CN105624171B - 梨蔗糖转运蛋白基因PbSUT2及其应用 - Google Patents
梨蔗糖转运蛋白基因PbSUT2及其应用 Download PDFInfo
- Publication number
- CN105624171B CN105624171B CN201510308964.7A CN201510308964A CN105624171B CN 105624171 B CN105624171 B CN 105624171B CN 201510308964 A CN201510308964 A CN 201510308964A CN 105624171 B CN105624171 B CN 105624171B
- Authority
- CN
- China
- Prior art keywords
- pbsut2
- gene
- pear
- sucrose
- sucrose transporter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了梨蔗糖转运蛋白基因PbSUT2及其应用。一种分离自‘鸭梨’果实的蔗糖转运蛋白PbSUT2基因,其核苷酸序列为SEQ ID No.1所示,其编码的氨基酸序列为序列表SEQ ID No.2所示。通过农杆菌介导遗传转化方法将PbSUT2基因转化番茄,获得的转基因植株,经生物学功能验证,表明本发明克隆的PbSUT2基因具有促进植物提早开花和提高果实中蔗糖含量的功能。PbSUT2基因的发现,为促进植物果实品质的分子育种提供新的基因资源。
Description
技术领域
本发明属于植物基因工程领域。具体涉及一种从鸭梨(Pyrus bretschneideri)果实中分离、克隆得到一个编码蔗糖转运蛋白的基因PbSUT2,还涉及一种梨蔗糖转运蛋白基因PbSUT2在调节植物生长与果实品质方面的应用。
背景技术
梨是世界重要水果之一,也是我国的第三大栽培果树。糖是果实其他品质特征成分和风味物质如有机酸、花色素和芳香物质等合成的前体,是联系植物初级代谢和次级代谢的关键物质;同时,糖也具有多种多样的生物学功能,如为果实的细胞膨大提供渗透推动力,以及作为信号分子与激素等信号连成网络,其通过复杂的信号转导机制调节果实生长发育与基因表达等(Leon and Sheen,2003;陈俊伟等,2004)。蔷薇科植物果实中积累的糖分主要为蔗糖、果糖、葡萄糖和山梨醇等四种糖(Yamaki et al.,1986)。梨果实中糖组分和积累特点因不同种类及品种存在显著差异(Hudina and2000;Chen et al.,2007;姚改芳等,2010)。植物叶片产生的光合运转糖需经短距离运输到韧皮部并装载入韧皮部,经筛管长距离运输后从韧皮部卸出;再由韧皮部后运输进入果实代谢和贮藏。库细胞中韧皮部后运输效率,糖代谢酶的种类与活力和糖的跨膜运输能力等因素决定了果实糖分的积累(Ruan and Patrick,1995)。因此,筛选果实蔗糖运输过程中的转运蛋白基因,有助于了解梨蔗糖转运蛋白参与的糖运输分子生理机制及糖信号转导耦合激素信号转导调控植株生长发育的过程,为利用基因工程的手段改善果实品质的研究提供新的基因资源。
植物的蔗糖转运蛋白(sucrose transporters,SUTs),又称蔗糖-H+共转运蛋白(sucrose/H+co-transporters,SUCs),是一类具有蔗糖转运活性的蔗糖载体,广泛存在于高等植物的组织和细胞中介导蔗糖的跨膜运输。因此,蔗糖转运蛋白被认为在蔗糖进出韧皮部、库组织的蔗糖供给与蔗糖的贮藏,以及蔗糖转运调控等多种生理过程中发挥着重要的作用。Riesmeier等(1992)从菠菜中克隆得到了第一个蔗糖转运蛋白SoSUT1(Riesmeieret al.,1992)。蔗糖转运蛋白属于MFS超家族(Major Facilitator Super family)中的一员,它们的序列高度保守,是高疏水性蛋白,含有12个跨膜结构 域,中间面向细胞质的部分有1个大的胞质环,将蛋白分为各含6个跨膜结构域的2个半区,即前半区和后半区。至今已经从菠菜、马铃薯、芹菜、胡萝卜及拟南芥等植物中克隆得到了80多种蔗糖转运蛋白基因(张立军等,2008)。而后又对这些基因和cDNA序列进行同源性和系统发生分析得知,编码蔗糖转运蛋白的基因属于一个多成员的基因家族(Ward et al.,1998;Kühn et al.,1999;Williams et al.,2000)。在大多数植物体中,都包含不止1个蔗糖转运蛋白基因。如拟南芥中包含9种蔗糖转运蛋白基因(The Arabidopsis genome initiative,2000),水稻基因组中包含5种蔗糖转运蛋白基因(Aoki et al.,2003)。甜橙中有3个蔗糖转运蛋白基因(Zhenget al.,2014).植物体的蔗糖转运蛋白共分为5个亚族:SUT1、SUT2、SUT3、SUT4和SUT5亚族(Kühn et al.,2010)。代谢库特异性的蔗糖转运蛋白也从许多植物中分离得到,如葡萄的VvSUC11和VvSUC12(Davies et al.,1999),甘蔗ShSUT1(Rae et al.,2005),拟南芥花AtSUC9(Sivitz et al.,2007),拟南芥胚柄AtSUC3(Stadler et al.,2005),拟南芥胚乳AtSUC5(Baud et al.,2005)等。
不同类型的蔗糖转运蛋白其功能上存在差异。Leggewie et al(2003)研究得出马铃薯的蔗糖转运蛋白基因SoSUT1超表达后,改变了植株叶片和块茎的蔗糖含量,但对块茎的代谢和形态学影响很小。StSUT4影响马铃薯植株的开花,块茎的产量以及对光的敏感性(Chincinska et al.,2008)。马铃薯块茎中StSUT1的表达量减少后,不影响其地上部分的器官,但会减少块茎早期发育过程中块茎鲜重的积累(Kühn et al,2003)。Li et al(2014)从基因型为‘TAS-R8’的可可植物中克隆得到6个TcSUT基因(TcSUT1-TcSUT6),其分属3个不同的亚簇,各自具有不同的表达模式。拟南芥AtSUC1的突变体在外源提供蔗糖和麦芽糖的条件下,其花青素积累量减少,许多与花青素合成有关的重要基因表达量下降(Sivitz etal.,2008);拟南芥蔗糖转运蛋白AtSUC2突变体增加了蔗糖的韧皮部渗漏和转运的时间(Gould et al,2012)。AtSUC9突变体在短日照的条件下表现出早花的表型(Sivitz etal.,2007)。AtSUC5基因与拟南芥种子的早期发育有关(Baud et al.,2005)。杨树的蔗糖转运蛋白基因PtaSUT4调节整个植株的水分关系(Christopher et al.,2012)。烟草的蔗糖转运蛋白NtSUT4影响原生质体细胞的形状,这种影响是通过细胞内蔗糖的体内平衡途径实现的(Okubo-Kurihara et al.,2011)。Hackel et al(2006)通过反义抑制番茄蔗糖转运蛋白LeSUT1和LeSUT2的研究得出,LeSUT1和LeSUT2通过不同的途径影响番茄果 实的发育。葡萄植物中与成熟相关的2个蔗糖转运蛋白VvSUC11和VvSUC12可促进蔗糖从质外体到薄壁细胞的装载的功能(Manning et al.,2001)。
目前有关植物蔗糖转运蛋白的功能研究主要集中拟南芥、烟草、番茄等植物,而有关梨的蔗糖转运蛋白的报道较少,虽然目前已克隆得到了梨蔗糖转运蛋白有PbSUT1(Zhanget al.,2013)和PpSUT2(Tang et al.,2014),但还未见有对梨蔗糖转运蛋白或果树植物蔗糖转运蛋白的功能研究的相关报道。梨蔗糖转运蛋白是如何调控和影响植物的生长发育,对果实的品质又有何影响,这些问题都需要进行深入的研究和探讨。因此,本研究开展了新的梨蔗糖转运蛋白基因的克隆和功能的研究,将对了解果实蔗糖转运的分子生理机制及品质育种研究具有重要的意义。
发明内容
本发明的目的在于提供了一种从梨(Pyrus bretschneideri)果实中分离克隆的蔗糖转运蛋白基因。
本发明的另一目的是提供该基因在果实品质方面的应用。
为了实现以上目的,本发明采用的技术方案如下:
申请人从梨(Pyrus bretschneideri)果实中分离克隆得到一个新基因PbSUT2,其核苷酸序列如序列表SEQ ID NO.1所示,编码区序列(CDS)长度为1497bp,编码499个氨基酸残基,氨基酸序列如序列表SEQ ID NO.2所示,预测编码蛋白质含有12个跨膜结构域,分子量为53.42KD,等电点为8.96。
克隆本发明所述PbSUT2基因cDNA序列的引物对,正向引物PbSUT2-F1:5’-CCATGCCAGCTCCAGAAG-3’(SEQ ID NO.3);反向引物PbSUT2-R1:5’-ACCTCATGTGACAGCTCTGG-3’(SEQ ID NO.4)。
含有本发明所述的蔗糖转运蛋白基因PbSUT2的重组表达载体。
本发明所述的蔗糖转运蛋白基因PbSUT2在提早植物开花中的应用。
本发明所述的蔗糖转运蛋白基因PbSUT2在提高植物果实蔗糖含量中的应用。
本发明所述的蛋白在提早植物开花中的应用。
本发明所述的蛋白在提高植物果实蔗糖含量中的应用。
本发明所述的重组表达载体在提早植物开花中的应用。
本发明所述的重组表达载体在提高植物果实蔗糖含量中的应用。
利用qRT-PCR技术分析了在鸭梨果实发育过程中PbSUT2基因的表达模式,结果表明PbSUT2在整个果实发育过程中都具有表达量,其相对表达量的最高峰出现在果实快速膨大期,其次是果实成熟前期,这与蔗糖的积累规律相一致。
构建了PbSUT2的亚细胞定位融合表达载体pCAMBIA1302-PbSUT2-GFP,通过农杆菌介导转化洋葱表皮细胞,结果表明PbSUT2定位于细胞膜上,属于膜蔗糖转运蛋白体。
构建梨PbSUT2基因的植物超表达载体,利用农杆菌介导的遗传转化方法将梨PbSUT2基因转化番茄,获得的转基因植株经生物学功能分析,表明本发明克隆的PbSUT2基因具有提早番茄植物开花结实的功能,在果实的糖积累过程中促进蔗糖的显著积累,提高成熟果实中蔗糖的比例。
与现有技术相比,本发明具有以下优点:本发明利用转基因技术得到早花和果实蔗糖含量提高的植株,突破了传统育种手段的障碍,为植物果实品质基因工程提供了重要的基因资源。
附图说明
图1为本发明技术路线图。
图2梨PbSUT2编码蛋白拓扑结构示意图。
图3为本发明克隆的梨PbSUT2基因在鸭梨果实发育过程中的qRT-PCR分析和梨果实发育过程中糖分含量变化。a:PbSUT2的相对表达量;b:鸭梨果实含糖量。
图4为本发明克隆的梨PbSUT2基因亚细胞定位载体图。
图5为本发明克隆的梨PbSUT2基因的亚细胞定位。明场(A,D),暗场(B,E),叠加(C,F)。(A,B和C)对照空载GFP表达情况;(D,E和F)PbSUT2-GFP融合表达载体的定位图。
图6为本发明克隆的梨PbSUT2基因在转基因番茄成熟果实中的表达量分析图。WT:成熟果实;#45、#62、#76:阳性转PbSUT2基因番茄株系。
图7为本发明克隆的梨PbSUT2基因的植物超表达载体构建流程图。
图8为本发明克隆的梨PbSUT2基因在番茄植株中过量表达对植株生长的影响。WT:野生型番茄植株;#45、#62:阳性转PbSUT2基因番茄株系。a:转基因植株提早开花;b:转基因植株提早结果;c:转基因植株果实提前成熟。
图9为本发明克隆的梨PbSUT2基因在番茄植株过量表达对叶片净光合速率的影响。WT:野生型番茄植株;#45、#62:阳性转PbSUT2基因番茄株系。不同小写字母表示转PbSUT2基因株系与野生对照的植株叶片净光合速率的差异达到显著差异(P≤0.05)。
图10.为本发明克隆的梨PbSUT2基因在番茄植株过量表达对果实可溶性糖含量的影响。WT:野生型番茄植株;#45、#62:阳性转PbSUT2基因番茄株系。(a):蔗糖含量(mg·g- 1FW);(b):葡萄糖含量(mg·g-1FW);(c):果糖含量(mg·g-1FW);(d):可溶性总糖含量(mg·g-1FW)。不同小写字母表示转PbSUT2基因株系与野生对照的植株果实含糖量的差异达到显著差异(P≤0.05)。
具体实施方式
以下结合具体实施例对本发明做出详细的描述。根据以下描述和实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。
实施例1梨PbSUT2基因的克隆
以盛花后100d的‘鸭梨’果肉为试材,提取总RNA并反转录,所得的第一链cDNA用于扩增PbSUT2基因。利用CTAB法(CTAB提取缓冲液包括2%CTAB、2%PVP K-30、0.05%亚精胺、10mM Tris·HCl(pH=8.0)、25mM EDTA、2M NaCl)提取总RNA,取1μg RNA样品,经1U DNaseI(购自TaKaRa公司)37℃孵育30min后,加入1μL EDTA(25mM)65℃孵育10min。第一链cDNA的合成用TOYOBO反转录试剂盒(购自TakaRa公司,按照试剂盒说明书操作。扩增引物为:正向引物PbSUT2-F1:5’-CCATGCCAGCTCCAGAAG-3’(对应SEQ ID NO.3);反向引物PbSUT2-R1:5’-ACCTCATGTGACAGCTCTGG-3’(对应SEQ ID NO.4)。25μL PCR反应体系包括:1×PCR缓冲液(购自TakaRa公司),2.5mM MgCl2(购自TakaRa公司),0.25mM dNTPs(购自TakaRa公司),0.5μM正向引物PbSUT2-F1,0.5μM反向引物PbSUT2-R1,100ng cDNA,1U Taq DNA聚合酶(购自TakaRa公司)。PCR反应程序为:94℃预变性3min;94℃变性30s,50℃退火30s,72℃延伸2min,40个循环;循环完成后72℃延伸10min。
PCR产物经1%琼脂糖凝胶电泳后,将产生的目的条带,按照AxyPrep DNA凝胶回收试剂盒说明书操作回收。回收纯化的PCR产物与pMD19-T Vector(购自宝生物工程大连有限公司即TaKaRa公司)进行连接反应,连接反应体系包括:4.0μL回收纯化的PCR 产物,1.0μLpMD19-T Vector和5.0μL Solution I(购自TakaRa公司)。采用热击法(参照《分子克隆实验手册》第三版,科学出版社,2002)转化大肠杆菌DH5α,在含有50mg/L氨苄霉素的LB固体平板中筛选阳性克隆,挑取5个阳性克隆测序(由上海英俊生物技术有限公司完成)。测序结果表明,本发明扩增的目的片段长度为1497bp,其核苷酸序列如SEQ ID NO.1所示,通过序列比对分析,确定该序列是本发明需要的目的基因,将这个基因命名为PbSUT2。
PbSUT2基因包括1497bp的开放阅读框,编码498个氨基酸,氨基酸序列如序列表SEQ ID NO.2所示,预测编码蛋白质含有12个跨膜结构域,分子量为53.42KD,等电点为8.96。PbSUT2编码的氨基酸多肽具有12个跨膜区和一个中央胞质环,属于主要易化子超家族(Major facilitator superfamily,MFS)中的一员,该蛋白其跨膜区位置分别位于第29-51、61-83、96-118、128-150、171-193、218-237、279-301、323-345、357-379、394-416、428-450、465-487位氨基酸,第238-278位氨基酸的中央胞质环、蛋白的N端和C端均位于胞质内(图2)。在NCBI上进行Blastp分析,发现与番茄LeSUT4(BAO96215.1),马铃薯StSUT4(NP001275070.1),拟南芥AtSUT4(AAG09191.1)和烟草NtSUT4(BAI60050.1)蛋白的氨基酸序列相似性分别为74%,74%,71%和73%。由此证明扩增出来的序列是梨‘鸭梨’SUT基因全长。由此证明扩增出来的基因为是梨蔗糖转运蛋白基因。
实施例2梨果实发育过程中PbSUT2基因表达量和糖含量变化
1、梨PbSUT2基因在梨果实发育过程中的qRT-PCR分析
梨果肉总RNA的提取、cDNA合成的方法同实施例1。用梨tubulin(AB239681)作为内对照,引物的核苷酸序列如下:
正向引物TUB-F:5’-TGGGCTTTGCTCCTCTTAC-3’,
反向引物TUB-R:5’-CCTTCGTGCTCATCTTACC-3’。
利用Primer Premier 5.0在PbSUT2基因的开放阅读框内设计基因特异的qRT-PCR引物对,引物的核苷酸序列如下:
正向引物PbSUT2-F2:5’-CCTCCAGATGGCATTGTGATAGC-3’,
反向引物PbSUT2-R2:5’-GCGGGATTACTATTGCCAGATT-3’。
qRT-PCR采用SYBR Green试剂盒(购自TaKaRa公司,按照试剂盒说明书操作)。20μLqRT-PCR反应体系包括:10μL 2×SYBR Premix ExTaq,0.4μL正向引物,0.4μL反向引物,1μLcDNA,8.2μL无菌双蒸水。使用96孔qRT-PCR板(购自Roche公司),运用qRT-PCR仪(型号:LightCycler 480,Roche公司)进行PCR。qRT-PCR反应程序为:95℃预变性10min;95℃变性15s,60℃退火15s,72℃延伸20s,40个循环。每个cDNA样品重复3次,计算出每个cDNA样品的平均Ct值,通过计算2-ΔΔCt得出PbSUT2基因的相对表达量。
2梨果实发育过程中可溶性糖含量变化
可溶性糖的提取步骤如下:准确称取2.0g组织样品于预冷的研钵,加入8mL 80%乙醇,充分研磨匀浆后转入10mL离心管,37℃水浴30min,超声波15min,12000rpm离心15min,上清液转入25mL容量瓶中,重复提取3次,合并上清液并定容。取2mL提取液,用旋转蒸发器(型号:RE-3000,上海亚荣生化仪器厂)蒸干,然后用1mL无菌双蒸水溶解,最后用0.45μm的水系滤器过滤,滤液即用于测定可溶性糖的含量。可溶性糖含量的测定采用高效液相色谱法(HPLC),高效液相色谱仪为Waters1525系统,采用碳水化合物柱(TransgenomicCOREGET-87C;7.8×300mm,5μm),外加保护柱(Transgenomic CARB Sep Coregel 87Ccartridge),检测器为Waters2414示差检测器,参比池温度为35℃,柱温为85℃,流速为1.0mL·min-1,流动相为脱气后的超纯水(18.2MΩ·cm),进样量为5μL。根据样品峰面积和各碳水化合物的标准曲线计算其含量。
qRT-PCR技术分析鸭梨果实发育过程中PbSUT2基因的相对表达量见图3a,鸭梨果实发育过程中果实的可溶性糖含量见图3b。梨果实中蔗糖含量在幼果期很低,盛花后100d其蔗糖含量开始快速积累,此时PbSUT2基因的相对表达量也达到最高峰,结果表明,PbSUT2的大量表达与蔗糖的积累具有一致性。
实施例3PbSUT2基因亚细胞定位
本实施例利用洋葱表皮研究PbSUT2基因的亚细胞定位,所用的表达载体为pCAMBIA1302,该表达载体上具有GFP基因(图4)。利用RT-PCR扩增出PbSUT2基因整个ORF,ORF扩增引物为实施例1中的PbSUT2-F1和PbSUT2-R1引物,并在其ORF扩增引物PbSUT2-F1和PbSUT2-R1的5’端分别加上BglⅡ和SpeI两个酶切位点,即得到 带酶切位点的扩增引物:正向引物PbSUT2-F3核苷酸序列为:5’-GAAGATCTCCATGCCAGCTCCAGAAG-3’,反向引物PbSUT2-R3核苷酸序列为:5’-GGACTAGTACCTCATGTGACAGCTCTGG-3’。下划线为酶切位点,AGATCT为BglⅡ酶切位点, ACTAGT为SpeI酶切位点。首先将扩增产物装在pMD19-T载体上,从而得到重组载体PMD19-TB/S-PbSUT2。同时用BglⅡ和SpeI去切pCAMBIA1302和PMD19-TB/S-PbSUT2,回收产物并连接,获得重组载体pCAMBIA1302-PbSUT2-GFP。在确认序列无误后,将pCAMBIA1302-PbSUT2-GFP重组载体及对照载体pCAMBIA1302用热击法分别转入农杆菌GV3101。农杆菌侵染洋葱表皮方法详见黄小三博士毕业论文(2011)。亚细胞定位结果表明:含对照载体的农杆菌转化的洋葱表皮细胞中GFP荧光充满整个细胞(图5A-C),而含PbSUT2基因载体的农杆菌浸染的洋葱表皮中GFP荧光只在细胞膜上(图5D-F),证明PbSUT2是膜定位蛋白。
实施例4构建梨PbSUT2基因的植物超表达载体
对pBI121载体的多克隆位点和梨PbSUT2基因的核苷酸序列进行了分析,在引物PbSUT2-F1和PbSUT-R1的5’端分别加上酶切位点XbaΙ和KpnI,即得到相应的引物PbSUT2-F4和PbSUT2-R4,用于构建表达载体pBI121-PbSUT2,其引物核苷酸序列如下所示:
正向引物PbSUT2-F4:5’-GCTCTAGACCATGCCAGCTCCAGAAG-3’;
反向引物PbSUT2-R4:5’-GGGGTACCACCTCATGTGACAGCTCTGG-3’。
下划线为酶切位点,TCTAGA为XbaΙ酶切位点,GGTACC为KpnI酶切位点。
用含有100mg·L-1氨苄青霉素的液体LB培养基悬浮培养成功转化‘PbSUT2-pMD19-T’重组质粒的大肠杆菌DH5α(见实施例1),37℃、220rpm培养12h。提取‘PbSUT2-pMD19-T’重组质粒作为模板进行PCR,25μL PCR反应体系包括:1×LA PCR Buffer II(Mg2+free)(购自TakaRa公司),2.5mM MgCl2,0.4mM dNTPs,0.4μM正向引物PbSUT2-F4,0.4μM反向引物PbSUT2-R4,100ng重组质粒,1.25U TakaRa LA Taq聚合酶(购自TakaRa公司)。PCR反应程序为:94℃预变性5min;94℃变性30s,59℃退火40s,72℃延伸2min,35个循环;循环完成后72℃延伸10min。目的片段的回收纯化、与pMD19-T Vector的连接、阳性克隆的获得与测序,均同实施例1。测 序正确的结果包括上游酶切位点XbaΙ、PbSUT2基因和下游酶切位点KpnI。最终获得‘XbaΙ-PbSUT2-KpnI-pMD19-T’重组质粒。
分别提取‘XbaΙ-PbSUT2-KpnI-pMD19-T’重组质粒和pBI121的质粒进行双酶切。40μL双酶切体系包括:质粒8μL,10×M缓冲液(购自TakaRa公司)4μL,XbaΙ和KpnI各2μL,无菌双蒸水24μL。37℃酶切4h后分别纯化回收PbSUT2基因和pBI121载体。连接反应体系包括:pBI121载体2μL,PbSUT2基因6μL,10×T4DNA连接缓冲液(购自TakaRa公司)1μL,T4DNA连接酶(购自TakaRa公司)1μL。16℃孵育14-16h。取10μL连接产物,采用热击法转化大肠杆菌DH5α,在含有50mg·L-1卡那霉素的固体LB平板中筛选阳性克隆,进行测序(由英潍捷基公司完成)。测序正确的结果包括上游酶切位点XbaΙ、PbSUT2基因和下游酶切位点KpnI,且无核苷酸变异。同时提取‘XbaΙ-PbSUT2-KpnI-pBI121’重组载体进行双酶切验证,双酶切体系同上。获得含有插入PbSUT2基因的重组载体,将其命名为‘PbSUT2-pBI121’重组载体,应用冻融法将重组载体‘PbSUT2-pBI121’导入到农杆菌GV3101中。植物超表达载体‘PbSUT2-pBI121’的构建完整图见图7。
实施例5番茄的遗传转化和转化植株分子鉴定
根癌农杆菌介导的番茄遗传转化具体步骤参照王保全博士毕业论文(2012)。按照上述方法得到转PbSUT2基因的番茄植株,采用小量法提取DNA的方法进行番茄叶片总DNA的提取。阳性植株鉴定步骤如下:设计特异性引物用对(PbSUT2-F5和PbSUT2-R5),正向引物PbSUT2-F5:5’-GTGACTCAGGGTCCTTGTAG-3’;反向引物PbSUT2-R5:5’-GCTTGCCACCATAAATCTCT-3’。对上述提取的DNA进行PCR扩增鉴定阳性苗。鉴定为阳性植株移栽后独立收获种子(T1代种子),T1代种子播种后,对幼苗再次进行阳性鉴定,将不同株系鉴定为阳性的植株用于相关分子与生理鉴定分析。
实施例6半定量RT-PCR检测PbSUT2基因在转基因番茄植株中的超表达
本研究采用半定量RT-PCR分析转基因番茄果实中外源基因PbSUT2的表达量,转基因株系果实RNA提取与反转录方法同实施例1。利用Primer Premier 5.0在PbSUT2基因的开放阅读框内设计基因特异的半定量RT-PCR引物对,其引物的核苷酸序列为:PbSUT2-F6:5’-CCTCCAGATGGCATTGTGATAG-3’,PbSUT2-R6:5’-TCAGTACGCCCATTG ATAAACC-3’。用番茄β-actin作内参基因,Actin-F:5’-ATGGCAGACGGAG AGGATATT CA-3’,Actin-R:5’-GCCTTTGCAATCCACA TCTGCTG-3’。反应程序:94℃预变性3min,94℃变性30s,57℃退火1min,72℃延伸30s,35个循环,循环完成后72℃延伸10min。半定量PCR分析结果如图6所示,目的基因在转基因株系#45和#62中超量表达,野生型中没有表达。由此可见,目的基因已经整合到了番茄植株中。
实施例7转PbSUT2基因番茄植株的生长发育观察与生理鉴定
1梨PbSUT2基因在番茄植株中过量表达对植株生长的影响
与野生型番茄植株相比,转PbSUT2基因番茄植株的营养生长受到一定程度的抑制,主要表现为植株节间变短、整个植株变矮;出现早花早果现象,果实提早成熟。转基因植株的始花期比野生型植株提前(图8),表明本研究克隆的梨PbSUT2基因可促使植物提早开花结实。
2梨PbSUT2基因在番茄植株中过量表达对叶片净光合速率的影响
净光合速率是指光合作用产生的糖类减去呼吸作用消耗的糖类(即净光合作用产生的糖类)的速率。采用LI-6400XT便携式光合仪(美国LI-COR)测定叶片的净光合速率。测定分析结果表明,转基因两个番茄株系的植株叶片的净光合速率都显著高于野生型植株叶片(图9),高的净光合速率可能会促进更多的光合产物的积累,从而使转基因植株出现提早开花的表型特征。
3梨PbSUT2基因在番茄植株中过量表达对可溶性糖含量的影响
蔗糖转运蛋白具有转运糖分的功能,与可溶性糖的组分和含量有一定的相关性。因此,测定转PbSUT2基因番茄植株果实的可溶性糖含量可进一步研究本发明克隆的梨PbSUT2基因的功能。以野生型番茄植株为对照,测定了转PbSUT2基因番茄植株成熟果实的可溶性糖含量(图10)。可溶性糖的提取步骤如实施例2。分析结果表明,与野生型番茄植株为对照,2个转基因番茄株系成熟果实的蔗糖含量显著高于野生型植株番茄成熟果实而转基因番茄果实中葡萄糖、果糖和可溶性总糖含量却显著低于野生型果实。但是转基因植株果实中蔗糖含量占可溶性总糖的比例增大,转基因株系#45和#62成熟果实中蔗糖所占比例分别为15.33%和11.60%,远高于野生型番茄成熟果实中蔗糖所占可溶性总糖的比例8.13%。
参考文献
[1]陈俊伟,张上隆,张良诚.果实中糖的运输、代谢与积累及其调控[J].植物生理与分子生物学学报,2004,30(1):1-10.
[2]黄培堂.分子克隆实验指南(第三版).科学出版社,2005.
[3]黄小三.枳抗逆基因的克隆及功能鉴定[D].华中农业大学,2011.
[4]王保全.桃PpERS1、PpADC基因克隆、鉴定及PtADC转基因功能分析[D].华中农业大学,2012.
[5]姚改芳,张绍铃,曹玉芬,刘军,吴俊,袁江,张虎平,肖长城.不同栽培种梨果实中可溶性糖组分及含量特征[J].中国农业科学,2010,43(20):4229-4237.
[6]张立军,李晓宇,阮燕晔.双子叶与单子叶植物蔗糖转运蛋白的研究进展[J].沈阳农业大学学报,2008,3:259-264.
[7]Aoki N.,Hirose T.,Scofield G.N.,Whitfeld P.R.,Furbank R.T.Thesucrose transporter gene family in rice[J].Plant Cell Physiolgy,2003,44:223-232.
[8]Baud,S.,Wuilleme,S.,Lemoine,R.,Kronenberger,J.,Caboche,M.,Lepiniec,L.and Rochat,C.The AtSUC5sucrose transporter specifically expressedin the endosperm is involved in early seed development in Arabidopsis[J].Plant Journal,2005,43:824–836.
[9]Chen J.L.,Wang Z.F.,Wu J.H.,Wang Q.,Hu X.S.Chemical compositionalcharacterization of eight pear cultivars grown in China[J].Food Chemistry,2007,104:268–275.
[10]Chincinska I.A.,Liesche J.,Krügel U.,Michalska J.,GeigenbergerP.,Grimm B.,Kühn C.Sucrose transporter StSUT4 from potato affects flowering,tuberization,and shade avoidance response[J].Plant Physiology,2008,146:515–528.
[11]Davies,C.,Wolf,T.,Robinson,S.P.Three putative sucrosetransporters are differentially expressed in grapevine tissues[J].PlantScience,1999,147:93–100.
[12]Frost C.J.,Nyamdari B.,Tsai C.J.,Harding S.A.The tonoplast-localized sucrose transporter in populus(PtaSUT4)regulates whole-plant waterrelations,responses to water stress,and photosynthesis[J].PLoS One,2012,7(8):e44467.
[13]Gould N.,Thorpe M.R.,Pritchard J.,Christeller J.T.,Williams L.E.,Roeb G.,Schurr U.,Minchin P.E.H.AtSUC2 has a ro le for sucrose retrievalalong the phloem pathway:Evidence from carbon-11 tracer studies[J].IrelandPlant Science,2012,188-189:97-101.
[14]Hackel A.,Schauer N.,Carrari F.,Fernie A.R.,Grimm B.,KühnC.Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruitdevelopment in different ways[J].Plant Journal,2006,45:180–192.
[15]Hudina M.,F.Sugars and organic acids contents of EuropeanPyrus comminus L.and Asian Pyrus serotina r Rehd.pear cultivars[J].ActaAlimentaria,2000,29(3):217-230.
[16]Kühn C.,Barker L.,Bürkle L.,Frommer W.B.Update on sucrosetransport in higher plants[J].Journal of Eexperimental Botany,1999,50:935-953.
[17]Kühn C.,Hajirezaei,M.R.,Fernie A.R.,Roessner-Tunali U.,CzechowskiT.,Hirner B.,Frommer W.B.The sucrose transporter StSUT1 localizes to sieveelements in potato tuber phloem and influences tuber physiology anddevelopment[J].Plant Physiology,2003,131:102–113.
[18]Kühn C.,Grof C.P.L.Sucrose transporters of higher plants[J].Current Opinion in Plant Biology,2010,13:288-298.
[19]Leggewie G.,Kolbe A.,Lemoine R.,Roessner U.,Lytovchenko A.,ZutherE.,Kehr J.,Frommer W.B.,Leon P.,Sheen J.Sugar and hormone connections[J].Trends in Plant Science,2003,8:110-116.
[20]Li F.P.,Wu B.D.,Qin X.W.,Yan L.,Hao C.Y.,Tan L.H.,LaiJ.X.Molecular cloning and expression analysis of the sucrose transporter genefamily from Theobroma cacao L.[J].Gene.2014,546:336–341.
[21]Manning K.,Davies C.,Bowen H.C.,White P.J.Functionalcharacterization of two ripening-related sucrose transporters from grapeberries[J].Annals of Botany.2001,87:125-129.
[22]Okubo-Kurihara E.,Higaki T.,Kurihara Y.,Kutsuna N.,Yamaguchi J.,Hasezawa S.Sucrose transporter NtSUT4 from tobacco BY-2 involved in plantcell shape during miniprotoplast culture[J].Journal of Plant Research.2011,124:395–403.
[23]Rae,A.,Perroux,J.M.and Grof,C.P.L.Sucrose partitioning betweenvascular bundles and storage parenchyma in the sugarcane stem:a potentialrole for the ShSUT1 sucrose transporter[J].Planta,2005,220:817–825.
[24]Riesmeier J.W.,Willmitzer L.,Frommer W.B.Isolation andcharacterization of a sucrose carrier cDNA from spinach by functionalexpression in yeast[J].Embo Journal,1992,11:4705-4713.
[25]Riesmeier J.W.,Willmitzer L.,Fernie A.R.Overexpression of thesucrose transporter SoSUT1 in potato results in alterations in leaf carbonpartitioning and in tuber metabolism but has little impact on tubermorphology[J].Planta,2003,217:158–167.
[26]Ruan Y.L.,Patrick J.W.The cellular pathway of postphloem sugartransport in developing tomato fruit[J].Planta,1995,196:434-444.
[27]Stadler,R.,Lauterbach,C.,Sauer,N.Cell-to-cell movement of GFPreveals post-phloem transport in the outer integument and identifiessymplastic domains in Arabidopsis seeds and embryos[J].Plant Physiology,2005,139:701–712.
[28]Sivitz,A.B.,Reinders,A.,Johnson,M.E.,Krentz,A.D.,Grof,C.P.,Perroux,J.M.and Ward,J.M.Arabidopsis sucrose transporter AtSUC9.High-affinitytransport activity,intragenic control of expression,and early floweringmutant phenotype[J].Plant Physiology,2007,143:188–198.
[29]Sivitz A.B.,Reinders A.,Ward J.M.Arabidopsis sucrose transporterAtSUC1is important for pollen germination and sucrose-induced anthocyaninaccumulation[J].Plant Physiology,2008,147:92–100.
[30]Sébastien B.,Wuillème S.,Lemoine R.,Kronenberger.,Caboche M.,Lepiniec L.,Rochat C.The AtSUC5 sucrose transporter specifically expressed inthe endosperm is involved in early seed development in Arabidopsis[J].ThePlant Journal,2005,43:824–836.
[31]Tang J.,Lin J.,Zhang B.L.,Wang Z.H.,Li X.G.,Chang Y.H.Cloning andexpression analysis of PpSUT2 encoding a sucrose transporter in pear[J].Genetics and Molecular Research.2014,13(4):8932-8945.
[32]The Arabidopsis genome initiative.Analysis of the genome sequenceof the flowering plant Arabidopsis thaliana[J].Nature,2000,408:796-815.
[33]Ward J.M.,Kühn C.,Tegeder M.,Frommer W.B.et al.Sucrose transportin higher plants[J].International Review of Cytology,1998,178:41-71.
[34]Williams L.E,Lemoine R.,Sauer N.Sugar transporters in higherplants:a diversity of roles and complex regulation[J].Trends Plant Science,2000,5:283-290.
[35]Yamaki,S.Roles of four sorbitol related enzymes and invertase inthe seasonal alteration of sugar metabolism in apple tissue.Journal of theAmerican Society for Horticultural Science,1986,111:134-137.
[36]Zhang H.P.,Zhang S.J.,Qin G.H.,Wang L.F.,Wu T.,Qi K.J.,ZhangS.L.Molecular cloning and expression analysis of a gene for sucrosetransporter from pear(Pyrus bretschneideri Rehd.)fruit[J].Plant Physiologyand Biochemistry,2013,73:63-69
[37]Zheng Q.M.,Tang Z.,Xu Q.,Deng X.X.Isolation,phylogeneticrelationship and expression profiling of sugar transporter genes in sweetorange(Citrus sinensis)[J].Plant Cell Tissue and Organ Culture,2014,119:609–624。
Claims (2)
1.梨蔗糖转运蛋白基因PbSUT2、基因PbSUT2编码的蛋白或者含有蔗糖转运蛋白基因PbSUT2的重组表达载体在降低番茄植株高度、减小番茄节间长度、提高番茄植株叶片的净光合速率、提早番茄开花中的应用;
所述梨蔗糖转运蛋白基因PbSUT2的核苷酸序列如SEQIDNO.1所示;
所述梨蔗糖转运蛋白基因PbSUT2编码的蛋白的氨基酸序列如SEQIDNo.2所示。
2.根据权利要求1所述的应用,其特征在于,所述蔗糖转运蛋白基因PbSUT2的引物对由以下引物组成:正向引物PbSUT2-F1:如SEQIDNO.3所示;反向引物PbSUT2-R1:如SEQIDNO.4所示。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510308964.7A CN105624171B (zh) | 2015-06-08 | 2015-06-08 | 梨蔗糖转运蛋白基因PbSUT2及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510308964.7A CN105624171B (zh) | 2015-06-08 | 2015-06-08 | 梨蔗糖转运蛋白基因PbSUT2及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105624171A CN105624171A (zh) | 2016-06-01 |
CN105624171B true CN105624171B (zh) | 2020-12-15 |
Family
ID=56039515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510308964.7A Active CN105624171B (zh) | 2015-06-08 | 2015-06-08 | 梨蔗糖转运蛋白基因PbSUT2及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105624171B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107400671B (zh) * | 2017-04-25 | 2021-01-05 | 南京农业大学 | 梨果实糖转运蛋白基因PbTMT4及其应用 |
CN107190062B (zh) * | 2017-06-05 | 2020-10-23 | 南京农业大学 | 梨果实不同发育时期荧光定量内参基因的筛选及应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6025544A (en) * | 1994-10-31 | 2000-02-15 | Hoechst Schering Agrevo Gmbh | Processes for modifying plant flowering behavior |
-
2015
- 2015-06-08 CN CN201510308964.7A patent/CN105624171B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6025544A (en) * | 1994-10-31 | 2000-02-15 | Hoechst Schering Agrevo Gmbh | Processes for modifying plant flowering behavior |
Non-Patent Citations (2)
Title |
---|
Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus bretschneideri Rehd.) fruit;Huping Zhang 等;《Plant Physiology and Biochemistry》;20130904;第73卷;第63-69页 * |
植物蔗糖转运蛋白的基因与功能;戚继艳 等;《植物学通报》;20070430;第24卷(第4期);第532-543页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105624171A (zh) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170211088A1 (en) | Drought tolerant plants and related constructs and methods involving genes encoding dtp6 polypeptides | |
ES2550364T3 (es) | Plantas que tienen incrementada la tolerancia al estrés térmico | |
Wang et al. | Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit | |
US9040773B2 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding LNT1 polypeptides and homologs thereof | |
US10662435B2 (en) | Plants having altered agronomic characteristics under abiotic stress conditions and related constructs and methods involving genes encoding NAC3/ONAC067 polypeptides | |
Tahir et al. | Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock | |
US10626410B2 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving low nitrogen tolerance genes | |
CN105296502B (zh) | 梨己糖转运蛋白基因PbHT1及其应用 | |
US20140068811A1 (en) | Drought tolerant plants and related constructs and methods involving genes encoding zinc-finger (c3hc4-type ring finger) family polypeptides | |
CN105624171B (zh) | 梨蔗糖转运蛋白基因PbSUT2及其应用 | |
CN107400671B (zh) | 梨果实糖转运蛋白基因PbTMT4及其应用 | |
US20150307895A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding snf2 domain-containing polypeptides | |
CN109112135A (zh) | OsREP4基因在控制水稻抗旱性中的应用 | |
US20130269063A1 (en) | Drought tolerant plants and related constructs and methods involving genes encoding mate-efflux polypeptides | |
US20160264988A1 (en) | Drought tolerant plants and related constructs and methods | |
CN103468740B (zh) | 水稻OsDRAP1基因在增强植物抗旱性中应用 | |
US20150275225A1 (en) | Plants having altered agronomic characteristics under nitrogen limiting conditions and related constructs and methods involving genes encoding lnt5 polypeptides and homologs thereof | |
US20160369295A1 (en) | Drought tolerant plants and related constructs and methods involving genes encoding dtp4 polypeptides | |
Zheng et al. | Construction and characterization of a cDNA library from floral organs and fruitlets of Citrus reticulata | |
WO2014151213A2 (en) | Drought tolerant plants and related constructs and methods involving genes encoding dtp32 polypeptides | |
BR102013006227A2 (pt) | Método para acentuar um ou mais traços relacionados ao rendimento em plantas, construção de expressão, vetor de expressão recombinante, uso, método para aprodução de uma planta transgênica, planta transgénica, parte colhivel, produto e método de fabricação | |
US20160040181A1 (en) | Agronomic characteristics under nitrogen limiting conditions for plants expressing ph11 or nucpu29 polypeptides | |
US20160060647A1 (en) | DROUGHT TOLERANT PLANTS AND RELATED CONSTRUCTS AND METHODS INVOLVING GENES ENCODING PHOSPHATIDIC ACID PHOSPHATASE (PAP), DTP25 and DTP46 POLYPEPTIDES | |
BR102014012664A2 (pt) | método para melhorar uma ou mais características relacionadas ao rendimento em plantas, construção, célula hospedeira,planta, parte de planta ou célula vegetal, transgênica e método para sua produção, produto e método para sua fabricação, dna cromossômico recombinante e composição | |
CN115807002A (zh) | 桃热激蛋白PpHSP20-32及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |