压的上升;以及
放电控制电路,接受所述电源电压上升检测电路的输出信号而释放所述相位补偿电容的电荷。
2.如权利要求1所述的DC-DC转换器,其特征在于,
所述放电控制电路,
在所述电压VERR比既定电压高时若被输入所述100%DUTY检测信号则输出放电控制信号。
3.如权利要求2所述的DC-DC转换器,其特征在于,
所述电源电压上升检测电路,具备:
电容,该电容的一端与电源端子连接;以及
开关,该开关的一端与所述电容的另一端连接,该开关的另一端与接地端子连接,用所述放电控制信号控制,
将所述开关和所述电容的连接点作为输出端子。
4.如权利要求1所述的DC-DC转换器,其特征在于,
所述电源电压上升检测电路,具备:
电容,该电容的一端与电源端子连接;以及
开关,该开关的一端与所述电容的另一端连接,该开关的另一端与接地端子连接,用所述100%DUTY检测信号控制,
将所述开关和所述电容的连接点作为输出端子。
5.如权利要求4所述的DC-DC转换器,其特征在于,
所述放电控制电路,
在所述电压VERR比既定电压高时若从所述电源电压上升检测电路输入检测信号则释放所述相位补偿电容的电荷。
CN201510826867.7A 2014-11-27 2015-11-25 Dc-dc转换器 Expired - Fee Related CN105656300B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240525 2014-11-27
JP2014240525A JP6393169B2 (ja) 2014-11-27 2014-11-27 Dc−dcコンバータ

Publications (2)

Publication Number Publication Date
CN105656300A true CN105656300A (zh) 2016-06-08
CN105656300B CN105656300B (zh) 2019-04-30

Family

ID=56079812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510826867.7A Expired - Fee Related CN105656300B (zh) 2014-11-27 2015-11-25 Dc-dc转换器

Country Status (5)

Country Link
US (1) US9553514B2 (zh)
JP (1) JP6393169B2 (zh)
KR (1) KR20160064004A (zh)
CN (1) CN105656300B (zh)
TW (1) TWI679835B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428487A (zh) * 2017-08-31 2019-03-05 艾普凌科有限公司 开关调整器
CN112803742A (zh) * 2021-02-27 2021-05-14 华为技术有限公司 Dc/dc转换器及其软启动防过冲方法
CN113193540A (zh) * 2021-07-01 2021-07-30 上海芯龙半导体技术股份有限公司南京分公司 控制电路、控制电路系统及电源芯片

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592374B2 (ja) * 2016-02-23 2019-10-16 エイブリック株式会社 スイッチングレギュレータ
CN106787790B (zh) * 2016-11-25 2021-04-13 广东百事泰医疗器械股份有限公司 一种长寿命智能降压转换装置
US11095156B2 (en) * 2017-04-12 2021-08-17 Mitsubishi Electric Corporation Power conversion device and non-contact power supplying system
US11342852B2 (en) * 2017-06-23 2022-05-24 Intel Corporation Apparatus, system, and method for reducing voltage overshoot in voltage regulators
JP7199913B2 (ja) * 2018-02-19 2023-01-06 ローム株式会社 スイッチング電源
JP7399739B2 (ja) * 2020-02-19 2023-12-18 ローム株式会社 スイッチング電源装置
TWI798993B (zh) * 2021-12-13 2023-04-11 大陸商北京歐錸德微電子技術有限公司 檢測電路、直流-直流轉換器及供電裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364768A (zh) * 2007-08-06 2009-02-11 罗姆股份有限公司 电源装置以及备有此电源装置的电子仪器
CN102136800A (zh) * 2010-01-25 2011-07-27 精工电子有限公司 开关调节器
CN103219868A (zh) * 2012-01-24 2013-07-24 株式会社东芝 半导体集成电路装置和dc-dc转换器
US8872494B2 (en) * 2012-02-10 2014-10-28 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device, DC-DC converter, and voltage conversion method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121535A (ja) * 1995-10-27 1997-05-06 Sharp Corp スイッチングレギュレータ
US6812782B2 (en) * 2002-10-25 2004-11-02 Texas Instruments Incorporated Switch mode converter that allows 100% duty cycle on gate driver
JP4487703B2 (ja) * 2004-09-21 2010-06-23 富士電機システムズ株式会社 スイッチング電源
JP2007074874A (ja) * 2005-09-09 2007-03-22 Nissan Motor Co Ltd 電源装置
JP5312781B2 (ja) * 2007-12-19 2013-10-09 シャープ株式会社 スイッチング電源回路
JP2011055692A (ja) * 2009-09-04 2011-03-17 Rohm Co Ltd スイッチングレギュレータ
US9625932B2 (en) * 2012-09-05 2017-04-18 Silicon Works Co., Ltd. Switching mode converter having 100% duty cycle mode and method for controlling thereof
CN103151925B (zh) * 2013-03-11 2015-08-19 成都芯源系统有限公司 一种开关转换器及其控制方法
JP6211916B2 (ja) * 2013-12-24 2017-10-11 エスアイアイ・セミコンダクタ株式会社 スイッチングレギュレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364768A (zh) * 2007-08-06 2009-02-11 罗姆股份有限公司 电源装置以及备有此电源装置的电子仪器
CN102136800A (zh) * 2010-01-25 2011-07-27 精工电子有限公司 开关调节器
CN103219868A (zh) * 2012-01-24 2013-07-24 株式会社东芝 半导体集成电路装置和dc-dc转换器
US8872494B2 (en) * 2012-02-10 2014-10-28 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device, DC-DC converter, and voltage conversion method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428487A (zh) * 2017-08-31 2019-03-05 艾普凌科有限公司 开关调整器
CN109428487B (zh) * 2017-08-31 2023-12-19 艾普凌科有限公司 开关调整器
CN112803742A (zh) * 2021-02-27 2021-05-14 华为技术有限公司 Dc/dc转换器及其软启动防过冲方法
WO2022179188A1 (zh) * 2021-02-27 2022-09-01 华为技术有限公司 Dc/dc转换器及其软启动防过冲方法
US11916482B2 (en) 2021-02-27 2024-02-27 Huawei Technologies Co., Ltd. DC/DC converter and soft start overshoot prevention method thereof
CN113193540A (zh) * 2021-07-01 2021-07-30 上海芯龙半导体技术股份有限公司南京分公司 控制电路、控制电路系统及电源芯片

Also Published As

Publication number Publication date
KR20160064004A (ko) 2016-06-07
CN105656300B (zh) 2019-04-30
US20160156264A1 (en) 2016-06-02
TWI679835B (zh) 2019-12-11
JP6393169B2 (ja) 2018-09-19
JP2016103895A (ja) 2016-06-02
TW201630322A (zh) 2016-08-16
US9553514B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
CN105656300A (zh) Dc-dc转换器
CN104731146A (zh) 开关调节器及电子设备
US9831774B2 (en) Constant on-time pulse width control-based scheme used in voltage converter
US9735680B2 (en) Constant on-time pulse width control-based scheme including capabilities of fast transient response and adaptively adjusting on-time pulse width
CN101552560B (zh) 一种开关稳压电路及其控制方法
CN104300773B (zh) 一种自适应假负载电路
US20130265016A1 (en) Direct Current Converter for Bootstrap Circuit
CN104038059A (zh) 开关调节器以及电子设备
CN103532378B (zh) 抑制输出电压过冲的电压转换器
US20130038313A1 (en) Switching regulator
CN103746342A (zh) 升压变换器以及用于升压变换器的控制器及短路保护方法
CN103066836A (zh) 开关电源电路及其控制方法
CN104750150A (zh) 稳压器及电子设备
CN104539154A (zh) 开关变换器及其控制电路
CN103051178A (zh) 一种检测并阻止反向电流的降压变换器
CN104714585A (zh) 稳压器
CN105843313B (zh) 电压调节器
CN104917376A (zh) Dc/dc转换器
CN104917375A (zh) Dc/dc转换器
JP2011229233A (ja) 力率改善回路およびその起動動作制御方法
CN104852575A (zh) Dc/dc转换器及电子设备
CN105226940A (zh) 升压电路及其控制方法
CN112042100B (zh) 电力转换装置
CN105471284A (zh) 电源转换装置及其过功率保护方法
CN105811755B (zh) 一种提高瞬态响应的降压型开关稳压器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Chiba County, Japan

Applicant after: ABLIC Inc.

Address before: Chiba County, Japan

Applicant before: DynaFine Semiconductor Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190430

Termination date: 20211125

CF01 Termination of patent right due to non-payment of annual fee