CN105655388A - 一种GaN基P型栅极增强型HEMT器件及其制备方法 - Google Patents

一种GaN基P型栅极增强型HEMT器件及其制备方法 Download PDF

Info

Publication number
CN105655388A
CN105655388A CN201610178604.4A CN201610178604A CN105655388A CN 105655388 A CN105655388 A CN 105655388A CN 201610178604 A CN201610178604 A CN 201610178604A CN 105655388 A CN105655388 A CN 105655388A
Authority
CN
China
Prior art keywords
layer
grid
type
barrier layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610178604.4A
Other languages
English (en)
Inventor
王成新
逯瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Inspur Huaguang Optoelectronics Co Ltd
Original Assignee
Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Inspur Huaguang Optoelectronics Co Ltd filed Critical Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority to CN201610178604.4A priority Critical patent/CN105655388A/zh
Publication of CN105655388A publication Critical patent/CN105655388A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

一种GaN基P型栅极增强型HEMT器件及其制备方法,该器件包括衬底层、沟道层、势垒层、栅极和漏极,沟道层设置在衬底层的上方,势垒层设置在沟道层的上方,栅极贯穿势垒层,漏极设置在势垒层上,栅极为P型金刚石;其制备方法包括以下步骤:(1)在衬底层上进行GaN沉积,形成沟道层;(2)在沟道层上生长AlGaN层;(3)在势垒层上生长一层p型金刚石,形成栅极;(4)在势垒层上且位于栅极的两侧分别形成源极和漏极。本发明采用金刚石P型栅极,可以提高能带,在栅压为0时耗尽沟道电子实现增强型特性,能够实现对器件阈值电压的调节,在提高漏极电流的同时保持较小的栅电流。

Description

一种GaN基P型栅极增强型HEMT器件及其制备方法
技术领域
本发明涉及一种用于提高离子迁移率的GaN基P型栅极增强型HEMT(HighElectronMobilityTransistor,高电子迁移率晶体管)器件及其制备方法,属于半导体技术领域。
背景技术
氮化镓材料作为一种新型的半导体材料受到了越来越多的关注。作为第三代半导体的代表性材料,氮化镓具有优异的电学和光学性质,其具有较宽带隙、直接带隙的优点,耐高温高压,适合应用于条件恶劣的环境中。氮化镓材料的主要用途为发光二极管和高电子迁移率晶体管。氮化镓基发光二极管可实现从紫外到红光的波长变化,覆盖了整个可见光波段,尤其是氮化镓蓝色发光二极管的商品化,带动了半导体照明领域的发展。目前,发光二极管广泛应用于交通信号灯、全色显示、液晶屏幕背光板、汽车仪表及内装灯等。基于GaN材料的高电子迁移率晶体管,由于高的电子饱和速度、二维电子气沟道中高浓度电子以及较高的临界击穿电场,使得其在大电流、低功耗、高压开关器件应用领域具有巨大的应用前景。
功率开关器件的关键是实现高击穿电压、低导通电阻和高可靠性。器件的击穿是由于栅肖特基结的泄漏电流和通过缓冲层的泄漏电流引起的。要提高器件耐压,纵向上需要增加缓冲层的厚度和质量,这主要由工艺技术水平决定;横向上需要漂移区长度增加,这不仅使器件或电路的芯片面积增加、成本增大,更为严重的是,器件的导通电阻增大,进而导致功耗急剧增加,且器件开关速度也随之降低。
现有技术普通氮化稼基异质结场效应晶体管结构,主要包括衬底、氮化稼缓冲层、氮化稼沟道层、铝稼氮势垒层以及铝稼氮势垒层上形成的源极、漏极和栅极,其中源极和漏极与铝稼氮势垒层形成欧姆接触,栅极与铝稼氮势垒层形成肖特基接触。但是对于普通而言,由于异质结构间天然存在很强的二维电子气沟道,所以在零偏压下器件处于导通状态,为耗尽型器件。而耗尽型器件的应用存在一定局限性,要使耗尽型器件关断必须在栅极加负电压偏置,这增加了电路的功耗和复杂度,同时在异常断电的情况下,器件仍处于导通状态,降低了系统的安全性。所以使用增强型器件能降低系统功耗和复杂度,提升安全性,使氮化稼基能应用于大功率开关器件和电路以及数字互补逻辑集成电路,具有很大的应用前景。
现有技术中为了实现氮化镓增强型器件,通常采用P型GaN栅结构。在栅下和AlGaN势垒层之间引入P型GaN材料,栅金属与P型GaN形成欧姆接触,一方面P型掺杂能提高能带,在栅压为0时耗尽沟道电子实现增强型特性,另一方面P型GaN材料中的空穴能注入沟道,起到电导调制作用,在提高漏极电流的同时保持较小的栅电流。但GaN材料的P型受主激活Mg能很高,高质量的P型材料很难实现,同时P型掺杂也会对材料的可靠性造成影响。
使用薄势垒层技术(M.A.Khan,Q.Chen,C.J.Sun,etal.EnhancementanddepletionmodeGaN/AlGaNheterostructurefiledeffecttransistors[J],AppliedPhysicsLetters,1996,68(4):514-516)。通过减小势垒层的组分和厚度能减小沟道中浓度,优点是没有对栅下区域进行刻蚀引起工艺损伤,因而肖特基特性较好,栅泄漏电流较低,但这种方法的不足是由于整体削减势垒层的厚度,整个沟道区域的浓度较低,器件的饱和电流较小,同时闽值电压也不能实现太高。
使用槽栅结构(W.Sato,Y.Takata,M.Kuraguchi,etal.Recessed-gatestructureapproachtowardnormally-offhigh-voltageAlGaN/GaNhemtforpowerelectronicsapplications[J],IEEETrans.ElectronDevices,2006,53(2):356-362)。将栅下势垒层刻蚀掉一部分,当势垒层薄到一定程度时,栅下密度将减小到可以忽略的程度,而源、漏区域的密度不变。这样器件的饱和电流、跨导和闽值电压均优于薄势垒结构。中国专利文献CN104347700A公开的《一种GaN基凹栅增强型HEMT器件》,涉及在异质结结构上通过高温化学反应的方法选择性腐蚀势垒层形成GaN基凹栅增强器件及其制造方法。该方法使得降低了外围电路的设计难度以及成本,符合电路对器件的要求,选择性地腐蚀栅极的势垒层,降低栅极的2DEG。但槽栅工艺对刻蚀深度的准确性控制较差,导致工艺重复性差,同时刻蚀会造成机械性损伤,使栅漏电增加。
使用栅下氟离子注入(Y.Cai,Y.Zhou,K.J.Chen,etal.Highperformanceenhancement-modeAlGaN/GaNHEMTsusingfluride-basedplasmatreatment[J],IEEEElectronDeviceLetters,2005,26(7):435-437)。氟离子具有很强的负电性,注入到栅下区域可以提高肖特基栅的有效势垒高度,耗尽栅下2DEG,工艺容易实现且可重复性高,但注入氟离子稳定性不够好,对器件的高压和高温可靠性有影响。
中国专利文献CN104900503A公开的《一种高离子迁移率晶体管的T型栅的制作方法》,通过沉积金属提供一种0.11-0.13um栅长的高离子迁移率晶体管的T型栅的制作方法,该方法在砷化稼基衬底上依次形成抗反射层及第一光阻,第一光阻经曝光显影形成宽度为0.16-0.19um的显开区域,再通过化学收缩工艺缩小至0.11-0.13um;再涂覆第二光阻,经曝光显影后与第一光阻的显开区域共同形成T型栅极的蚀刻窗。但该方法操作工艺较复杂,很难精确控制区域面积,成本较高。
发明内容
本发明针对目前GaN基异质结场效应晶体管为耗尽型器件,而没有相对可靠的增强型器件的不足,提供一种GaN基P型栅极增强型HEMT器件,同时提供一种该器件的制备方法。
本发明的GaN基P型栅极增强型HEMT器件,采用如下技术方案:
该器件,包括衬底层、沟道层、势垒层、栅极和漏极,沟道层设置在衬底层的上方,势垒层设置在沟道层的上方,栅极在势垒层上方,源极和漏极设置在势垒层上,栅极为P型金刚石。
所述衬底层采用硅(Si)、蓝宝石、碳化硅(SiC)、氮化稼(GaN)或稀土氧化物。衬底层厚度为100μm-1000μm。
所述沟道层为GaN层。沟道层厚度为0.1μm-5μm。
所述势垒层为AlGaN层。势垒层厚度为0.2μm-8μm。
所述势垒层中掺杂元素N,掺杂浓度为1×1015/cm-3-8×1020/cm-3
所述栅极厚度为0.3nm-800nm。
上述器件以P型金刚石作为栅极实现高迁移的结构,实现增强型特性,提高了器件的可靠性,使器件满足不同的需求。
上述GaN基P型栅极增强型HEMT器件的制备方法,包括以下步骤:
(1)在温度为50℃-1500℃以及压力为80-300mbar的条件下,在衬底层上进行GaN沉积,形成沟道层;
(2)在沟道层上生长AlGaN层(势垒层),生长温度为80-1200℃;
(3)在势垒层上生长一层p型金刚石,形成栅极,生长温度为20-1300℃。
(4)在势垒层上且位于栅极的两侧分别形成源极和漏极(蒸镀金属,通过欧姆接触形成源极和漏极)。
上述形成各层的方法可以是化学气相沉积(CVD)、氢化物气相外延(HVPE)、原子层淀积(ALD)或分子束外延(MBE)等。
与现有技术相比,本发明具有以下特点:
1.与传统PGaN作为栅极材料相比,采用金刚石P型栅极,可以提高能带,在栅压为0时耗尽沟道电子实现增强型特性。
2.选择金刚石作为栅极,使得高质量的P型材料更容易实现,器件可靠性得到提升;通过精确控制金刚石层的厚度,进而实现对器件阈值电压的调节,使器件满足不同的要求。
3.GaN材料的P型受主激活Mg能很高,很难实现,而采用金刚石P型栅极,载流子浓度得到有效提升,从而使更多的空穴注入沟道,起到电导调制作用,在提高漏极电流的同时保持较小的栅电流。
附图说明
图1是本发明的GaN基P型栅极增强型HEMT器件的结构示意图。
其中:1、衬底层;2、沟道层;3、势垒层;4、源极;5、栅极;6、漏极。
具体实施方式
本发明的GaN基P型栅极增强型HEMT器件,如图1所示,包括衬底层1、沟道层2、势垒层3、栅极5和漏极6,沟道层2设置在衬底层1的上方,势垒层3设置在沟道层2的上方,栅极5设置在势垒层3上方,漏极6设置在势垒层3上。
衬底层1采用为硅(Si)、蓝宝石、碳化硅(SiC)、氮化稼(GaN)或稀土氧化物等适合生长Ⅲ-Ⅴ族化合物的材料,衬底层1的厚度为100μm-1000μm。沟道层2为GaN层,沟道层2的厚度为0.1μm-5μm。势垒层3为AlGaN层,势垒层3的厚度为0.2μm-8μm。栅极5的厚度为0.3nm-800nm。
上述GaN基P型栅极增强型HEMT器件可以采用化学气相沉积(CVD)、氢化物气相外延(HVPE)、原子层淀积(ALD)或分子束外延(MBE)等方法制备。具体制备方法包括以下步骤:
(1)在反应室温度为50℃-1500℃以及压力为80-300mbar的条件下,在衬底层1上进行GaN沉积,沉积厚度为0.1μm-5μm,制备出沟道层2。
(2)在沟道层2上生长AlGaN层(势垒层2),厚度为0.2μm-8μm,生长温度为80-1200℃.
(3)在势垒层3上生长一层厚度为0.3nm-800nm的p型金刚石,形成栅极5,生长温度为20-1300℃,掺杂元素N,掺杂浓度为1×1015/cm-3-8×1020/cm-3
(4)在势垒层3上且位于栅极5的两侧分别形成源极4和漏极6(蒸镀金属,做欧姆接触,形成源极和漏极)。

Claims (9)

1.一种GaN基P型栅极增强型HEMT器件,包括衬底层、沟道层、势垒层、栅极和漏极,其特征是,沟道层设置在衬底层的上方,势垒层设置在沟道层的上方,栅极在势垒层上方,漏极设置在势垒层上,栅极为P型金刚石。
2.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述衬底层厚度为100μm-1000μm。
3.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述沟道层为GaN层。
4.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述沟道层厚度为0.1μm-5μm。
5.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述势垒层为AlGaN层。
6.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述势垒层厚度为0.2μm-8μm。
7.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述势垒层中掺杂元素N,掺杂浓度为1×1015/cm-3-8×1020/cm-3
8.根据权利要求1所述的GaN基P型栅极增强型HEMT器件,其特征是,所述栅极厚度为0.3nm-800nm。
9.一种权利要求1所述GaN基P型栅极增强型HEMT器件的制备方法,其特征是,包括以下步骤:
(1)在温度为50℃-1500℃以及压力为80-300mbar的条件下,在衬底层上进行GaN沉积,形成沟道层;
(2)在沟道层上生长AlGaN层(势垒层),生长温度为80-1200℃;
(3)在势垒层上生长一层p型金刚石,形成栅极,生长温度为20-1300℃。
(4)在势垒层上且位于栅极的两侧分别形成源极和漏极。
CN201610178604.4A 2016-03-25 2016-03-25 一种GaN基P型栅极增强型HEMT器件及其制备方法 Pending CN105655388A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610178604.4A CN105655388A (zh) 2016-03-25 2016-03-25 一种GaN基P型栅极增强型HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610178604.4A CN105655388A (zh) 2016-03-25 2016-03-25 一种GaN基P型栅极增强型HEMT器件及其制备方法

Publications (1)

Publication Number Publication Date
CN105655388A true CN105655388A (zh) 2016-06-08

Family

ID=56494645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610178604.4A Pending CN105655388A (zh) 2016-03-25 2016-03-25 一种GaN基P型栅极增强型HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN105655388A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155099A (zh) * 2017-12-22 2018-06-12 中国科学院苏州纳米技术与纳米仿生研究所 一种包含介质层的p型栅HEMT器件及其制作方法
CN112510089A (zh) * 2020-12-01 2021-03-16 西安电子科技大学 基于插指状复合金刚石层的GaN HEMT及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615859Y (zh) * 2003-04-14 2004-05-12 中国科学院物理研究所 一种砷化镓基半导体-氧化物绝缘衬底
CN102629624A (zh) * 2012-04-29 2012-08-08 西安电子科技大学 基于GaN的MIS栅增强型HEMT器件及制作方法
CN203351602U (zh) * 2013-07-24 2013-12-18 中国电子科技集团公司第十三研究所 一种具有新型栅结构的栅控半导体器件
US20150060947A1 (en) * 2013-08-30 2015-03-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transistor with Diamond Gate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2615859Y (zh) * 2003-04-14 2004-05-12 中国科学院物理研究所 一种砷化镓基半导体-氧化物绝缘衬底
CN102629624A (zh) * 2012-04-29 2012-08-08 西安电子科技大学 基于GaN的MIS栅增强型HEMT器件及制作方法
CN203351602U (zh) * 2013-07-24 2013-12-18 中国电子科技集团公司第十三研究所 一种具有新型栅结构的栅控半导体器件
US20150060947A1 (en) * 2013-08-30 2015-03-05 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Transistor with Diamond Gate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108155099A (zh) * 2017-12-22 2018-06-12 中国科学院苏州纳米技术与纳米仿生研究所 一种包含介质层的p型栅HEMT器件及其制作方法
CN112510089A (zh) * 2020-12-01 2021-03-16 西安电子科技大学 基于插指状复合金刚石层的GaN HEMT及制备方法
CN112510089B (zh) * 2020-12-01 2022-02-18 西安电子科技大学 基于插指状复合金刚石层的GaN HEMT及制备方法

Similar Documents

Publication Publication Date Title
Sun et al. High-performance GaN vertical fin power transistors on bulk GaN substrates
CN109920854B (zh) Mosfet器件
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
US8933446B2 (en) High electron mobility transistors and methods of manufacturing the same
CN107482059B (zh) 一种GaN异质结纵向逆导场效应管
CN102364688B (zh) 一种垂直双扩散金属氧化物半导体场效应晶体管
CN103201840A (zh) 具有提高的缓冲击穿电压的hemt
CN105097911A (zh) 一种具有结型半导体层的hemt器件
CN104167445B (zh) 具有埋栅结构的氮化镓基增强耗尽型异质结场效应晶体管
CN104269433B (zh) 具有复合沟道层的氮化镓基增强型异质结场效应晶体管
CN111969047B (zh) 一种具有复合背势垒层的氮化镓异质结场效应晶体管
CN114447102A (zh) 具有衬底上复合半导体层的氮化镓异质结场效应晶体管
CN104851915A (zh) 槽栅型化合物半导体功率vdmos器件及提高其击穿电压的方法
CN107507858B (zh) 一种限流二极管
CN210897283U (zh) 一种半导体器件
JP2007027440A (ja) 半導体装置
CN105655388A (zh) 一种GaN基P型栅极增强型HEMT器件及其制备方法
CN107393954A (zh) 一种GaN异质结纵向场效应管
CN108346687B (zh) 一种氮化镓基高电子迁移率晶体管
CN113707708B (zh) 结型积累层增强型AlGaN/GaN高电子迁移率晶体管及其制作方法
US20210384360A1 (en) Enhancement-mode device and preparation method therefor
CN104167440A (zh) 一种增强型AlGaN/GaN异质结场效应晶体管
CN104157679A (zh) 一种氮化镓基增强型异质结场效应晶体管
CN113380877A (zh) 一种双结型场板的功率器件
KR102067596B1 (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160608